4 DISCUSSÃO DOS RESULTADOS EXPERIMENTAIS

4.1. Resultados dos ensaios microestruturais. Análise e discussão.

Uma rigorosa metodologia de preparo, análise e obtenção de informação foi desenvolvida e aplicada nos 6 mosaicos transversais de cada uma das amostras. A combinação das técnicas de microscopia e processamento digital de imagens forneceu grande quantidade de informação sobre a microestrutura analisada.

Na Figura 27 é apresentada a imagem resultante da rotina desenvolvida no processamento digital do mosaico MT-6 da amostra #1, tomado como típico das imagens processadas. Na figura as fibras são mostradas num código de cores segundo o diâmetro mínimo, o qual é uma medida representativa do tamanho das fibras quando elas não estão ortogonalmente alinhadas em relação à superfície observada, como é o caso das fibras nas duas camadas não ortogonais antes mencionadas.

O critério do arranjo das fibras em classes segundo seu diâmetro toma, como base da análise, um dos parâmetros mais importantes na caracterização do objeto fibra.

Os resultados quantitativos sobre as fibras para esse mosaico típico, MT-6, da amostra #1, são mostrados na Tabela 9, conjuntamente com as tabelas dos resultados dos restantes 5 mosaicos transversais da mesma amostra.

Os resultados associados aos mosaicos da amostra # 2 são apresentados na Tabela 10, seguindo o mesmo critério em cada uma das amostras analisadas.

Na amostra #1 uma média de 7650 fibras foi medida por mosaico. A média total da fração de área de fibras foi de aproximadamente 36%. Na amostra # 2, a média de fibras medidas foi de 8823 fibras por mosaico e a média total de fração de área de fibras foi de 37%.

Figura 27 – Imagem com código de cores na detecção das fibras segundo critério de diâmetro.

A partir do critério de diâmetro é possível identificar duas populações predominantes na microestrutura (indicadas em azul e amarelo na Tabela 9 e na Tabela 10), por serem aquelas que incluem a maior quantidade de objetos na faixa considerada por diâmetro. Essas populações representam cerca de 66% (azul) e 31% (amarelo) do total da área de fibras para as duas amostras.

Uma outra população menor (verde) onde se localizam as fibras com menores diâmetros pode ser identificada, representado uma média de 2% da fração da área de fibras. Observa-se também que existem outras cores na Figura 27, relativas a populações muito menores. Na Tabela 9 e na Tabela 10 esses objetos localizam-se nas classes 1, 5 e 6 e podem ser considerados de impacto desprezível na microestrutura. A classe 1 contém objetos muito pequenos que representam menos do 0,05% da área ocupada pelas fibras. As classes 5 e 6 contêm poucos objetos, que representam menos do 1% da fração de área de fibras. Eles são, em ambos os casos, grandes e alongados, conforme mostrado nas colunas Área e Razão de Aspecto.

Na análise do comportamento do diâmetro médio das fibras, apenas aquelas populações de maior impacto na microestrutura foram consideradas. É possível comprovar, nas duas tabelas, que o diâmetro médio das fibras é de 16µm.

A análise e comparação dos mosaicos na mesma posição em cada amostra, além da comparação deles com cada um dos restantes feitos ao longo da largura, forneceram informação sobre a uniformidade do comportamento da microestrutura desse material compósito ao longo do comprimento da peça.

Uma análise similar foi desenvolvida para a fase carga. Nesse caso para obter especificamente a fração da área que ela representa na microestrutura do material.

Na Figura 28 a segmentação desta fase é apresentada em um mosaico típico (MT-6), onde as cores presentes na imagem correspondem, neste caso, à identificação de diferentes tamanhos das partículas de carga na microestrutura.

Tabela 9 – Arranjo das fibras em classes pelo diâmetro detectado nas imagens de mosaico. Amostra #1.

	Ouentidada da	Diameter	Area Madia	Dozão do	Fração de	Fração de Áreas
	Quanticulae (#)	Medio	Area Media		Área	Área das classes
11011-1	Particulas (#)	(µm)	(µm-)	Aspecio	(%)	(%)
1	17	6.33	58.31	0.55	0.02	0.05
2 (VERDE)	738	11.17	115.55	0.76	1.49	3.93
3 (AZUL)	6,813	15.70	224.79	0.88	26.81	70.49
4 (AMARELO)	1,559		334.58	0.91	9.13	24
5	17	25.59	600.41	0.64	0.18	0.47
6	7	94.81	3285.99	0.08	0.40	1.06
TOTAL	9,151	16			38.03	100.00
			A razão de aspec	to é a razão entr	e o diâmetro me	nor e o maior do objeto
CLASSE ID	Quantidade de	Diameter	Area Media	Razão de	Fração de	Fração de Areas
1MT-2	Particulas (#)	Medio	(µm²)	Aspecto	Area	Area das classes
		(µm)		•	(%)	(%)
1	11	5.00	70.30	0.34	0.01	0.05
	195	11 08	12.32	0.54	0.01	0.03
$2(\sqrt{2})$	4 676	16.42	244.83	0.55	21 40	64.88
	4,070	10.42	244.03	0.80	21.49	31.66
4 (AMARELO)	1,037	25.79	674 99	0.90	0.49	1 03
5	27	42.63	2049.65	0.34	0.34	1.03
Ĩ	9	72.00	2040.00	0.15	0.00	1.04
TOTAL	6,565	16			33.12	100.00
			A razão de aspec	to é a razão entr	e o diâmetro me	nor e o maior do objeto
	Quantidade de	Diameter	Area Media	Pazão de	Fração de	Fração de Áreas
1MT-3	Particulae (#)	Medio	(µm²)	Aspecto	Área	Área das classes
11011-5		(µm)	(µm)	Азреско	(%)	(%)
r						
1	7	6.05	57.05	0.42	0.01	0.02
2 (VERDE)	185	11.33	129.04	0.58	0.42	1.24
3 (AZUL)	5,215	16.16	242.73	0.84	22.45	65.67
4 (AMARELO)	1,807	19.78	340.36	0.91	10.91	31.91
5	23	25.28	583.26	0.74	0.24	0.70
6	4	53.03	2257.25	0.09	0.16	0.46
τοται	7 241	16			34 19	100.00
TOTAL	1,541	10			04.10	100.00
			A razão de aspec	to é a razão entr	e o diâmetro me	nor e o maior do objeto
			A razão de aspec	to é a razão entr	e o diâmetro me	nor e o maior do objeto
		Diamotor	A razão de aspec	to é a razão entr	e o diâmetro me	nor e o maior do objeto
CLASSE ID	Quantidade de	Diameter	A razão de aspec Area Media	to é a razão entr Razão de	e o diâmetro me. Fração de	nor e o maior do objeto Fração de Áreas
CLASSE ID 1MT-4	Quantidade de Particulas (#)	Diameter Medio	<i>A razão de aspec</i> Area Media (μm²)	to é a razão entr Razão de Aspecto	e o diâmetro me Fração de Área (%)	nor e o maior do objeto Fração de Áreas Área das classes
CLASSE ID 1MT-4	Quantidade de Particulas (#)	Diameter Medio (µm)	<i>Α razão de aspec</i> Area Media (μm²)	to é a razão entr Razão de Aspecto	e o diâmetro me. Fração de Área (%)	nor e o maior do objeto Fração de Áreas Área das classes (%)
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15	Diameter Medio (µm) 5.80	A razão de aspec Area Media (μm²) 56.77	to é a razão entr Razão de Aspecto 0.47	e o diâmetro me. Fração de Área (%) 0.02	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15 285	Diameter Medio (µm) 5.80 10.86	A razão de aspec Area Media (μm²) 56.77 121.05	to é a razão entr Razão de Aspecto 0.47 0.62	e o diâmetro me Fração de Área (%) 0.02 0.63	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15 285 5.352	Diameter Medio (μm) 5.80 10.86 16.14	A razão de aspec Area Media (μm²) 56.77 121.05 239.75	to é a razão entr Razão de Aspecto 0.47 0.62 0.86	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15 285 5,352 1.602	Diameter Medio (μm) 5.80 10.86 16.14 19.65	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15 285 5,352 1,602 20	Diameter Medio (µm) 5.80 10.86 16.14 19.65 25.71	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99	Razão de Aspecto 0.47 0.62 0.86 0.92 0.64	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67
CLASSE ID 1MT-4 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55	Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55	Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.92	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55	to é a razão de Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278	Diameter Medio (µm) 5.80 10.86 16.14 19.65 25.71 138.61 16	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me.	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278	Diameter Medio (µm) 5.80 10.86 16.14 19.65 25.71 138.61 16	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec	Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me.	ror e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de	Diameter Medio (µm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media	Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Áreo	Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#)	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 138.61 16 Diameter Medio (μm)	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²)	Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%)	ror e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 hor e o maior do objeto Fração de Areas Área das classes Área das classes
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#)	Diameter Medio (µm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (µm)	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²)	Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%)	ror e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%)
CLASSE ID 1MT-4	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#)	Diameter Medio (µm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (µm) 6.02	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%)
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-5 1 2 (VERDE)	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62
CLASSE ID 1MT-4 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-5 1 2 (VERDE) 3 (AZUL)	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874	Diameter Medio (µm) 5.80 10.86 16.14 19.65 25.71 138.61 138.61 16 Diameter Medio (µm) 6.02 11.51 16.33	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69	to é a razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL 2 (VERDE) 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 4 (AMARELO)	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51 16.33 19.55	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-5 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 18	Diameter Medio (µm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (µm) 6.02 11.51 16.33 19.55 25.11	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90	Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-5 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 6 268 4,874 2,286 18 0	Diameter Medio (µm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (µm) 6.02 11.51 16.33 19.55 25.11 0	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0.942	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00
CLASSE ID 1MT-4 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL (CLASSE ID 1MT-5 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 DOD 11	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 18 0	Diameter Medio (µm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (µm) 6.02 11.51 16.33 19.55 25.11 0	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0.83 0.94	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 4 (AMARELO) 5 6 TOTAL I (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) Quantidade de Particulas (#) 6 268 4,874 2,286 18 0 0	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51 16.33 19.55 25.11 0 16	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 4 razão do aspec	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me.	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 100.00 100.00
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 18 0 0 7,452	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51 16.33 19.55 25.11 0 16	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 A razão de aspec	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 0.94 0.65 0	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me.	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 100.00 nor e o maior do objeto
CLASSE ID 1MT-4 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-5 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 18 0 7,452	Diameter Medio (µm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (µm) 6.02 11.51 16.33 19.55 25.11 0 16	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 A razão de aspec	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 0 to é a razão entr	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me. Eroção do	re e o maior de objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 100.00 nor e o maior do objeto Eração do Areas
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 1 7 (AZUL) 4 (AMARELO) 5 6 TOTAL 1 CLASSE ID 1 CLASSE ID 1	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 4,874 2,286 18 0 7,452	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51 16.33 19.55 25.11 0 16 Diameter Medio	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 A razão de aspec Area Media	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 to é a razão entr Razão de	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me. Fração de Áreo	re e o maior de objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 100.00 nor e o maior do objeto Fração de Areas
CLASSE ID 1MT-4 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL (CLASSE ID 1MT-5 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL (CLASSE ID 1MT-6	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 18 0 7,452	Diameter Medio (µm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (µm) 6.02 11.51 16.33 19.55 25.11 0 16 16	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 A razão de aspec Area Media (μm²)	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 0 to é a razão entr Razão de	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me. Fração de Área (%)	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 100.00 nor e o maior do objeto Fração de Areas Área das classes (%)
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 4 (AMARELO) 5 6 TOTAL 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL 1 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL 5 6 TOTAL CLASSE ID 1MT-6	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 18 0 7,452 Quantidade de 18 0	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51 16.33 19.55 25.11 0 16 16	A razão de aspec Area Media (μm ²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm ²) 61.67 119.28 242.69 326.48 547.90 0 A razão de aspec Area Media (μm ²)	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 to é a razão entr Razão de Aspecto	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me. Fração de Área (%)	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 100.00 nor e o maior do objeto Fração de Areas Área das classes (%)
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-5 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL 1 2 (VERDE) 3 (AZUL) 4 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-6 1	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 18 0 7,452 Quantidade de Particulas (#)	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51 16.33 19.55 25.11 0 16 Diameter Medio (μm)	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 A razão de aspec Area Media (μm²)	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 to é a razão entr Razão de Aspecto	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me. Fração de Área (%)	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 100.00 nor e o maior do objeto Fração de Areas Área das classes (%)
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1 TOTAL 2 (VERDE) 2 (VERDE)	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 4,874 2,286 18 0 7,452 Quantidade de Particulas (#)	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51 16.33 19.55 25.11 0 16 Diameter Medio (μm) 6.41 11.16	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 A razão de aspec Area Media (μm²)	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 to é a razão de Aspecto	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me. Fração de Área (%)	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 100.00 nor e o maior do objeto Fração de Areas Área das classes (%)
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-5 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-6 1 2 (VERDE) 3 (AZUL) 3 (AZUL)	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 18 0 7,452 Quantidade de Particulas (#)	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51 16.33 19.55 25.11 0 16 16 16 16 16 17 16 17 16 16 16 17 17 17 16 16 16 17 17 17 17 17 17 17 17	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 61.67 119.28 242.69 326.48 547.90 0 547.90 0 61.67 119.28 242.69 326.48 547.90 0 61.67 119.28 242.69 326.48 547.90 0 61.67 119.28 242.69 0 61.67 119.28 242.69 326.48 547.90 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 0 61.67 119.28 242.69 119.28 249.41 111.26 249.41	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 to é a razão entr Razão de Aspecto 0 40 é a razão entr 0.65 0 0.65 0 0.65 0 0.65 0 0.65 0 0.65 0 0.65 0.85	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me. Fração de Área (%) 57.9 e o diâmetro me. Fração de Área (%)	ração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 Fração de Areas Área das classes (%) 0.01 100.00 nor e o maior do objeto
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-6 1 2 (VERDE) 3 (AZUL) 4 (AMARELO)	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 18 0 7,452 Quantidade de Particulas (#) Quantidade de Particulas (#)	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51 16.33 19.55 25.11 0 16 Diameter Medio (μm) 6.41 11.16 16.34 19.49	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 A razão de aspec Area Media (μm²) 59.61 131.26 249.41 326.22	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 to é a razão entr Razão de Aspecto 0.64 0.94 0.65 0 to é a razão entr Razão de Aspecto 0.64 0.94 0.60 0.58 0.94	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me. Fração de Área (%) 0.00 0.63 25.11 13.28	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 0.00 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.01 1.60 63.83 33.77
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 4 (AMARELO) 5 6 TOTAL 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-6 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 3 (AZUL) 4 (AMARELO) 5	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 18 0 7,452 Quantidade de Particulas (#) Quantidade de Particulas (#)	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51 16.33 19.55 25.11 0 16 Diameter Medio (μm) 6.41 11.16 16.34 19.49 25.74	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 to é a razão entr Razão de Aspecto Razão de Aspecto 0.660 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.88 0.88 0.88 0.86 0.86 0.88 0.88 0.88 0.80 0.80	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 0.63 25.11 13.28 0.11	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 100.00 nor e o maior do objeto Fração de Areass Área das classes (%) 0.02 1.62 60.00 0.00 1.62 60.00 0.00 0.00 1.62 60.00 0.0
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-5 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 TOTAL CLASSE ID 1MT-6 TOTAL CLASSE ID 1MT-6 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 0 7,452 Quantidade de Particulas (#) Quantidade de Particulas (#) 3 269 5,649 2,285 4 3	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51 16.33 19.55 25.11 0 16 Diameter Medio (μm) 6.41 11.16 16.34 19.49 25.74 109.77	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 547.90 0 547.90 0 547.90 0 559.61 131.26 249.41 326.22 1500.21 3791.62	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 0 to é a razão entr Razão de Aspecto 0.60 0.58 0.85 0.94 0.65 0 0.60 0.58 0.85 0.94 0.65	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me. Fração de Área (%) 5.79 e o diâmetro me. Fração de Área (%)	rração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 100.00 nor e o maior do objeto
CLASSE ID 1MT-4 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 4 (AMARELO) 5 6 1 TOTAL 1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 1 1 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6 1 TOTAL 1 CLASSE ID 1 1 (AMARELO) 5 6 1 1 (AMARELO) 5 6 3 (AZUL) 4 (AMARELO) 5 6 3 (AZUL) 4 (AMARELO) 5 6 1	Quantidade de Particulas (#) 15 285 5,352 1,602 20 4 7,278 Quantidade de Particulas (#) 6 268 4,874 2,286 18 0 7,452 Quantidade de Particulas (#) 7,452 Quantidade de Particulas (#) 3 269 5,649 2,285 4 3	Diameter Medio (μm) 5.80 10.86 16.14 19.65 25.71 138.61 16 Diameter Medio (μm) 6.02 11.51 16.33 19.55 25.11 0 16 Diameter Medio (μm) 6 .41 11.16 16.34 19.49 25.74 109.77	A razão de aspec Area Media (μm²) 56.77 121.05 239.75 332.04 633.99 5528.55 A razão de aspec Area Media (μm²) 61.67 119.28 242.69 326.48 547.90 0 A razão de aspec Area Media (μm²) 59.61 131.26 249.41 326.22 1500.21 3791.62	to é a razão entr Razão de Aspecto 0.47 0.62 0.86 0.92 0.64 0.11 to é a razão entr Razão de Aspecto 0.42 0.67 0.88 0.94 0.65 0 to é a razão entr Razão de Aspecto 0.64 0.94 0.65 0 0.64 0.94 0.88 0.94 0.65 0	e o diâmetro me. Fração de Área (%) 0.02 0.63 23.54 9.76 0.23 0.41 34.59 e o diâmetro me. Fração de Área (%) 0.01 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me. Fração de Área (%) 0.00 35.79 e o diâmetro me. Fração de Área (%) 0.00 0.53 21.47 13.55 0.18 0.00 0.58 21.47 13.55 0.18 0.00 35.79 e o diâmetro me. Fração de Área (%)	nor e o maior do objeto Fração de Áreas Área das classes (%) 0.05 1.83 68.06 28.22 0.67 1.17 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.02 1.62 60.00 37.86 0.50 0.00 100.00 nor e o maior do objeto Fração de Areas Área das classes (%) 0.01 1.60 63.83 33.77 0.27 0.52

 39.33
 100.00

 A razão de aspecto é a razão entre o diâmetro menor e o maior do objeto

Tabela 10 - Arranjo das fibras em classes pelo diâmetro detectado nas imagens de mosaico. Amostra #2.

CLASSE ID 2MT-1	Quantidade de Particulas (#)	Diameter Medio (µm)	Area Media (µm²)	Razão de Aspecto	Fração de Área (%)	Fração de Áreas Área das classes (%)
1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6	5 183 7664 3017 27 1	5.78 11.31 16.62 19.53 25.36 30.89	60.53 117.42 242.61 328.14 584.14 2,235.36	0.48 0.54 0.91 0.93 0.75 0.23	0.01 0.33 28.4 15.12 0.24 0.23	0.01 0.74 64.36 34.27 0.55 0.08
TOTAL	10,897	16	A razão de	e aspecto é a raza	44.13 ão entre o diâmetro me	100.00 enor e o maior do objeto
CLASSE ID 2MT-2	Quantidade de Particulas (#)	Diameter Medio (µm)	Area Media (µm²)	Razão de Aspecto	Fração de Área (%)	Fração de Áreas Área das classes (%)
1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6	9 233 6,037 2,219 19 4	6.40 11.33 16.27 19.51 26.67 50.74	56.40 116.81 239.24 327.27 744.20 1,981.90	0.52 0.64 0.88 0.93 0.58 0.13	0.01 0.44 23.34 11.73 0.23 0.13	0.02 1.23 65.05 32.71 0.64 0.35
TOTAL	8,521	16	A razão de	e aspecto é a raza	35.88 ão entre o diâmetro me	100.00 enor e o maior do objeto
CLASSE ID 2MT-3	Quantidade de Particulas (#)	Diameter Medio (µm)	Area Media (µm²)	Razão de Aspecto	Fração de Área (%)	Fração de Áreas Área das classes (%)
1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6	26 454 4,908 1,371 22 7	6.01 10.90 15.92 19.50 26.04 33.84	62.73 135.96 236.25 332.47 1118.99 1,430.43	0.45 0.59 0.85 0.89 0.36 0.26	0.03 1.23 23.04 9.06 0.49 0.20	0.10 3.60 67.68 26.60 1.44 0.58
TOTAL	6,788	15	A razão de	e aspecto é a raza	34.05 ão entre o diâmetro me	100.00 enor e o maior do objeto
CLASSE ID 2MT-4	Quantidade de Particulas (#)	Diameter Medio (µm)	Area Media (µm²)	Razão de Aspecto	Fração de Área (%)	Fração de Áreas Área das classes (%)
1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6	23 323 6,550 2,101 32 13	5.96 11.20 16.10 19.63 25.92 39.83	62.28 130.69 241.34 332.29 781.96 2,537.64	0.42 0.61 0.85 0.91 0.51 0.18	0.02 0.63 23.61 10.43 0.37 0.49	0.06 1.77 66.40 29.33 1.05 1.39
TOTAL	9,042	16	A razão de	e aspecto é a raza	35.55 ão entre o diâmetro me	100.00 enor e o maior do objeto
CLASSE ID 2MT-5	Quantidade de Particulas (#)	Diameter Medio (µm)	Area Media (µm²)	Razão de Aspecto	Fração de Área (%)	Fração de Areas Área das classes (%)
1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6	9 254 6,271 1,702 29 14	5.80 11.35 16.20 19.54 26.01 49.36	50.34 127.58 240.38 335.41 779.29 2,134.15	0.48 0.67 0.87 0.89 0.41 0.22	0.01 0.50 23.03 8.72 0.35 0.46	0.02 1.50 69.67 26.38 1.04 1.38
TOTAL	8,279	16	A razão de	e aspecto é a raza	33.06 ão entre o diâmetro me	100.00 enor e o maior do objeto
CLASSE ID 2MT-6	Quantidade de Particulas (#)	Diameter Medio (µm)	Area Media (µm²)	Razão de Aspecto	Fração de Área (%)	Fração de Areas Área das classes (%)
1 2 (VERDE) 3 (AZUL) 4 (AMARELO) 5 6	19 303 6,512 2,522 43 11	6.11 11.49 16.18 19.70 25.54 77.92	61.88 130.00 237.90 332.74 569.18 3,745.44	0.40 0.64 0.88 0.93 0.70 0.11	0.02 0.61 24.08 13.04 0.38 0.64	0.05 1.58 62.10 33.64 0.98 1.65
TOTAL	9,410	16	A razão de	e aspecto é a raza	38.78 ão entre o diâmetro me	100.00 enor e o maior do objeto

Figura 28 – Imagem de detecção da fase carga.

A Tabela 11 apresenta o resumo dos resultados obtidos nas amostras para as

	FRAÇÃO DE AREAS (%)							
		AMOSTRA # 1			AMOSTRA # 2			
MOSAICO	FIBRA	CARGA	MATRIZ	FIBRA	CARGA	MATRIZ		
MT-1	38.04	9.13	52.83	44.12	10.87	45.01		
MT-2	33.12	8.91	57.97	35.88	10.45	53.67		
MT-3	34.18	8.52	57.30	34.05	12.89	53.06		
MT-4	34.59	10.34	55.07	35.55	10.18	54.27		
MT-5	35.79	10.85	53.36	33.07	11.66	55.27		
MT-6	39.33	14.56	46.11	38.77	10.77	50.46		
Media ± SD	$\textbf{35.84} \pm \textbf{2.40}$	10.39 ± 2.23	53.77 ± 4.28	36.91 ± 4.03	11.14 ± 0.99	51.96 ± 3.77		
Cov (%)	6.70	21.50	8.00	10.90	8.90	7.30		

Tabela 11 – Resumo da fração de área de Fibras, Carga e Matriz nas amostras #1 & # 2

três fases analisadas em cada um dos mosaicos transversais feitos.

Cov = Coeficiente de variação = 100*SD/ Media

A Tabela 11 mostra que para a amostra #1 há um significativo coeficiente de variação na fração da carga, entre os 6 mosaicos transversais, mas há uma pequena variação na fração de fibras. Porém na amostra # 2, a variação da fração da carga não é tão significativa, ainda que a fase fibra tenha um comportamento mais irregular entre os mosaicos, com um coeficiente de variação de 10,90%.

Contudo, a análise estatística pelo teste t–Student, com 95% de confiança (P<0.05), indicou que os mosaicos são estatisticamente iguais tanto transversalmente em cada amostra, como no sentido longitudinal. Ou seja, nesse caso entre as posições idênticas das duas amostras. Assim, não foi significativa a variação dos parâmetros medidos, indicando que microestruturalmente o compósito pode ser considerado como uniforme.

Nas duas amostras, os mosaicos MT-1 & MT-6, apresentaram a maior porcentagem de fibras. Esses mosaicos localizam-se próximos das bordas, as quais são regiões de difícil controle durante o processo de fabricação, mas também regiões que, sob flexão, suportam os valores máximos de solicitações tanto de tensão quanto de compressão.

Na Figura 29 se apresenta graficamente o comportamento da fração de área das fibras ao longo da largura da peça para as duas amostras.

Figura 29 –Comportamento da fração de área das fibras ao longo da largura das amostras.

4.2. Análise Micromecânica.

Na análise micromecânica, a heterogeneidade do compósito é reconhecida e trabalha-se, para a modelagem das propriedades do compósito, com as propriedades dos constituintes (sejam reforço ou matriz), e com parâmetros geométricos, tais como tamanho médio do reforço, distribuição espacial do reforço e fração volumétrica.

A Regra das Misturas é freqüentemente empregada como um método analítico de determinação do Módulo de Elasticidade (E) de uma placa de compósito uniaxial, a partir do conhecimento das quantidades dos materiais constituintes utilizados [44].

Esse método considera condições de contorno onde fibras e matriz têm comportamento elástico – o compósito é formado por fibras contínuas orientadas longitudinalmente e distribuídas uniformemente em uma matriz isotrópica.

A regra das misturas considera que cargas de tração ou compressão aplicadas paralelas às fibras em uma lâmina unidirecional produzem deformações iguais na matriz e nas fibras, considerando aderência perfeita entre ambas as fases, o que tem que ser garantido com o efetivo trabalho da interface na transferência dos esforços que solicitam a peça.

A partir destas considerações, importantes parâmetros do compósito, como o Módulo de Elasticidade, podem ser estimados, uma vez determinados os parâmetros microestruturais do material.

Assim, utilizando os resultados da análise microestrutural, foram estimados os Módulos de Elasticidade Longitudinal (E_{cl}) e Transversal (E_{ct}) do compósito. Esses parâmetros também foram determinados através de ensaios macromecânicos, permitindo a comparação entre ambos os resultados.

Assumiu-se E_f (fibra) de 70 GPa [16] e E_m (matriz isoftálica) de 3,58 GPa [31,45] e, considerou-se ainda que a carga – muito provavelmente um anti-chama – não atua como um elemento de reforço. Com as frações volumétricas obtidas através das técnicas de microscopia e processamento digital de imagens, Tabela 11, foi possível estimar o comportamento dos parâmetros mecânicos do material, a saber:

i) Módulo de Elasticidade Longitudinal (E_{cl}):

- Fração fibra $(V_f) = 0,36$
- Fração Carga (V_c) = 0,11
- Fração matriz (V_m) = 0,53
- E_c = Módulo do compósito

 $E_{cl} = E_f V_f + E_m V_m$ ------- Regra das misturas $E_{cl} = 25,2 + 1,90$ $E_{cl} = 27,09$ GPa (Módulo de Elasticidade micromecânicamente estimado)

Observe-se que o aporte da matriz é quase desprezível, de forma que este módulo poderia ser assumido como sendo próximo ao devido ao aporte das fibras $[E_fV_f]$, $E \approx 25$ GPa.

ii) Módulo de Elasticidade Transversal (E_{ct}): $1/E_{ct} = V_f/E_f + V_m/E_m$ ------- Regra das misturas $1/E_{ct} = 0,0051 + 0,148$ $E_{ct} = 6,53$ GPa (Módulo de Elasticidade micromecânicamente estimado)

Nesse caso, no valor final do Módulo de Elasticidade transversal, a contribuição das fibras pode ser desconsiderada pois é muito baixa.

4.3.Resultados do ensaio mecânico sem degradação. Análise e discussão

4.3.1.Módulo de Elasticidade longitudinal e transversal

O Módulo de Elasticidade ou Módulo Tangente de Elasticidade é definido pela região de proporcionalidade na curva Tensão *versus* Deformação. A inclinação (coeficiente angular), deste segmento linear, corresponde ao Módulo de Elasticidade (E). Esse módulo pode ser considerado como sendo uma rigidez, ou uma resistência do material à deformação elástica. Quanto maior for esse módulo mais rígido será o material ou menor será a deformação elástica que resultará da aplicação de uma dada tensão [1].

Em escala atômica a magnitude do Módulo de Elasticidade representa uma medida da resistência à separação de átomos adjacentes, isto é, às forças de ligações interatômicas. A diferença desse valor nos materiais é uma conseqüência direta dos diferentes tipos de ligação atômica. Ademais, com o aumento da temperatura, o módulo de elasticidade tende a diminuir [1].

Na Figura 30 são apresentadas as curvas tensão-deformação associadas ao ensaio de flexão na direção das fibras, corpos de prova L-1 a L-5. Na Figura 32 são mostradas as curvas levantadas quando o carregamento foi realizado no sentido perpendicular às fibras, corpos de prova T-1 ao T-5.

No sentido longitudinal das fibras o material mostra um comportamento elástico na primeira parte da curva até atingir um valor máximo de tensão, a partir do qual se inicia a propagação da trinca até a falha da peça.

O módulo de elasticidade, definido pela região de proporcionalidade na curva tensão *versus* deformação, foi obtido para cada uma das amostras testadas. Para as amostras ensaiadas no sentido longitudinal, a faixa de proporcionalidade na curva fica evidente e a determinação do módulo (E) é feita medindo-se a tangente à curva nesta região.

Figura 30 – Curvas Tensão x Deformação no sentido longitudinal às fibras (L-1 a L-5).

Na Tabela 12 são apresentadas as propriedades mecânicas obtidas do material analisado no sentido longitudinal das fibras. A partir dela foi levantado o gráfico, apresentado na Figura 31, do comportamento dos módulos de elasticidade ao longo da largura da peça, o qual é coerente com o gráfico da analise micromecânica do material, na distribuição da fração de área das fibras, Figura 29.

Figura 31 – Comportamento do Módulo de Elasticidade ao longo da largura das amostras, no sentido paralelo às fibras.

Do mesmo modo, também foi coerente o menor valor obtido para o corpo de provas L-2, pois nessa posição, o mosaico MT-2, da análise microestrutural, apresentou a menor fração de fibras dentre os mosaicos analisados.

Como foi colocado na apresentação do ensaio, os corpos de prova L-1 e L-5 correspondem à posição nas bordas da peça, enquanto o L-3 corresponde ao centro. Ao analisar o módulo de elasticidade já observáramos que os maiores valores foram atingidos nas regiões correspondentes aos corpos de prova L-1 e L-5.

Ao se comparar essa constatação com os resultados obtidos da análise microestrutural, são as bordas as regiões com os maiores valores de fração de fibras e conseqüentemente é possível prever o fato dessas regiões terem valores de módulo de elasticidade mais altos e terem menor deformação, pois são, em resumo, áreas mais rígidas.

Ao comparar o Módulo de Elasticidade (E_{cl}) estimado pela análise micromecânica através da regra das misturas com o obtido como a média dos módulos de elasticidade (E) resultante do ensaio de flexão em três pontos, (Tabela 12), obtivemos: $E_{cl} = 27,09$ GPa e E = 20,01 GPa, que é um bom resultado da estimativa inicial, no sentido paralelo às fibras.

Figura 32 – Curvas Tensão x Deformação no sentido transversal às fibras (T-1 a T-5).

No sentido transversal às fibras, a região de proporcionalidade da curva não se apresenta de forma definida. Assim, foram utilizados vários critérios, dentre os descritos na literatura para avaliar o módulo de elasticidade, com a finalidade de verificar qual dentre eles fornece um valor menos sensível ao operador e mais factível de ser reproduzido. Foi obtido, em uma primeira tentativa, o módulo tangente à curva na região inicial, onde se identificava uma região com certa proporcionalidade entre a tensão e a deformação.

O módulo da reta secante à curva na região desde a origem até a tensão máxima foi outro dos critérios avaliados. Também se obteve o módulo da reta secante média de duas secantes, aonde a primeira ia desde a origem da curva até o valor de 50% da tensão máxima e a segunda é traçada deste ponto até o valor da tensão máxima.

Um outro critério usado foi o de considerar que o material mantém um comportamento elástico até 0,001 mm/mm de deformação e, portanto, se obteve o módulo da reta desde a deformação considerada até o valor de tensão máxima.

Após várias análises, finalmente decidiu-se que o critério a ser adotado para determinação do módulo de Elasticidade no sentido transversal às fibras, seria o do módulo secante, obtido desde a origem da curva até uma tensão de 50% da tensão máxima, $E_{secante1}$. Esse valor foi comparado com o obtido na análise micromecânica.

Um exemplo das análises descritas anteriormente é mostrado para o corpo de prova T-1 na Figura 33.

Os resultados finais das propriedades mecânicas resultantes, na direção transversal, estão apresentados na Tabela 13.

O módulo de elasticidade obtido no compósito no sentido transversal às fibras (Tabela 13), atingiu valores próximos ao módulo de elasticidade da matriz (E_m) que, na bibliografía referenciada [31], é apresentado como em torno de 4,0 GPa. Na análise micromecânica o valor estimado foi de $E_{ct} = 6,53$ GPa, enquanto o módulo obtido pela análise macromecânica foi de E = 6,51 GPa. Esses valores apresentam uma ótima concordância, dando base aos valores obtidos em ambas as análises.

Figura 33 – Análise do Módulo de Elasticidade no sentido transversal às fibras

4.3.2. Tensão de Flexão. Energia de Iniciação

Quando é considerado um material de comportamento homogêneo ou uniforme, que pode ainda ser considerado como trabalhando dentro do regime elástico, como é o caso do material analisado, a tensão de flexão (σ_f) corresponde à tensão experimentada por uma viga simplesmente apoiada em dois pontos e carregada no meio da distância entre os apoios. Nesse ponto ocorre a máxima tensão, que é experimentada pelas fibras da face mais externa e sob tração [8].

A tensão à flexão em qualquer ponto da curva Carga–Deslocamento pode ser calculada pela equação [8]

$$\sigma_{j} = \frac{3PL}{bd^2} \tag{4.3.1}$$

Onde:

 σ_f = Tensão nas fibras mais externas submetidas à tração, MPa.

P = carga dada pelo ponto na curva Carga - Deslocamento, N.

L = vão entre os apoios, mm.

b = largura do espécime, mm.

d = espessura do espécime, mm.

Na análise da resistência à flexão do material (σ_f) foi considerado um comportamento elástico do material até o ponto onde a curva tensão – deformação é cortada pela reta que representa uma queda de 5% do Módulo de Elasticidade (E), ou seja, uma reta com uma inclinação 5% menor do que a tangente à curva, na região de proporcionalidade. O critério implica a consideração de que o material mantém um comportamento elástico de até 0,001 mm/mm de deformação.

A energia de iniciação necessária para a trinca ser desenvolvida, é considerada como a área sob a curva na região definida até a resistência à flexão (σ_f) .

Outro parâmetro importante determinado na obtenção da curva é a deformação de flexão, que varia ao longo do comprimento entre apoios nas fibras mais externas da face tracionada. O valor máximo desse parâmetro é atingido no ponto de aplicação da carga, no meio da distancia entre apoios (L/2) e pode ser calculado pela equação [8]:

$$\xi_{j} = \frac{5Dd}{L^2} \tag{4.3.2}$$

Onde:

 ξ_f = deformação na face externa mais tracionada, mm/mm

D = Máximo deslocamento no centro da viga, mm

L = Distância entre apoios, mm

d = espessura, mm

Para o material analisado, o valor da deformação máxima no meio da distância entre os apoios tem que ser menor ou igual que 0,05mm/mm, para que o ensaio fique dentro das recomendações da norma.

Na Figura 34 são apresentadas as curvas tensão-deformação na região considerada de comportamento elástico do material e a energia de iniciação associada ao trabalho nessa área, para os corpos L-1 a L-5 no sentido paralelo às fibras. A mesma análise foi feita no sentido perpendicular às fibras para os corpos de prova T-1 a T-5, cujas curvas são apresentadas na Figura 35.

Os resultados finais das propriedades mecânicas resultantes na direção paralela e transversal às fibras são apresentados na Tabela 12 e na Tabela 13, respectivamente.

Figura 34 – Energia de Iniciação no sentido longitudinal às fibras (L-1 a L-5).

4.3.3.Limite de Resistência. Energia de propagação.

Conhece-se como limite de resistência o ponto da curva tensão – deformação onde se têm o incremento brusco da deformação sem aumento do esforço, e esse limite é associado com a tensão máxima $\sigma_{(máx)}$ obtida.

A bibliografía faz referência, que nos materiais onde não acontece escoamento plástico, os valores de tensão máxima de flexão e ruptura, podem ser assumidos como iguais [8].

Na propagação da trinca, há a realização de trabalho conhecido como energia de propagação, que se sucede à energia de iniciação, e ocorre até a falha do material; momento no qual ocorre uma queda significativa das propriedades.

Da mesma maneira, a obtenção da energia de propagação da trinca foi considerada como a área sob a curva desde a tensão associada como a resistência à flexão até o limite experimental de um valor de tensão igual a 40% do limite de resistência, no qual todos os ensaios foram interrompidos.

Na Figura 36 e na Figura 37 são apresentadas as regiões das curvas tensãodeformação, onde foi avaliada a energia de propagação da trinca para os corpos de prova no sentido paralelo às fibras e transversal a elas, respectivamente.

Os resultados finais das propriedades mecânicas obtidas na direção paralela e transversal às fibras são apresentados na Tabela 12 e na Tabela 13 respectivamente.

Figura 36 – Energia de Propagação no sentido longitudinal às fibras (L-1 a L-5).

Figura 37 – Energia de Propagação no sentido transversal às fibras (T-1 a T-5).

4.3.4.Tenacidade

A tenacidade é um parâmetro que integra a resistência mecânica do material e a ductilidade do mesmo e pode ser definida como a habilidade para absorver energia durante a deformação plástica. A tenacidade pode ser obtida como a área sob a curva tensão – deformação.

Na Figura 38 e na Figura 39 é apresentada a energia sob a curva tensãodeformação, considerada como a tenacidade do material analisado, no sentido paralelo às fibras e transversal a elas, respectivamente.

Os resultados finais da tenacidade na direção paralela e transversal às fibras são apresentados na Tabela 12 e na Tabela 13, respectivamente.

Figura 38 – Gráfico da Tenacidade no sentido longitudinal às fibras (L-1 a L-5).

Figura 39 – Gráfico da Tenacidade no sentido transversal às fibras (T-1 a T-5).

CORPO	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Deformação (E) (mm/mm)	Límite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Energia de Iniciação [x10 ⁶ J/m ³]	Energia de Propagação [x10 ⁶ J/m ³]	Tensão (40% σmax)	Tenacidade [x10 ⁶ J/m ³]
L-1	21.13	361.62	0.018	369.76	0.022	3.43	3.35	143.76	6.78
L-2	17.33	263.98	0.016	264.62	0.0163	2.22	6.35	105.96	8.59
L-3	19.28	392.6	0.022	400.74	0.0224	4.65	3.48	160.28	8.13
L-4	19.25	388.83	0.021	399.57	0.0220	4.35	3.48	159.86	7.83
L-5	23.06	350.4	0.016	355.78	0.0156	3.01	2.85	142.28	5.87
Media	20.01	351.49	0.019	358.09	0.020	3.53	3.90	142.43	7.44
± SD	2.17	52.07	0.003	55.72	0.003	0.99	1.39	22.10	1.10

Tabela 12 – Resumo das propriedades mecânicas na direção paralela às fibras

Tabela 13 – Resumo das propriedades mecânicas na direção perpendicular às fibras

CORPO	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Deformação (E) (mm/mm)	Límite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Energia de Iniciação [x10 ⁶ J/m ³]	Energia de Propagação [x10 ⁶ J/m ³]	Tensão (40% σmax)	Tenacidade [x10 ⁶ J/m ³]
T-1	6.73	44.78	0.0082	62.20	0.0123	0.197	0.507	24.80	0.71
T-2	6.38	45.60	0.0077	64.16	0.0131	0.213	0.394	22.90	0.61
T-3	6.56	43.08	0.0076	59.21	0.0118	0.186	0.307	23.50	0.49
T-4	6.57	48.20	0.0084	65.76	0.0129	0.229	0.316	21.20	0.55
T-5	6.29	45.40	0.0082	61.13	0.0127	0.211	0.301	24.73	0.51
Media	6.51	45.41	0.0080	62.49	0.0126	0.207	0.37	23.43	0.57
± SD	0.17	1.85	0.0003	2.56	0.0005	0.016	0.088	1.48	0.09

No sentido longitudinal, o corpo L-3 no centro da peça alcançou os mais altos valores de tensão de flexão, limite de resistência e energia de iniciação. Mesmo assim, apresenta um módulo de elasticidade menor que os corpos das bordas e tem maior deformação, porém apresenta maior Tenacidade.

Os resultados obtidos em L-3 mostram como o material conseguiu desenvolver uma efetiva redistribuição de tensões através de uma eficiente interface e as propriedades da matriz foram mais bem aproveitadas concedendo maior ductilidade ao material. As frações de fibra e carga nessa região favoreceram o ótimo desempenho do compósito.

No sentido transversal às fibras, as propriedades obtidas não tiveram grandes variações, o comportamento do compósito nesta direção foi bastante uniforme, com predomínio das propriedades mecânicas da matriz polimérica no desempenho do compósito.

Para a tensão de flexão (σ), limite de resistência ($\sigma_{máx}$) e alongamento máximo ($\xi_{máx}$), os valores obtidos mostram que o desempenho do compósito é,

como esperado, fortemente dependente da matriz polimérica, com uma contribuição quase desprezível das fibras.

4.3.5.Análise comparativa do desempenho mecânico do compósito pultrudado não degradado, com os valores apresentados na bibliografia consultada

Ao comparar as propriedades mecânicas do material não degradado com resultados da bibliografia consultada, a partir de estudos feitos em materiais poliméricos pultrudados reforçados com fibras de vidro, os resultados colocam o compósito caracterizado como um material com um bom desempenho mecânico, tanto na direção longitudinal das fibras quanto no sentido transversal a elas.

Na Figura 40 e na Figura 41, as propriedades da Resistência à Flexão e Deformação, nos corpos com orientação no sentido longitudinal das fibras, são comparadas com as apresentadas pela bibliografia consultada [6] e [35].

Figura 40 – Gráfico comparativo da Resistência à flexão do compósito estudado *versus* bibliografia consultada, no sentido longitudinal às fibras

No artigo, *Analysis of the mechanical behavior and characterization of pultruded glass fiber-resin matrix composites* [6], são apresentados os resultados do ensaio de resistência à flexão em três pontos de um pultrudado reforçado com

fibras de vidro e matriz polimérica isoftálica. A resistência à flexão desenvolvida pelo material foi de 286.8±55.9 MPa, no sentido longitudinal às fibras.

Outras fontes bibliográficas consultadas [35], que abordam o tema destes materiais no mercado atual, suas propriedades e possibilidades de aplicação, mostram valores de resistência à flexão de 210 MPa.

Os resultados mostrados na Tabela 12 apresentam um valor médio de resistência à Flexão de 351±52 MPa, no material objeto de estudo.

Um outro parâmetro que pode ser comparado é a deformação que caracteriza o material no sentido longitudinal das fibras. Para a bibliografia [6], os resultados apresentam valores de $2.53\pm0.11\%$ de deformação. No que respeita à bibliografia [35] esse valor é considerado como 2%. No compósito caracterizado, objetos de estudo, esse valor que atingiu valores médios do $1.9\pm0.00\%$.

Figura 41 – Gráfico comparativo da Deformação do compósito estudado *versus* bibliografia consultada, no sentido longitudinal às fibras

Na Figura 42 e na Figura 43, as propriedades Módulo de Elasticidade e Resistência à Flexão nos corpos com orientação no sentido transversal às fibras, são comparadas com as apresentadas pela bibliografia consultada [35].

Figura 42 – Gráfico comparativo do Módulo de Elasticidade do compósito estudado *versus* bibliografia consultada, no sentido transversal às fibras.

Figura 43 – Gráfico comparativo da Resistência máxima à flexão do compósito estudado versus bibliografia consultada, no sentido transversal às fibras

Na bibliografia [35], a Resistência à Flexão na orientação transversal às fibras, se apresenta com valor igual a 70 MPa e Módulo de Elasticidade de 5.6GPa. No compósito analisado a Resistência à Flexão media dos corpos de

prova testados, foi de 62.5±2.56 MPa e Módulo de Elasticidade de 6.51±0.17 GPa. (Tabela 13)

A análise comparativa de parâmetros da caracterização mecânica do material não degradado com os resultados recolhidos na bibliografia consultada, mostra o compósito caracterizado com um comportamento mecânico concorde com a expectativa de desempenho, para esse tipo de material.

4.4.Resultados do ensaio de degradação por absorção. Análise e discussão.

4.4.1.Ensaio de absorção. Curva de absorção. Ponto de saturação. Coeficiente de difusão. Comparação com a bibliografia consultada

No ensaio de absorção realizado o incremento em peso dos corpos ao longo do tempo foi medido até atingir valores de incremento quase nulos e uniformes. Isto ocorreu no tempo de absorção t = 3045 horas, onde se obteve o ponto de saturação do material. O comportamento do incremento em peso, segundo as medições feitas experimentalmente, são apresentadas no gráfico da Figura 44.

A curva de absorção do material, onde é levantado o incremento da massa de água absorvida no tempo, foi obtida e os dados experimentais foram ajustados utilizando a equação :

$$\frac{M_{\frac{6}{2}}}{M_{\infty}} = \tanh\left(\frac{4}{h}\sqrt{\frac{Dt}{\pi}}\right)$$
(4.4.1)

Onde:

 $D = Coeficiente de difusão, mm^2h^{-1}$

 $M_{\%}$ = Massa de água absorvida no tempo *t*, g

 M_{∞} = Massa de água absorvida na saturação, g

h = espessura, mm

Na Figura 45 é apresentada a curva de absorção do material, com os resultados experimentais ajustados pelo modelo de Fick, equação (4.4.1). Esse modelo tem sido utilizado satisfatoriamente na modelagem do comportamento da absorção de diferentes tipos de polímeros e materiais compósitos com resina polimérica [47,48]. Os resultados experimentais apresentados são os valores médios dos cinco corpos de prova testados.

Figura 44 – Gráfico do incremento em peso por tempo de imersão.

Figura 45 – Curva de absorção teórica do material M% versus Tempo (h^{1/2}).

O ajuste da media dos valores experimentais foi satisfatório, tendo-se obtido um coeficiente de correlação (r) de 0,994. Na Tabela 14 são apresentados os parâmetros obtidos para o material testado: o coeficiente de difusão e o ponto de saturação.

Paralelamente, na Tabela 14 se apresentam valores obtidos da bibliografia consultada, para compósitos pultrudados poliméricos testados pela absorção de água.

	M, %	D, mm ² h ⁻¹	r	$\sqrt{\mathbf{t}_{sat(h^{-2})}}$
Compósito pultrudado estudado (matriz de resina isoftálica)	2.49	1.5 x 10 ⁻²	0.994	55
Compósito pultrudado de referência (matriz de resina isoftálica) [6]	4.56	9.7 x 10 ⁻⁴	0.999	150

Tabela 14 – Parâmetros da absorção da água

Os parâmetros da absorção obtidos, mostram que o material tem um bom desempenho frente à absorção da água, resultado esperado pelas propriedades da resina isoftálica que compõe a matriz do compósito.

De fato, a porcentagem da massa de água absorvida na saturação foi baixa, embora o tempo no qual o material atinge a saturação tenha sido pequeno, o que indica um razoável coeficiente de absorção.

Na Tabela 15 é feita a comparação da porcentagem da água absorvida nas primeiras 24 horas para o compósito estudado e o material de referência.

Tabela 15 – Tabela comparativa da absorção de água em 24 para o compósito estudado versus material de referência.

Absorção de água em 24 horas	% máx.
Compósito pultrudado estudado (matriz de resina isoftálica)	0.43
Compósito pultrudado de referência (matriz polimérica) [35]	0.60

Os parâmetros obtidos do compósito analisado e a comparação com aqueles apresentados pela bibliografia consultada permitem reconhecer um ótimo comportamento do material à absorção da água.

No referente ao pH da água destilada que foi monitorado durante tudo o ensaio, o mesmo não apresentou nenhuma mudança significativa que deva ser apresentada, o que elimina a possibilidade de perda das propriedades do material por lixiviação de algum dos seus constituintes. Da mesma maneira, a temperatura da água se manteve estável nos seus valores ao longo do ensaio.

4.4.2.Ensaio mecânico do material degradado por absorção de água. Propriedades mecânicas.

A partir da curva de absorção obtida para o compósito estudado, foram escolhidos tempos de imersão para avaliar a mudança das propriedades mecânicas do material submetido a imersão.

Na Figura 45 está mostrado como foi estabelecido o primeiro tempo de envelhecimento, $\sqrt{t} = 38 h^{1/2}$, para um total de 1440 h. Neste tempo o material já atingiu uma massa de água absorvida de aproximadamente $M_{\%} = 2,33$, que está abaixo da saturação, mas já está fora da parte linear da curva de absorção.

A partir do levantamento das curvas carga-deslocamento nos ensaios mecânicos de flexão em três pontos, foram obtidas as curvas tensão-deformação dos corpos de prova envelhecidos, tendo sido feitos ensaios na direção paralela e

transversal às fibras, da mesma maneira que foi feito para o material não degradado. Os resultados do ensaio na direção paralela as fibras estão apresentados na Figura .

Na Figura 47 estão as curvas obtidas no sentido perpendicular às fibras. Os resultados finais das propriedades mecânicas resultantes na direção paralela e transversal às fibras são apresentados na Tabela 16 e Tabela 17, respectivamente.

Figura 46 – Curva Tensão x Deformação no sentido longitudinal às fibras (AL-1 a AL-5). Material degradado por absorção para t= 1440h.

Figura 47 – Curva Tensão x Deformação no sentido transversal às fibras (AT-3 a AT-5). Material degradado por absorção para t= 1440h.

Tabela 16 – Resumo da	s propriedades	mecânicas	na direção	paralela	às fibras.	Material
	degradado por	absorção p	ara t= 1440)h.		

CORPO	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
AL-1	20.66	283.57	305.36	0.019	-
AL-2	18.25	286.79	321.48	0.022	6.70
AL-3	18.08	293.29	295.84	0.020	6.23
AL-4	16.34	280.69	299.29	0.023	8.53
AL-5	19.53	279.60	286.18	0.018	5.10
Media	18.57	284.79	301.63	0.020	6.64
± SD	1.63	5.51	13.09	0.002	1.43

99

CORPO	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
AT-1	-	-	-	-	-
AT-2	-	-	-	-	-
AT-3	4.08	40.26	44.83	0.014	0.43
AT-4	5.08	38.97	49.27	0.014	0.57
AT-5	5.34	40.96	52.47	0.014	0.49
Media	4.83	40.06	48.86	0.014	0.50
± SD	0.67	1.01	3.84	0.000	0.07

Tabela 17 – Resumo das propriedades mecânicas na direção transversal às fibras. Material degradado por absorção para t= 1440h

O segundo tempo analisado foi para um longo período de imersão, equivalente a $\sqrt{t} = 119 h^{1/2}$ da curva de absorção do material. Esse tempo pode ser encarado como equivalente a t = ∞ , pois o material já está na região de saturação. Nesse caso, os corpos de prova tiveram um tempo total de ensaio, em imersão, de t = 14208 h (592 dias). Neste tempo o material já atingiu uma porcentagem de água absorvida de aproximadamente M% = 2,49. Assim, as amostras já se localizam no estagio da curva que pode ser considerado constante, pois o incremento da massa de água absorvida nessa região tende a zero, Figura 44.

Os resultados obtidos são mostrados na Tabela 18 e na Tabela 19 e as curvas particulares de cada ensaio são apresentadas no Anexo 3.

Tabela 18 – Resumo das propriedades mecânicas na direção	paralelas às fibras.
Material degradado por absorção para t= 142	.08h

CORPO	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
AL _{II} -1	19.22	182.44	303.7	0.024	7.73
AL _{II} -2	15.72	170.44	266.94	0.022	6.10
AL _{II} -3	17.67	185.28	308.38	0.020	5.97
AL _{II} -4	17.50	206.64	253.91	0.016	3.91
AL _{II} -5	21.00	187.25	306.05	0.022	7.51
Media	18.22	186.41	287.80	0.021	6.24
± SD	1.99	13.06	25.46	0.003	1.53

CORPO	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
AT _{II} -1	4.58	26.43	43.46	0.014	0.67
AT _{II} -2	4.95	26.25	43.58	0.013	0.60
AT _{II} -3	4.99	28.94	47.83	0.014	0.68
AT _{II} -4	5.35	30.47	50.74	0.014	0.77
AT _{II} -5	4.91	30.35	50.57	0.015	0.85
Media	4.96	28.49	47.24	0.014	0.71
± SD	0.27	2.05	3.58	0.001	0.10

Tabela 19 – Resumo das propriedades mecânicas na direção transversal às fibras. Material degradado por absorção para t= 14208h

Na Tabela está apresentado o resumo comparativo dos parâmetros do desempenho mecânico para o material, no sentido paralelo e transversal às fibras, antes e após a imersão em água.

Tabela 20 – Resumo comparativo dos valores meios das propriedades mecânicas e porcentagem de variação, na direção paralela e transversal às fibras antes e após da degradação.

CORPO	tempo de imersão (h)	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
L	0	20.01	351.49	358.09	0.0200	7.44
AL	1440	18.57	284.79	301.63	0.0204	6.64
Δ %		7	19	16	2	11
AL _{II}	14208	18.22	186.41	287.80	0.0210	6.24
Δ %		9	47	20	5	16

CORPO	tempo de imersão (h)	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
Т	0	6.51	45.41	62.49	0.0126	0.57
AT	1440	4.83	40.06	48.86	0.0140	0.50
Δ %		26	12	22	11	13
AT _{II}	14208	4.96	28.49	47.24	0.0140	0.71
Δ %		24	37	24	11	24

A anterior comparação pode ser mais bem visualizada através dos gráficos, apresentados nas Figuras 48, 49, 50, dos valores médios de algumas das propriedades obtidas no sentido longitudinal das fibras.

Figura 48 – Gráficos comparativos dos valores médios do Módulo de Elasticidade do material degradado para t= 0h,1440h,14208h *versus* bibliografia consultada, para compósito pultrudado ante e após da degradação

Figura 49 – Gráficos comparativos dos valores médios da Tensão de Flexão do material degradado para t= 0h,1440h,14208h *versus* bibliografia consultada, para compósito pultrudado ante e após da degradação

Figura 50 – Gráficos comparativos dos valores médios da Deformação do material degradado para t= 0h,1440h,14208h *versus* bibliografia consultada, para compósito pultrudado ante e após da degradação

Além disso nas Figuras 48, 49, 50 se apresenta graficamente os resultados obtidos da referência consultada [6]. O objetivo é comparar o material analisado com o material ante e após da degradação apresentado na bibliografia, no sentido longitudinal às fibras.

Os gráficos mostram explicitamente que o material objeto de estudo desenvolveu um ótimo desempenho mecânico ante a degradação pela absorção de água, sem apresentar perda significativa da sua capacidade.

No primeiro tempo o impacto da degradação é menor, sendo mais evidente para um longo período de tempo de imersão como foi o segundo dos tempos testados. De qualquer maneira os resultados são congruentes com os recolhidos na bibliografia.

Os resultados, nas duas direções principais, mostram que o processo de absorção afeta mais o compósito na direção transversal às fibras. Ou seja, o processo de absorção de água é um processo de degradação que afeta primordialmente a resina polimérica do compósito.

Os valores em vermelho na tabela representam incrementos, em porcentagem, em relação aos parâmetros do material não degradado. Ao contrário, a cor preta representa a redução percentual das propriedades em função do tempo de imersão.

No sentido longitudinal, o material conserva uma boa rigidez, o módulo de elasticidade não apresenta uma variação relevante. A redução dos valores não atinge 10% em relação ao valor inicial, o que é consistente com o fato de que para esses compósitos as propriedades são fortemente dependentes das propriedades das fibras.

Ainda que os valores de tensão de flexão sejam afetados, em particular para o maior tempo de absorção, não houve um incremento significativo nos valores da deformação máxima.

O módulo de elasticidade, na análise transversal, tem reduzido seu valor em aproximadamente 25% em relação ao módulo do material não degradado. Porém, o impacto do processo de degradação é significativo no primeiro dos tempos analisados. Ou seja, enquanto ocorre o processo de absorção. No segundo tempo de imersão, já não há uma redução significativa do módulo em comparação com o valor obtido no primeiro tempo de imersão.

Embora o tempo de exposição utilizado tenha sido bem longo, os resultados obtidos na direção longitudinal das fibras revelam a presença de uma interface pouco degradada, que garante o bom desempenho do material.

O limite de resistência teve seu valor reduzido em torno de 20%, em ambas as direções. A deformação máxima, por outro lado, teve uma variação máxima de 5% para os compósitos longitudinais, enquanto para os transversais a variação foi de até 11%, o que reflete o fato da resina ter sido flexibilizada.

Como resultado do processo de imersão, o compósito teve reduzidas as suas propriedades mecânicas, porém, embora o tempo de exposição tenha sido longo, pode-se concluir que o compósito exibe ótimas condições de desempenho mecânico e durabilidade.

4.5.Resultados do ensaio de degradação por UV. Análise e discussão.

Para os três tempos de exposição considerados, foram testados, por ensaios mecânicos de flexão em três pontos, 10 corpos de prova. Os resultados permitiram obter critérios das mudanças nas propriedades mecânicas nas direções principais do compósito.

No desenvolvimento do ensaio se teve em conta a face do espécime mais exposta às radiações UV e foi essa superfície a que recebeu os esforços de tração na aplicação da carga de flexão. Desse modo, o tipo de degradação que produz a exposição ao UV, com a quebra das ligações moleculares, é potencializado uma vez que são aplicados esforços de tração, que favorecem o crescimento de trincas. O contrário aconteceria se o tipo de esforço aplicado na face exposta ao UV fosse de compressão.

A partir do levantamento da curva carga-deslocamento do ensaio mecânico de flexão em três pontos, foram obtidas as curvas tensão-deformação associadas ao ensaio na direção paralela e transversal as fibras.

Os resultados finais das propriedades mecânicas estão apresentados nas Tabelas 21 a 23, para os corpos de prova longitudinais e nas Tabelas 25 a 27, para os ensaios na direção transversal. O resumo comparativo da média dos parâmetros mecânicos em função do tempo de exposição ao UV e a porcentagem da variação estão apresentados nas tabelas 24 e 28.

Tabela 21 – Resumo das propriedades mecânicas na direção paralela às fibras. Material degradado por UV para t= 576h

CORPO	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
UV _I L-1	20.62	229.76	381.43	0.029	12.33
UV _I L-2	17.62	289.15	367.34	0.025	8.89
UV _I L-3	18.66	283.68	301.05	0.021	6.76
UV _I L-4	19.72	246.98	410.37	0.029	12.84
UV _I L-5	22.13	223.52	365.61	0.025	10.16
Media	19.75	254.62	365.16	0.026	10.20
± SD	1.74	30.33	40.07	0.003	2.50

Tabela 22 – Resumo das propriedades mecânicas na direção paralela às fibras. Material degradado por UV para t= 1440h

CORPO	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
UV _{II} L-1	21.07	216.97	361.42	0.026	10.82
$UV_{II}L-2$	17.92	227.57	377.37	0.030	12.23
UV _{II} L-3	20.26	247.61	402.11	0.029	13.23
$UV_{II}L-4$	19.14	379.00	384.97	0.025	9.63
UV _{II} L-5	22.36	233.44	388.28	0.025	10.69
Media	20.15	260.92	382.83	0.027	11.32
± SD	1.71	66.93	14.95	0.002	1.41

CORPO	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência o(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
UV _{III} L-1	19.98	217.75	362.40	0.026	10.46
UV _{III} L-2	17.46	271.48	275.57	0.024	7.45
UV _{III} L-3	18.36	275.39	383.23	0.024	9.14
UV _{III} L-4	19.15	389.67	390.84	0.024	9.51
UV _{III} L-5	21.67	216.87	358.13	0.023	9.18
Media	19.32	274.23	354.03	0.024	9.15
± SD	1.61	70.38	45.96	0.001	1.09

Tabela 23 – Resumo das propriedades mecânicas na direção paralela às fibras. Material degradado por UV para t= 2160h

Tabela 24 – Resumo comparativo dos valores meios das propriedades mecânicas e porcentagem de variação, na direção paralela às fibras antes e após da degradação por

CORPO	tempo de exposição (h)	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
L	0	20.01	351.49	358.09	0.0200	7.44
UV _I L	576	19.75	254.62	365.16	0.026	10.20
$\Delta\%$		1	28	2	30	37
UVIIL	1440	20.15	260.92	382.83	0.027	11.32
$\Delta\%$		1	26	7	35	52
UVIIIL	2160	19.32	274.23	354.03	0.024	9.15
Δ %		3	22	1	20	23

UV

A cor vermelha na Tabela 24 representa incrementos da porcentagem nos valores iniciais do material não degradado, enquanto que a cor preta está associada a decréscimos das porcentagens dos parâmetros mecânicos.

No sentido longitudinal pode-se observar que o impacto da exposição à radiação ultravioleta nas propriedades mecânicas do material não foi significativo para os tempos considerados. Apenas é possível reconhecer um comportamento mais dúctil, com incremento de até 35% na deformação máxima do material e o aumento da tenacidade, sem a perda significativa em parâmetros como o limite de resistência.

Porém existe uma queda na tensão de flexão de aproximadamente 25% em relação ao valor no material não degradado, sem incrementos significativos da porcentagem de um tempo de exposição a outro. Esses resultados mostram que, como resultado da ação das radiações UV, aconteceu apenas a quebra de ligações moleculares na resina polimérica, sem chegar a comprometer o desempenho mecânico do material de forma significativa, mas aumentando a tenacidade do mesmo.

CORPO	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
UV _I T-1	5.09	41.69	65.47	0.023	1.61
UV _I T-2	6.52	35.55	59.21	0.016	0.96
UV _I T-3	6.21	36.66	61.01	0.016	0.99
UV _I T-4	6.61	26.41	42.33	0.015	0.80
UV _I T-5	6.13	23.63	38.52	0.013	0.59
Media	6.11	32.79	53.31	0.017	0.99
± SD	0.61	7.52	12.05	0.004	0.38

Tabela 25 – Resumo das propriedades mecânicas na direção transversal às fibras. Material degradado por UV para t= 576h

Tabela 26 – Resumo das propriedades mecânicas na direção transversal às fibras. Material degradado por UV para t= 1440h

CORPO	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
UV _{II} T-1	6.52	29.35	48.3	0.014	0.76
UV _{II} T-2	6.62	48.47	52.81	0.011	0.56
UV _{II} T-3	6.41	36.65	61.08	0.012	0.75
UV _{II} T-4	5.56	38.63	61.27	0.016	1.04
UV _{II} T-5	5.4	39.83	66.37	0.018	1.24
Media	6.10	38.59	57.97	0.014	0.87
± SD	0.58	6.86	7.27	0.003	0.27

CORPO	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
UV _{III} T-1	5.58	34.87	57.39	0.017	1.03
UV _{III} T-2	5.44	55.75	60.18	0.014	0.89
UV _{III} T-3	5.91	39.27	62.01	0.015	0.94
UV _{III} T-4	5.69	40.08	65.31	0.018	1.33
UV _{III} T-5	5.74	42.56	54.78	0.018	1.16
Media	5.67	42.51	59.93	0.016	1.07
± SD	0.18	7.91	4.07	0.002	0.18

Tabela 27 – Resumo das propriedades mecânicas na direção transversal às fibras. Material degradado por UV para t= 2160h

Tabela 28 – Resumo comparativo dos valores médios das propriedades mecânicas e porcentagem de variação, na direção transversal às fibras, antes e após da degradação por UV

CORPO	tempo de exposição (h)	Módulo (E) [GPa]	Tensão de Flexão (σ) [MPa]	Limite de Resistência σ(máx) [MPa]	Deformação ξ(máx) (mm/mm)	Tenacidade [x10 ⁶ J/m ³]
Т	0	6.51	45.41	62.49	0.013	0.57
UV _I T	576	6.11	32.79	53.31	0.017	0.99
Δ %		6	28	15	35	73
UV _{II} T	1440	6.10	38.59	57.97	0.014	0.87
Δ %		6	15	7	11	52
UV _{III} T	2160	5.67	42.51	59.93	0.016	1.07
Δ%		13	6	4	27	87

No sentido transversal às fibras, o efeito no material das radiações UV é mais significativo. A capacidade mecânica da matriz neste sentido predomina no desempenho do compósito, como já foi colocado anteriormente. Assim, uma vez atingidas e quebradas ligações moleculares na cadeia polimérica, o comportamento mecânico do material fica mais comprometido.

O módulo de elasticidade se reduz até 13% do seu valor, assim como a tensão de flexão e o limite de resistência também apresentam uma redução mais significativa nos seus valores.

Um incremento importante acontece na deformação máxima e na tenacidade associada ao material degradado.