

Selma Fontes de Araujo Andrade

Modelo Assintótico para Escoamento Monofásico em Bombas de Cavidades Progressivas

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós–graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica da PUC– Rio

> Orientador : Prof. Márcio da Silveira Carvalho, PhD. Co-Orientador: Prof. Juliana Vianna Valério, Dra.

Rio de Janeiro Agosto de 2008

Selma Fontes de Araujo Andrade

Modelo Assintótico para Escoamento Monofásico em Bombas de Cavidades Progressivas

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós–graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC–Rio. Aprovada pela Comissão examinadora abaixo assinada.

Prof. Márcio da Silveira Carvalho, PhD. Orientador Departamento de Engenharia Mecânica - PUC-Rio

> **Prof. Juliana Vianna Valério, Dra.** Co-Orientador Departamento de Matemática - PUC-Rio

> > Prof. Valdir Estevam, Dr. PETROBRAS/E&P

Prof. Luis Fernando A. Azevedo, PhD. Departamento de Engenharia Mecânica - PUC-Rio

Prof. Geraldo Afonso Spinelli Martins Ribeiro, PhD. PETROBRAS/E&P

Prof. José Eugênio Leal, PhD. Coordenador Setorial do Centro Técnico Científico — PUC-Rio

Rio de Janeiro, 26 de Agosto de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Selma Fontes de Araujo Andrade

Graduou–se em Engenharia Química na Universidade Federal de Sergipe e especializou–se em Engenharia de Petróleo na Petrobras, onde trabalha no segmento de produção, na atividade de elevação artificial de petróleo.

Ficha Catalográfica

Andrade, Selma F. A.

Modelo Assintótico para Escoamento Monofásico em Bombas de Cavidades Progressivas / Selma Fontes de Araujo Andrade; orientador: Márcio da Silveira Carvalho, PhD.; coorientador: Juliana Vianna Valério, Dra.. — Rio de Janeiro : PUC-Rio, Departamento de Engenharia Mecânica, 2008.

v., 116 f: il. ; 29,7 cm

1. Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas.

 Engenharia Mecânica – Tese. 2. Elevação artificial de petróleo. 3. Bomba de cavidades progressivas. 4. Teoria da lubrificação. 5. Modelo Assintótico. I. Carvalho, Márcio S.. II. Valério, Juliana Vianna. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

Agradecimentos

Ao Professor Marcio Carvalho cujos brilhantismo e compreensão são garantia de sucesso para seus orientandos, aos quais não poupa atenção e incentivo.

À Professora Juliana Valério cujas dedicação, amizade e entusiasmo tornaram possível a realização deste trabalho.

À Petrobras pelo patrocínio e à PUC–Rio pela infraestrutura, sem os quais este trabalho não poderia ter sido realizado.

Ao meu marido Jocélio Fróes que foi infinitamente compreensivo e solidário e me deu toda segurança e apoio necessários ao sucesso desta jornada.

À minha irmã Nilma Fontes que contribuiu louvavelmente com os desenhos.

Aos meus colegas da Petrobras pelo companheirismo e pela ajuda diária.

Aos meus colegas da PUC-Rio que me fizeram adorar esse lugar.

Resumo

Andrade, Selma F. A.; Carvalho, Márcio S.; Valério, Juliana Vianna. Modelo Assintótico para Escoamento Monofásico em Bombas de Cavidades Progressivas. Rio de Janeiro, 2008. 116p. Dissertação de Mestrado — Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O conhecimento do escoamento no interior das Bombas de Cavidades Progressivas (BCP) é de grande importância para aprimorar o desenho e a aplicação destas bombas em poços de petróleo. A simulação do escoamento na BCP é extremamente complexa devido ao seu caráter transiente, à presença de paredes móveis e à diferença de escala do tamanho da folga entre o estator e o rotor. Esta complexidade torna impraticável o uso da simulação como ferramenta de projeto. Esta dissertação apresenta um modelo assintótico do escoamento no interior de BCP monolobular com estator metálico. O modelo foi desenvolvido para fluido Newtoniano e utiliza a teoria da lubrificação para reduzir as equações tridimensionais de Navier-Stokes a uma equação de Poisson bidimensional, para o campo de pressão. As equações diferenciais do modelo, escritas com coordenadas cilíndricas, foram resolvidas numericamente pelo método de diferenças finitas de segunda ordem. O programa desenvolvido em Matlab[®] oferece resultados que reproduzem satisfatoriamente os dados experimentais, com tempo de processamento e capacidade computacional significativamente inferiores aos modelos que resolvem o sistema completo de equações. Os resultados obtidos mostram o efeito de parâmetros geométricos e operacionais, tais com folga estator-rotor, número de estágios, viscosidade e densidade do fluido, rotação e diferencial de pressão, nas curvas de desempenho da bomba.

Palavras-chave

Elevação artificial de petróleo. Bomba de cavidades progressivas. Teoria da lubrificação. Modelo Assintótico.

Abstract

Andrade, Selma F. A.; Carvalho, Márcio S.; Valério, Juliana Vianna. Asymptotic Model for Monophasic Flow Through Progressive Cavities Pump. Rio de Janeiro, 2008. 116p. MsC Thesis — Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The fundamental understanding of the flow inside Progressive Cavities Pumps (PCP) represents an important step to improve the efficiency of these pumps in the petroleum artificial lift industry. The simulation of the flow in the PCP is extremely complex due to the transient character of the flow, the moving boundaries and the difference in length scale of the channel height between the stator and rotor. This complexity makes the use of CFD as an engineering tool almost impossible. This dissertation presents an asymptotic model to describe a single phase flow through progressive cavities pumps, using the lubrication theory approach. The model was developed for Newtonian fluid and the lubrication theory was used to reduce the three-dimensional Navier-Stokes equations to a two-dimensional Poisson's equation for the pressure field. The model's differential equations were written in cylindrical coordinates and were numerically solved by the finite difference method. A program was developed in Matlab[®] and the results reproduce the experimental data, with a significantly shorter processing time, which is orders of magnitude faster than the model that solves the complete set of equations. The results show the effect of geometry and operational parameters, such as the clearance between stator and rotor, the number of pitches, viscosity and density of the fluid, rotation and differential pressure, in the pump performance curves.

Keywords

Petroleum artificial lift. Progressive cavity pumps. Lubrication theory. Asymptotic model.

Sumário

1 Introdução	12
2 Levantamento Bibliográfico	16
 Modelamento Matemático Modelo para Estator e Rotor com Simetria Axial Regime Permanente Regime Transiente Modelo para BCP com Estator Rígido e Lóbulo Único Geometria da BCP Descrição da Cinemática Desenvolvimento do Modelo 	21 25 26 29 31 32 38 40
 4 Solução Numérica e Pós-Processamento 4.1 Solução Numérica das Equações Diferenciais 4.1.1 Discretização 4.2 Pós-Processamento 4.2.1 Vazão 4.2.2 Eficiência Volumétrica 	44 44 48 49 50
 5 Resultados 5.1 Resultados da geometria simplificada 5.1.1 Convergência de Malha 5.1.2 Comparação com a solução analítica de geometria anular 5.1.3 Regime Permanente 5.1.4 Regime Transiente 5.2 Resultados da BCP Metálica 5.2.1 Convergência de Malha 5.2.2 Validação do Modelo 5.2.3 Análise dos parâmetros operacionais para a BCP 	$51 \\ 51 \\ 53 \\ 55 \\ 60 \\ 63 \\ 64 \\ 65 \\ 71$
6 Conclusão e trabalhos futuros	85
Sumário das notações	87
Referências Bibliográficas	89
 A Apêndice: Análise Dimensional A.1 Definições A.2 Equação da Continuidade A.3 Equações de Navier-Stokes 	91 91 92 93
B Apendice: Programa	97

Lista de figuras

1.1 1.2	Componentes da BCP Gamboa [8]: seções transversais de BCP mono e multilobular	12 13
2.1 2.2	Olivet <i>et al</i> [10]: esquema do aparato de testes de BCP Olivet <i>et al</i> [10]: pontos de posicionamento dos sensores de pressão	18
	e temperatura	18
2.3	Gamboa <i>et al</i> [7]: representação do modelo de escorregamento	19
2.4	Paladino <i>et al</i> [11]: topologia de blocos usada na geração da malha	20
3.1	Escorregamento entre cavidades da BCP	21
3.2	Geometria simplificada: tubos concêntricos, sendo o externo de	
	perfil reto e o interno de perfil senoidal	23
3.3	Geometria axisimétrica: perspectiva dos cilindros concêntricos	25
3.4	Geometria simplificada, com movimento axial do estator	26
3.5	Geometria simplificada, com movimento axial do rotor	29
3.0	Seção longitudinal de BCP singlelobe	<u>პ</u> კ აა
3.1 3.2	Translação do rotor na soção transvorsal da BCP	33 34
3.0 3.0	Flementos geométricos da seção transversal de BCP singlelobe	35
3.10	Regiões da seção transversal da BCP	35
3.11	Região 1 da secão transversal da BCP	36
3.12	Região 2 da seção transversal da BCP	36
3.13	Região 3 da seção transversal da BCP	37
3.14	Região 4 da seção transversal da BCP	37
3.15	Movimentação transversal do rotor	38
3.16	Variáveis para descrever o movimento do rotor	39
4.1	Domínio de solução do campo de pressão	45
4.2	Domínio de solução do campo de pressão	45
4.3	Representação esquemática da matriz	47
5.1	Convergência da malha no cálculo da vazão, variando NZ	52
5.2	Convergência da malha no cálculo da vazão, variando $N heta$	53
5.3	Gradiente de pressão em anular de tubos concêntricos	54
5.4	Gradiente de pressão em escoamento anular de tubos concêntricos	
	com interno senoidal (canal com entrada larga - esquerda- e entrada	56
55	Gradiente de pressão em ângulos opostos (geometria axisimétrica)	56
5.6	Vazão adimensional versus velocidade do estator	57
5.7	Relação entre parâmetros operacionais e geométricos	58
5.8	Vazão adimensional versus ΔP adimensional, em função do	
	parâmetro geométrico δ	59
5.9	Vazão X Δ P, em função da viscosidade	59
5.10	Perfil de pressão e movimento do rotor - 1° tempo	60
5.11	Pertil de pressão e movimento do rotor - 2° tempo	60

5.12	Perfil de pressão e movimento do rotor - 3º tempo	61
5.13	Perfil de pressão e movimento do rotor - 4° tempo	61
5.14	Perfil de pressão e movimento do rotor - 5° tempo	61
5.15	Perfil de pressão e movimento do rotor - 6° tempo	62
5.16	Perfil de pressão em regime transiente	62
5.17	Vazão adimensional $ imes$ tempo, variando a folga de 0,1mm a 1mm	63
5.18	Teste de convergência de malha	64
5.19	Comparação de resultados com fluido de 1cP @ 300rpm	67
5.20	Comparação de resultados com fluido de 1cP @ 400rpm	67
5.21	Comparação de resultados com fluido de 42cP @ 100rpm	67
5.22	Comparação de resultados com fluido de 42cP @ 300rpm	68
5.23	Comparação de resultados com fluido de 42cP @ 400rpm	68
5.24	Comparação de resultados com fluido de 433cP @ 300rpm e 400rpm	69
5.25	Figura 13 de Olivet <i>et al</i> [10]	69
5.26	Figura 13 de Olivet <i>et al</i> [10]	70
5.27	Pressão em cinco pontos do estator durante um giro do rotor (Óleo	
	42cP @ 400rpm, $\Delta P = 119.4$ psi)	71
5.28	Distribuição de pressão (Óleo 42cP @ 400rpm)	71
5.29	Gráficos de contorno de folga e pressão (1° tempo)	72
5.30	Gráficos de contorno de folga e pressão $(2^{\circ} \text{ tempo})$	73
5.31	Gráficos de contorno de folga e pressão $(3^{\circ} \text{ tempo})$	73
5.32	Gráficos de contorno de folga e pressão $(4^{\circ} \text{ tempo})$	73
5.33	Gráficos de contorno de folga e pressão $(5^{\circ} \text{ tempo})$	74
5.34	Gráficos de contorno de folga e pressão (6° tempo)	74
5.35	Gráficos de contorno de pressão e velocidade	75
5.36	Gráficos de contorno de pressão e velocidade	75
5.37	Gráficos de contorno de pressão e velocidade	75
5.38	Gráficos de contorno de pressão e velocidade	76
5.39	Detalhe dos vetores velocidade da figura 5.38	76
5.40	Gráficos de contorno de pressão e velocidade	76
5.41	Detalhe dos vetores velocidade da figura 5.40	77
5.42	Gráficos de contorno de pressão e velocidade	77
5.43	Detalhe dos vetores velocidade da figura 5.42	77
5.44	Pressão versus comprimento, para $\Delta P = 3kPa$	78
5.45	Pressão versus comprimento, para $\Delta P = 844kPa$	78
5.46	Vazão versus tempo	79
5.47	Vazão versus diferencial de pressão	80
5.48	Eficiência volumétrica versus diferencial de pressão	80
5.49	Vazao versus rotação	81
5.50	Vazao adimensional em função do parametro geometrico δ	81
5.51	Vazao adimensional X ΔP , variando a folga	82
5.52	Vazao adimensional X comprimento do estagio	82
5.53	Vazao adimensional X comprimento da bomba	83
5.54	Vazao adimensional X comprimento da bomba	83
B.1	Principal	98
B.2	FuncRo (1a. parte)	99
B.3	FuncRo (2a. parte)	100
В.4	DitRo (1a. parte)	101

DifRo (2a. parte)	102
DifRo (3a. parte)	103
Geometria	104
CalculaCf (1a. parte)	105
CalculaCf (2a. parte)	106
EntradasA	107
CondCont	108
Bloco	109
9 Pospro (1a. parte)	110
· Pospro (2a. parte)	111
Pospro (3a. parte)	112
Resultados (1a. parte)	113
' Resultados (2a. parte)	114
Valores (1a. parte)	115
Valores (2a. parte)	116
	DifRo (2a. parte) DifRo (3a. parte) Geometria CalculaCf (1a. parte) CalculaCf (2a. parte) EntradasA CondCont Bloco Pospro (1a. parte) Pospro (2a. parte) Pospro (3a. parte) Resultados (1a. parte) Resultados (1a. parte) Valores (1a. parte)

Lista de tabelas

54
55
64
65
66
72