

Jordana Luiza Barbosa da Costa Veiga

Análise de Critérios para Aceitação de Enrugamento em Dutos Curvados a Frio

DISSERTAÇÃO DE MESTRADO

Dissertação apresentada ao programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica.

Orientador: José Luiz de França Freire

Rio de janeiro Outubro de 2008

Jordana Luiza Barbosa da Costa Veiga

Análise de Critérios para Aceitação de Enrugamento em Dutos Curvados a Frio

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. José Luiz de França Freire Orientador Pontifícia Universidade Católica do Rio de Janeiro

Prof. Carlos Alberto de Almeida

Pontifícia Universidade Católica do Rio de Janeiro

Prof. Theodoro Antoun Netto

Universidade Federal do Rio de Janeiro

Dr. Sergio Ricardo Kokay Morikawa PETROBRAS

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 14 de outubro de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da autora, do orientador e da universidade.

Jordana Luiza Barbosa da Costa Veiga

Especializou-se em Engenharia de Dutos pela PUC-Rio em 2007. Graduou-se em Engenharia Mecânica pela Universidade Federal do Rio de Janeiro em 2003 como bolsista de Iniciação Científica do CNPq. Graduou-se em Administração Industrial pelo CEFET-RJ em 2003. É engenheira de equipamentos na Petrobras desde 2005, atuando em Projeto mecânico de tubulações industriais e arranjo de plantas industriais.

Ficha Catalográfica

Veiga, Jordana Luiza Barbosa da Costa

Análise de critérios para aceitação de enrugamento em dutos curvados a frio / Jordana Luiza Barbosa da Costa Veiga ; orientador: José Luiz de França Freire. – 2008. 206 f. : il. ; 30 cm

Dissertação (Mestrado em Engenharia Mecânica)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008. Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Curvamento a frio. 3. Enrugamento. 4. Análise de tensões. 5. Fadiga. 6. Transporte dutoviário. 7. Método de elementos finitos. I. Freire, José Luiz de França. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

PUC-Rio - Certificação Digital Nº 0521476/CB

Dedico aos meus Pais, Ana Luiza e José Antônio Agradeço à PUC-Rio pela bolsa de auxílio concedida para realização do mestrado.

Ao Professor Artur Braga pela oportunidade de ter estudado na PUC-Rio.

Aos colegas de trabalho Fábio Marangone, Jorivaldo Medeiros, Ediberto Tinoco, Paulo Roberto, Laudemiro Nogueira, Diógenes Araújo, Rodrigo Hoppe, Rubem Yuan, Edvaldo Casagrande, Jerônimo Loureiro, Djalma Maia, Thiago Mello, Rodrigo Penha, Eduardo Hippert e Gilmar Zacca por toda ajuda e apoio na realização deste trabalho.

Aos colegas de PUC-Rio Maira, Priscilla e Marco pelo incentivo.

Ao colaborador da Smarttech Celso Noronha.

Ao amigo Mauricio Brandão, pelas incansáveis discussões sobre elementos finitos.

Ao engenheiro Marcos Barbosa, da Qualisol, por toda ajuda sobre o processo de curvamento a frio.

À minha Família pelo total apoio, mesmo nos momentos mais difíceis.

E principalmente, ao Professor José Luiz de França Freire pela confiança.

Resumo

Veiga, Jordana Luiza Barbosa da Costa; Freire, José Luiz de França (orientador). **Análise de Critérios para Aceitação de Enrugamento em Dutos Curvados a Frio**. Rio de Janeiro, 2008. 206p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Tubos de aço de grande diâmetro, baixa espessura e alta resistência mecânica, possuem tendência à formação de rugas no lado compressivo do curvamento (intrados) ao serem curvados a frio. A presente dissertação descreve os principais códigos de projeto nacionais e internacionais, quanto à presença de rugas provenientes desse tipo de curvamento em dutos, e propõe um ângulo para o qual há a formação do enrugamento. Os códigos internacionais mostram-se conservadores quanto à presença de rugas nos tubos curvados, uma vez que o enrugamento é uma mudança geométrica que, a princípio, gera concentração de tensões e susceptibilidade à ocorrência de falhas por fadiga. Esta dissertação faz uso do método de elementos finitos para modelar a formação do enrugamento e determinar fatores de concentração de tensões, nestas regiões, para carregamentos de pressão interna. Os fatores encontrados são comparados com resultados encontrados na literatura e utilizados no cálculo contra a fadiga por meio de diferentes métodos: Markl, inclinações universais de Manson e ASME seção VIII divisão 2. Neste estudo foram utilizados tubos de aço estrutural API X70 com razão diâmetro espessura (D/t) variando de 20 a 100, modelados por meio do software Abaqus[®]. Foram obtidas curvas com ângulo de 4°/diâmetro e enrugamentos severos, com razão entre a altura da ruga e o diâmetro do tubo (d/D) da ordem de 6,5% e fator de concentração de tensão chegando a 1,89. Os modelos de tubo enrugado não apresentaram falha na resistência mecânica à pressão interna aplicada, quando esta é suficiente para obtenção de tensão circunferencial nominal equivalente a 100% do limite de escoamento do material. Os resultados de vida em fadiga para os diferentes métodos aplicados variam de acordo com o método utilizado, mas todos apresentam redução na vida do tubo com presença de enrugamento severo. O estudo propõe que se utilize para o cálculo da vida em fadiga um procedimento conservador que associa o fator de concentração de tensão determinado por Rosenfeld com o método de cálculo contra a fadiga recomendado pelo código ASME VIII. O estudo sugere ainda, que sejam realizadas novas análises de forma a considerar o efeito Bauschinger e a instabilidade à flexão do modelo não avaliados no presente trabalho.

Palavras-chave

Curvamento a frio; enrugamento; análise de tensões; fadiga; transporte dutoviário; método de elementos finitos.

Abstract

Veiga, Jordana Luiza Barbosa da Costa; Freire, José Luiz de França (Advisor). **Analysis of Acceptance Criteria of Wrinkles in Pipeline Cold Bends**. Rio de Janeiro, 2008. 206p. M. Sc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Large diameter, thin walled, high mechanical resistance steel pipe has a tendency to wrinkle on the compressive side (the intrados) of the bend when it is cold bent. This dissertation describes the principal national and international design codes that apply to wrinkling resulting from pipe cold bending, and it proposes an angle at which such wrinkling occurs. The international codes prove to be conservative regarding wrinkling in bent pipe, since a wrinkle is a geometric change, which at first causes a stress concentration and susceptibility to fatigue failure. The dissertation uses the finite element method to model the formation of wrinkling and to determine stress concentration factors in these areas for internal pressure loading. The resulting factors are compared with the results found in the literature and are utilized in calculating fatigue life by means of the following methods: Mark1, Manson's universal inclinations and ASME Section VIII Division 2. In this study API X70 structural pipe with a diameter thickness (D/t) ratio varying from 20 to 100 was utilized, and modeled using Abaqus® software. Bends with an angle of 4°/diameter and severe wrinkling resulted, with a ratio between the peak of the wrinkle and the diameter of the pipe (d/D) of about 6.5% and a stress concentration factor nearing 1.89. The wrinkled pipe models did not reveal any lack of mechanical resistance to the applied internal pressure when it is sufficient for obtaining a nominal circumferential stress equivalent to 100% of the yielding limit of the material. The fatigue life results for the different methods varied according to the method that was utilized, but all displayed a reduction in pipe life if there was severe wrinkling. The study proposes a conservative procedure to be utilized for calculating fatigue life. This procedure associates the stress concentration factor determined by Rosenfeld with the method for calculating fatigue recommended by the ASME VIII code. Furthermore, the study suggests that new analyses may be performed in order to consider the Bauschinger effect and the model bend instability, which the study did not evaluated.

Keywords

Cold bend; wrinkling; stress analysis; pipeline; finite element methods.

SUMÁRIO

1	INTRODUÇÃO	.25
1.1	CONSIDERAÇÕES INICIAIS	.25
1.2	OBJETIVO DA DISSERTAÇÃO	.31
1.3	ORGANIZAÇÃO DA DISSERTAÇÃO	.32
2	REVISÃO BIBLIOGRÁFICA	.34
2.1	CURVAMENTO	.34
2.1.1	CURVAMENTO A QUENTE POR INDUÇÃO	.34
2.1.2	CURVAMENTO A FRIO	.37
2.2	MÉTODO DE CURVAMENTO A FRIO	.38
2.3	MODOS DE FALHA	.44
2.3.1	EFEITO BRAZIER	.46
2.3.2	MECANISMO DE FALHA LOCAL	.47
2.3.3	COLAPSO	.49
2.3.4	MOMENTO LIMITE À FLEXÃO	.49
2.4	CRITÉRIOS DE ACEITAÇÃO OU DE REJEIÇÃO PARA	
ENRU	GAMENTOS: CÓDIGOS UTILIZADOS	.58
2.4.1	NORMA PETROBRAS N-464 (2004) [9]	.59
2.4.2	NBR 12712 (2002) - PROJETO DE SISTEMAS DE	
TRAN	SMISSÃO E DISTRIBUIÇÃO DE GÁS COMBUSTÍVEL [46]	.60
2.4.3	CÓDIGO DE REGULAMENTAÇÃO DOS EUA – TITLE 49	
[47]		.61
2.4.4	AS 2885.1 (2007) - PIPELINES GAS AND LIQUID	
PETR	OLEUM – DESIGN AND CONSTRUCTION [48]	.62
2.4.5	DNV OS-F101 (2000) - SUBMARINE PIPELINE SYSTEMS	
[45]		.63
2.4.6	API 1160 (2001) - MANAGING SYSTEM INTEGRITY FOR	
HAZA	RDOUS LIQUID PIPELINE [49]	.65
2.4.7	API 1163 (2005) - IN-LINE INSPECTION SYSTEMS	
QUAL	IFICATION STANDARD [50]	.66
2.4.8	ISO 13623 (2000) - PETROLEUM AND NATURAL GAS	
INDUS	STRIES PIPELINE TRANSPORTATION SYSTEMS [51]	.67

2.4.9 ASME CODE FOR PRESSURE PIPING, B31	68
2.4.9.1ASME B31.3 (2006) - PROCESS PIPING [20]	68
2.4.9.2ASME B31.4 (2006) - PIPELINE TRANSPORTATION	
SYSTEMS FOR LIQUID HYDROCARBONS AND OTHER LIQUIDS	
[53]	69
2.4.9.3ASME B31.8 (2007) - GAS TRANSMISSION AND	
DISTRIBUTION PIPING SYSTEMS [54]	70
2.4.9.4ASME B31.8S (2004) - MANAGING SYSTEM INTEGRITY OF	
GAS PIPELINES SUPPLEMENT TO ASME B31.8 [55]	71
2.4.10 PDAM (2003) [56]	72
2.4.11 CONCEITOS E DEFINIÇÕES	73
2.5 FALHAS DECORRENTES DO ENRUGAMENTO	76
2.5.1 CORROSÃO	77
2.5.2 RUPTURA ESTÁTICA	78
2.5.3 COLAPSO PLÁSTICO PROGRESSIVO	78
2.5.4 FADIGA	79
2.5.4.1MÉTODO SN	80
2.5.4.2ΜÉTODO εN	82
2.5.4.3DANO ACUMULADO	85
2.5.4.4CURVAS DE FADIGA	87
3 ESTUDOS SIMILARES	90
3.1 DEVELOPMENT OF ACCEPTANCE CRITERIA FOR MILD	
RIPPLES IN PIPELINE FIELD BENDS [21, 22]	90
3.2 LOCAL BUCKLING, STRAIN LOCALIZATION, WRINKLING	
AND POSTBUCKLING RESPONSE OF LINE PIPE [41]	98
3.3 CRITÉRIOS DE ACEITAÇÃO DE ENRUGAMENTOS EM	
CURVAS DE DUTOS FORMADAS POR CONFORMAÇÃO DE	
TUBOS RETOS [75]	102

4	METODOLOGIA10	38
4.1	MODELO DE MATERIAL10	08
4.2	CARACTERÍSTICAS DO TUBO E CASOS PROPOSTOS1	13
4.3	MODELAGEM1	18

4.3.2 CONDIÇÕES DE CONTORNO12
4.3.3 MALHA E ELEMENTOS
4.3.4 PASSOS12
4.4 ANÁLISE DE SENSIBILIDADE DE MALHA12
4.5 TIPOS DE ANÁLISE12
4.5.1 COLAPSO
4.5.2 CARREGAMENTO ESTÁTICO12
4.5.3 VIDA EM FADIGA

5	RESULTADOS	132
5.1	MOMENTO	132
5.2	INICIAÇÃO DO ENRUGAMENTO	137
5.3	FALHA ESTÁTICA	145
5.4	ANÁLISE DE FADIGA	147
5.5	PROPOSIÇÃO DE METODOLOGIA DE VERIFICAÇÃO DE	
PERM	IANÊNCIA DE TUBO COM ENRUGAMENTO	158

6	CONCLUSÕES	160
6.1	MODELO DE ENRUGAMENTO	160
6.2	AVALIAÇÃO ESTÁTICA	161
6.3	FADIGA	162
6.4	RECOMENDAÇÕES	163

APÊNDICE I	171
APÊNDICE II	176
APÊNDICE III	
APÊNDICE IV	
APÊNDICE V	191
APÊNDICE VI	193
ANEXO I	197
ANEXO II	199

LISTA DE FIGURAS

Figura 1 – Imagens históricas de processos de curvamento, (a)	
curvamento a quente e (b) curvamento a frio [1]	26
Figura 2 – (a) primeiras máquinas de curvamento a frio [1] (b)	
máquina moderna de curvamento a frio [8]	27
Figura 3 – Desenho Esquemático de Enrugamento em Tubo	
Curvado [18]	29
Figura 4 – Enrugamentos encontrados em tubos curvados	30
Figura 5 – Processo de curvamento a quente – (a) curva por indução	
a quente em tubo de 48", (b) detalhe da resistência para indução e	
do resfriamento com jato de água [23, 24]	35
Figura 6 – Diagrama esquemático para medição de ondulações [28]	36
Figura 7 – Curvadeira com Tubo Sendo Curvado	37
Figura 8 – Imperfeições, internas ao tubo, provocadas pelo mandril	38
Figura 9 – Foto de uma típica curvadeira	38
Figura 10 – Esquema de posicionamento do tubo na curvadeira [29]	39
Figura 11 – Detalhe da sela na curvadeira [10]	40
Figura 12 – Esquema do processo de curvamento [7]	41
Figura 13 – Figura de um típico mandril utilizado, (a) mandril [29], (b)	
detalhe das sapatas do mandril [30] e (c) mandril posicionado no	
tubo [30]	41
Figura 14 – Figura mostra o imobilizador usado na extremidade do	
tubo. (a) Imobilizador em uso visto de frente, (b) em uso visto	
lateralmente e (c) imobilizador	42
Figura 15 – Aparelho utilizado na medição do ângulo de cada golpe	
durante o processo de curvamento (a) posicionado na extremidade	
do tubo, (b) em uso e (c) mostrador digital	43
Figura 16 – Representação da deformação transversal pós-	
flambagem [34]	45
Figura 17– Efeito Brazier	46

Figura 18 - Exemplos de colapso sob flexão pura: (a) Alto D/t -
Modo diamante de falha, (b) Médio D/t – Dobra local e (c) Baixo D/t –
Modo de falha difuso [32]48
Figura 19 – Deformação da seção transversal de um tubo sujeito a
carregamentos simples [15]50
Figura 20 – Exemplo de momento a flexão versus relação de
curvatura [15]50
Figura 21 – Fator de junta soldada [45]57
Figura 22– Referência do código AS 2885. (a) para um buckle só, e
(b) dimensões para dois ou mais <i>buckles</i> [48]63
Figura 23 – Critério para enrugamento – B31.4 [53]70
Figura 24 – Típico diagrama SN [69]81
Figura 25 – Diagrama de Gerber, Goodman e Soderberg [68]82
Figura 26 – Exemplos do Carregamento Cíclico Simples [66]86
Figura 27 – Curva de Fadiga para Projeto de Aço Carbono [71]87
Figura 28 – Perfil de ruga utilizado por Bilston e Murray [73]91
Figura 29 – Tensão efetiva, face externa [21]92
Figura 30 – Relação entre geometria da ruga e SCF (a) para relação
d/D e (b) para relação d/t94
Figura 31 – Vida em fadiga para enrugamento presente [21]95
Figura 32 – Enrugamento permitido recomendado para dutos de
transporte de gás e líquidos [21]96
Figura 33 – Interação solo-estrutura para análise do modelo [41]99
Figura 34 – Curvas tensão-deformação para tubos carregados
axialmente [41]100
Figura 35 Malha de elementos finitos utilizada na análise [41]101
Figura 36 – Curvas curvatura-momento para tubos (a) não
pressurizados e (b) pressurizados [41]102
Figura 37 – Geometria do tubo e do enrugamento115
Figura 38- Representação do enrugamento criado em FEM119
Figura 39 – Modelo para análise de tubo submetido a uma rotação 120
Figura 40 – Deformação devido a erro no processo de modelagem 120
Figura 41 – Modelo de condição de contorno121
Figura 42 – Condições de contorno do modelo no passo de rotação122

Figura 43 - Condições de contorno do modelo no passo de
aplicação de pressão123
Figura 44 – Detalhe do enrugamento. (a) Enrugamento após
curvamento, (b) enrugamento após alívio139
Figura 45 – Imagens de (a) a (f) mostrando a evolução da formação
do enrugamento - Caso IV141
Figura 46 – Imagens de (a) a (f) mostrando a evolução da formação
do enrugamento – Caso IV – Deformação142
Figura 47 – Início enrugamento. (a) Tubo, (b) detalhe para região do
enrugamento, (c) detalhe do enrugamento suave visto de frente144
Figura 48 - Região C no enrugamento para os nós críticos (a)
circunferencial e (b) longitudinal com pressão de 80% SMYS153
Figura 49 - Enrugamento com posicionamento de extensômetros
marcados em vermelho, (a) tubo inteiro e (b)vista em corte na região
do enrugamento159
Figura 50 – Localização da região em estudo para tensão ao longo
do diâmetro194
Figura 51 – Ilustração do curvamento pelo fabricante da máquina
[30]
Figura 52 – Fotos do processo de curvamento202
Figura 53 - Fotos da máquina de curvamento a frio de campo203
Figura 54 – Mandril penumático203
Figura 55 - Sequência do curvamento de um tubo204
Figura 56 - Tubos curvados pelo processo de curvamento a frio de
campo205
Figura 57 – Tubos curvados com presença de enrugamento206

LISTA DE GRÁFICOS

Gráfico 1 - Curvas segundo eq. (2) para diferentes relações D/t e
diferentes SMYS53
Gráfico 2 – Flambagem local sob deslocamento controlado para API
[44] e DNV [45]58
Gráfico 3 – Curvas ε×N para os aços API X60 (dados experimentais)
e X70 desenvolvida a partir do método das inclinações universais
[75]
Gráfico 4 – Dados obtidos a partir do ensaio de tração com corpo de
prova API 5L X70110
Gráfico 5 - Dados obtidos corrigidos do ensaio de tração com corpo
de prova API 5L X70111
Gráfico 6 – Pares de tensão-deformação plástica usados para
caracterização do material113
Gráfico 7 – Comparação do momento Caso VI para as duas
discretizações de malha127
Gráfico 8 – Resultado do Ângulo (°) X Momento (N x m)133
Gráfico 9 - Resultado adimensional para Curvatura X Momento133
Gráfico 10 – Para Colapso: Momento X Relação D/t134
Gráfico 11 - Relação D/t X máximo momento136
Gráfico 12 - Relação D/t X ângulo de máximo momento136
Gráfico 13 – Apresentação do ângulo de curvamento e final após
efeito mola do tubo138
Gráfico 14 – Tensões para o nó externo crítico na tensão
circunferencial para o Caso IV148
Gráfico 15 – Tensões para o nó interno crítico na tensão longitudinal
para o Caso IV149
Gráfico 16 - Tensões críticas Caso IV - externo - Nó 104 tensões-
deformações circunferenciais150
Gráfico 17 – Tensões críticas Caso VI – interno – Nó 2969 tensões-
deformações longitudinais151

Gráfico 18 – Tensões para o nó externo 70 crítico na tensão circunferencial para o Caso II......177 Gráfico 19 – Tensões para o nó externo 3556 crítico na tensão longitudinal para o Caso II......178 Gráfico 20 - Tensões críticas Caso II - externo - Nó 70 tensõesdeformações circunferenciais178 Gráfico 21 - Tensões críticas Caso II - externo - Nó 3556 tensõesdeformações longitudinais......179 Gráfico 22 – Tensões para o nó 73 interno crítico na tensão circunferencial para o Caso III......179 Gráfico 23 – Tensões para o nó 4025 interno crítico na tensão longitudinal para o Caso III......180 Gráfico 24 – Tensões críticas Caso III – interno – Nó 73 tensõesdeformações circunferenciais......180 Gráfico 25 – Tensões críticas Caso III – interno – Nó 4025 tensõesdeformações longitudinais......181 Gráfico 26 - Tensões para o nó 76 externo crítico na tensão circunferencial para o Caso V181 Gráfico 27 – Tensões para o nó 4461 interno crítico na tensão longitudinal para o Caso V182 Gráfico 28 - Tensões críticas Caso V - externo - Nó 76 tensõesdeformações circunferenciais......182 Gráfico 29 – Tensões críticas Caso V – interno – Nó 4461 tensõesdeformações longitudinais.....183 Gráfico 30- Tensões para o nó 80 externo crítico na tensão circunferencial para o Caso VI183 Gráfico 31- Tensões para o nó 93 interno crítico na tensão longitudinal para o Caso VI184 Gráfico 32- Tensões críticas Caso VI - externo - Nó 80 tensõesdeformações circunferenciais.....184 Gráfico 33- Tensões críticas Caso VI - interno - Nó 93 tensõesdeformações longitudinais......185 Gráfico 34 – Tensão longitudinal a cada passo......195

Gráfico 35 – Tensão longitudinal ao longo da circunferência quando	
o momento é máximo	.195
Gráfico 36 – Variação de tensão ao longo do raio do tubo	.196

LISTA DE TABELAS

Tabela 1 – Determinação do ângulo máximo da curva71
Tabela 2 – Fatores de concentração de tensões [75]105
Tabela 3 – Composição Química do Aço API 5L X70 dada pelo
código e determinado por ensaios [80]109
Tabela 4 – Propriedades mecânicas aço API 5L X70 pela
especificação, e obtidos em teste [80] - unidades em MPa (ksi)109
Tabela 5 – Características do Material Modelado API X70111
Tabela 6 – Pares tensão-deformação selecionados para
caracterização do material – unidade de tensão em MPa112
Tabela 7 - Apresentação dos casos estudados - unidades em mm
(pol.)
Tabela 8 – Valores para raio de curvatura nos modelos116
Tabela 9 – Levantamento de casos de enrugamento [85]117
Tabela 10 – Dados construtivos para o Abaqus [®] – unidades em mm
(pol.)
Tabela 11 – Descritivo dos passos realizados em FEM126
Tabela 12 – Pressões utilizadas – unidades em MPa (ksi)129
Tabela 13 – Momento máximo por FEM e da literatura, unidades em
N x m135
Tabela 14 – Formação do enrugamento137
Tabela 15 – Característica do ângulo das curvas, unidades em grau139
Tabela 16 - Valores ângulo máximo de curvamento (em graus),
altura e comprimento do enrugamento no ponto de máximo
momento
Tabela 17 – Tensões de von Mises máxima encontrada em cada
caso146
Tabela 18 – Resultados Geométricos do Enrugamento146
Tabela 19 – Relação a/C147
Tabela 20 – Resultado de tensão para cada caso152
Tabela 21 – Tensão crítica utilizada e seus SCF154
Tabela 22 – Vida em fadiga para elementos críticos

Tabela 23 – Características geométricas do enrugamento teste –	
unidades e mm1	57
Tabela 24 - Tensão crítica utilizada e seus SCF - complemento à	
Tabela 201	87
Tabela 25 - Vida em fadiga para elementos críticos - complemento	
à Tabela 221	88
Tabela 26 – Informações CRC-Evans – Máquina 'Centurion' [30]1	98

LISTA DE QUADROS

Quadro 1 – Tradução de Termos	74
Quadro 2 – Resumo da Aceitação de Enrugamento nos Códigos	75

LISTA DE SÍMBOLOS

- a Extensão circunferencial
- C Circunferência do tubo
- *C*_o Comprimento de tubo
- d Profundidade da ruga
- D Diâmetro

*D*_{max} - Maior valor medido do diâmetro interno ou externo em uma mesma seção

*D*_{min} - Menor valor medido do diâmetro interno ou externo em uma mesma seção

D_{max A} - Maior diâmetro encontrado na seção transversal do tubo

$D_{\min A}$ -	Menor diâmetro	encontrado na	seção tra	ansversal	do tubo
----------------	----------------	---------------	-----------	-----------	---------

- *E* Módulo de elasticidade
- *E_{ref}* Módulo de elasticidade de referência
- *E_u* Módulo de elasticidade utilizado
- FS Amplitude de tensão circunferencial aplicada
- f_u Resistência à ruptura
- f_{y} Tensão de escoamento
- f_0 Ovalização inicial
- *f*'₀ Ovalização final
- f_1 Fator de segurança
- $g(\delta)$ Fator de redução ao colapso
- *h* Altura pico-vale do enrugamento
- *K_c* Coeficiente de encruamento
- *K*₁ Curvatura
- L Comprimento de onda da ruga
- *L*_t Comprimento do tubo
- *M*_c Capacidade de momento
- *M*_d Momento máximo permitido em projeto

M_p -	Momento plástico do material
$M_{_0}$ -	Momento
<i>n</i> _c -	Expoente de encruamento
<i>n</i> _i -	Número de ciclos aplicados
N -	Número de ciclos
N_i -	Vida do material
P -	Limite de proporcionalidade
P_i -	Pressão interna
P_c -	Pressão de colapso
P_0 -	Pressão externa
R -	Raio externo
Ra -	Razão entre tensão mínima e máxima
RA -	Redução de área
R_c -	Raio de curvamento
RN -	Número de rugas formadas
<i>S</i> -	Tensão circunferencial máxima de operação
S_a -	Amplitude admissível da componente alternada de tensão
S _{alt} -	Amplitude de tensão encontrada
SCF -	Fator de concentração de tensão
SCF _{FEM} -	Fator de concentração de tensão obtido pelo método
elementos fi	nitos
SCF_R -	Fator de concentração de tensão obtido pela equação de
Rosenfeld	
\boldsymbol{S}_f -	Resistência à fadiga
$S_f(N)$ -	Reistência à fadiga para um determinado número de ciclos
S_{ij} -	Tensões nas direções principais
SMYS -	Limite de escoamento mínimo do material
S_u -	Limite de ruptura de engenharia do material
<i>t</i> -	Espessura
α -	Ângulo descrito

$lpha_{c}$ -	Fator de fluxo de tensão devido ao encruamento
$lpha_{_{gw}}$ -	Fator de solda
<i>E</i> -	Deformação de flexão admissível
\mathcal{E}_b -	Deformação de flambagem a flexão pura
${\cal E}_c$ -	Deformação resistente característica
\mathcal{E}_d -	Deformação
$oldsymbol{\mathcal{E}}_{dc}$ -	Deformação compressiva admissível de projeto
${m {\cal E}}_{el}$ -	Deformação elástica
${oldsymbol {\cal E}}_{pl}$ -	Deformação plástica
\mathcal{E}_t -	Deformação total
\mathcal{E}_v -	Deformação verdadeira
\mathcal{E}_1 -	Deformação máxima de instalação por cálculo analítico ou
elementos fir	nitos
γ_m -	Fator de classe de material
${m {\cal E}}_{real}$ -	Deformação real
γ_{sc} -	Fator de classe de segurança
$\gamma_{arepsilon}$ -	Fator de deformação resistente
δ -	Ovalização
$\sigma_{\scriptscriptstyle a}$ -	Tensão alternada
$\sigma_{_c}$ -	Tensão crítica encontrada pelo método de elementos finitos
$\sigma_{_m}$ -	Tensão média
$\sigma_{\scriptscriptstyle m max}$ -	Tensão alternada máxima
$\sigma_{_{ m min}}$ -	Tensão alternada mínima
$\sigma_{\scriptscriptstyle real}$ -	Tensão real
$\Delta arepsilon$ -	Gama de deformações
$\Delta \mathcal{E}_n$ -	Gama de deformação nominal
$\Delta \mathcal{E}_t$ -	Gama de deformação efetiva total
$\Delta\sigma$ -	Gama de tensões
$\Delta \sigma_{_n}$ -	Gama de tensão nominal

v - Coeficiente de Poisson