

Guilherme Roberto Slongo

Desenvolvimento de um Sistema Triaxial Servo-Controlado e Avaliação do Comportamento Mecânico de um Solo Residual de Biotita Gnaisse.

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: Tácio Mauro Pereira de Campos

Pontifícia Universidade Católica do Rio de Janeiro

Guilherme Roberto Slongo

Desenvolvimento de um Sistema Triaxial Servo-Controlado e Avaliação do Comportamento Mecânico de um Solo Residual de Biotita Gnaisse.

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Tácio Mauro Pereira de Campos Orientador

Departamento de Engenharia Civil - PUC-Rio

Prof.^a **Michéle Dal Toé Casagrande**Departamento de Engenharia Civil - PUC-Rio

Prof. Sérgio TibanaDepartamento de Engenharia Civil - UENF

Prof. George de Paula BernardesDepartamento de Engenharia Civil – FEG/UNESP

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 19 de Setembro de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Guilherme Roberto Slongo

Graduou-se em Engenharia Civil pela Universidade Federal do Paraná – UFPR em 2005. Principal área de interesse: Mecânica dos Solos Não Saturados.

Ficha Catalográfica

Slongo, Guilherme Roberto

Desenvolvimento de um sistema triaxial servocontrolado e avaliação do comportamento mecânico de um solo residual de Biotita Gnaisse

/ Guilherme Roberto Slongo ; orientador: Tácio Mauro Pereira de Campos. – 2008.

142 f.: il.(color.); 30 cm

Dissertação (Mestrado em Engenharia Civil)— Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Triaxial. 3. Solo residual. 4. Trajetória de tensões. 5. Eletronível. 6. Solos não saturados. I. Campos, Tácio Mauro Pereira de. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

[&]quot;A mente que se abre a uma nova idéia jamais voltará ao seu tamanho original." (Albert Einstein)

Agradecimentos

Primeiramente agradeço ao meu orientador Professor Tácio, pelo incentivo constante, pela ajuda, pela confiança e amizade.

Agradeço todos os Professores da PUC-Rio que contribuíram com este trabalho em especial ao Professor Franklin pela dedicação e atenção. Ao Professor Araruna e sua esposa Débora que pela prontidão em ajudar. Ao Professor Luiz Gusmão pelo auxílio imprescindível com a instrumentação.

Agradeço a todos do Laboratório que me auxiliaram em especial ao William por compartilhar de seu conhecimento e por sua amizade.

Ao incentivo financeiro da PUC-Rio, CAPES, FAPERJ e do CNPq. Aos funcionários da PUC-Rio pela prestatividade. Á Rita e Fátima pela atenção e ao Marcel por sempre estar disposto a me auxiliar e pela amizade.

Agradeço ao meu pai Edson por me ensinar a admirar a engenharia e por ser o exemplo de pessoa a quem desejo seguir. À minha mãe Rute, pelo amor, apoio e cumplicidade. Aos meus irmãos Daniela e Júnior pela preocupação e pelas palavras de motivação. Amo todos vocês.

Á minha namorada Carla por sempre me incentivar e apoiar nesta jornada. Por ser a pessoa maravilhosa que é. Principalmente por seu amor. Te amo.

Aos amigos que descobri no mestrado que tornaram esta caminhada mais fácil. E em especial a estas seis pessoas que admiro Elvídio, Bazan, Roberto, Lorena, Viviam e Jociléia.

Resumo

Slongo, Guilherme Roberto; de Campos, Tácio Mauro Pereira; **Desenvolvimento de um Sistema Triaxial Servo-Controlado e Avaliação do Comportamento Mecânico de um Solo Residual de Biotita Gnaisse.** Rio de Janeiro. 142p. Dissertação de Mestrado — Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A presente dissertação contemplou o estudo de propriedades mecânicas de um solo Residual Biotita Gnaisse do Alto Leblon (Município do Rio de Janeiro) e o desenvolvimento de um equipamento triaxial para ensaios não saturados. Para o estudo do comportamento mecânico foi desenvolvido um programa experimental que envolveu: (a) ensaios de caracterização física; (b) caracterização mineralógica através da difratometria de Raio-X, microscopia óptica e Microscopia Digital; (c) determinação de propriedades não saturadas através da curva característica determinada utilizando o método do papel filtro, porosimetria de mercúrio e análise digital de imagem; (d) parâmetro de resistência ao cisalhamento através de ensaios triaxiais convencionais e não convencionais com controle de trajetória de tensões na condição saturada; (e) análise dos Módulos Iniciais com a utilização de sensores para a medição de deformação externa e interna (Eletronível tipo Imperial College) e os efeitos das trajetórias de tensões sobre os Módulos Iniciais. O equipamento Triaxial desenvolvido para ensaios na condição parcialmente saturada está equipado com um sistema de medição de variação de volume total do corpo de prova o qual está baseado no princípio de vasos comunicantes aliado a uma balança de precisão. Visando eliminar o efeito de dilatação, a câmara triaxial foi desenvolvida utilizando o artificio da câmara dupla. O equipamento encontra-se montado, porém não houve a possibilidade de sua validação devido a atrasos no processo de importação de componentes referentes ao controle, aplicação de pressões e aquisição de dados.

Palavras-chave

Triaxial; solo residual; trajetória de tensões; eletronível; solos não saturados.

Abstract

Slongo, Guilherme Roberto; de Campos, Tácio Mauro Pereira; **Development of a Servo-Controlled Triaxial Equipament and Evaluation of Mechanical Behaviour of a Biotite-Gneiss Residual Soil.** Rio de Janeiro. 142p. Msc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

This dissertation presents a study of the mechanical properties of biotite gneiss residual soil found at Alto Leblon, Rio de Janeiro, and the development of a triaxial equipment for unsaturated soil testing. An experimental program has been created to study the mechanical behaviour of soil. The methodology proposed by this campaign is: (a) physical characterization tests; (b) mineralogical characterization by X-Ray diffratometry tests, optical microscopy and digital microscopy analysis; (c) study of unsaturated properties based on its moisture retention curve – which has been determined by using the filter paper method, the mercury intrusion porosimetry test and digital image analysis; (d) by obtaining shear strength parameter through conventional and unconventional triaxial tests using stress paths controlled at a saturated condition and; (e) by analyzing the Initial Modules using sensors to measure internal and external axial strain (Imperial College electrolevel) and to study the stress paths effects on Initial Modules. The triaxial equipment used in this research was specially developed for the study of unsaturated soils. It includes a system for measuring the total volume variation of the specimen. This system is based on the principle of communicating vessels and is associated with a precision balance. The triaxial chamber has been developed based upon the dual chamber principle to eliminate dilatation effects. The equipment has been set up, but its validation was not possible due to a delay in the importation process of control, pressure application and data acquisition components.

Keywords

Triaxial; residual soil; stress path; electrolevel; unsaturated soils.

Sumário

1 Introdução	18
2 Revisão Bibliográfica	20
2.1. Solo Residual	20
2.1.1. Solo Residual - Cimentação	22
2.1.2. Solo Residual - Plastificação	25
2.2. Teoria do Estado Crítico	27
2.3. Superfície de Roscoe	31
2.4. Superfície de Hvorslev	32
2.5. Equipamentos Triaxiais	36
2.6. Medição de Deformações Locais	38
3 Características da Área de Estudo	40
3.1. Localização	40
3.2. Clima	41
3.3. Geoambiental	42
3.4. Geomorfológico	43
3.5. Vegetação	45
3.6. Geologia	46
3.7. Solos	48
4 Ensaios Realizados e Metodologias Empregadas	50
4.1. Ensaios de Caracterização	50
4.1.1. Caracterização Física	50
4.1.2. Caracterização Mineralógica	51
4.1.2.1. Microscopia Ótica	51
4.1.2.2. Difração de Raio-X	52
4.1.3. Características Não Saturadas	53

4.1.3.1. Curva de Retenção de Úmidade	53
4.1.3.2. Porosimetria de Mercúrio	54
4.1.3.3. Microscopia Digital de Varredura (MDV)	57
4.2. Ensaios Triaxiais	58
4.2.1. Prensa Triaxial com Deformação Controlada	58
4.2.1.1. Interface Ar/Água	60
4.2.1.2. Medidor de Variação de Volume	61
4.2.1.3. Câmara Triaxial	61
4.2.1.4. Transdutor de Poro-Pressão e Tensão Confinante	63
4.2.1.5. Controlador de Pressão	63
4.2.1.6. Prensa Triaxial Eletromecânica	63
4.2.2. Prensa Triaxial Tipo Bishop-Wesley com Tensão	
Controlada ou Deformação Controlada	64
4.2.2.1. Interface Ar/Água	65
4.2.2.2. Medidor de Variação de Volume	65
4.2.2.3. Câmara triaxial	65
4.2.2.4. Transdutor de Poro-Pressão e Tensão Confinante	66
4.2.2.5. Controlador de Pressão	66
4.2.2.6. Célula Triaxial Tipo Bishop-Wesley	67
4.2.3. Eletroníveis Tipo Imperial College	68
4.2.4. Procedimentos Iniciais e Materiais Utilizados	69
4.2.4.1. Confecção dos Corpos de Prova	70
4.2.4.1.1. Corpos de Prova Não Amolgados	71
4.2.4.1.2. Corpos de Prova Amolgados	72
4.2.4.2. Membranas Papel Filtro e Pedras Porosas	72
4.2.4.3. Saturação das Linhas do Equipamento Triaxial	73
4.2.5. Metodologia de Cálculo dos Ensaios	73
4.2.5.1. Ensaio Triaxial com Deformação Controlada.	73
4.2.5.2. Ensaio Triaxial com Tensão Controlada	74
5 Caracterização do Solo	75
5.1. Caracterização Geotécnica	75
5.1.1. Índices Físicos	75
5.1.2. Análise Granulométrica	75

5.1.3. Limites de Atterberg	76
5.2. Característica Mineralógica	77
5.2.1. Microscopia Ótica	77
5.2.2. Difração de Raio-X	79
5.3. Propriedades Não-Saturadas	81
5.3.1. Curva de retenção de umidade	81
5.3.2. Porosimetria de Mercúrio	84
5.3.3. Microscopia Digital de Varredura,	86
6 Apresentação e Análise dos Resultados	89
6.1. Ensaios Triaxiais	89
6.2. Ensaios Triaxiais com Deformação Controlada	93
6.2.1. Ensaios Consolidados Drenados	93
6.2.1.1. Amostras Não Amolgadas	93
6.2.1.2. Amostras Remoldadas	95
6.2.2. Ensaios Consolidados Não Drenados (CIU)	97
6.3. Ensaios Triaxiais Realizados com Controle	
de Tensões	99
6.3.1. Ensaios Trajetória de Tensão – Aumento	
de Poro-pressão	100
6.3.2. Ensaios Trajetória de Tensão – s' Constante	102
6.4. Determinação do Módulo Inicial	104
6.4.1. Módulo Inicial para os Ensaios Consolidados	
Drenados	105
6.4.2. Módulo Inicial para os Ensaios Consolidados	
Não Drenados	107
6.4.3. Módulo Inicial para os Ensaios com Controle	
de Trajetória de Tensões	107
6.5. Análise Conjunta dos Resultados	109
6.5.1. Resistência	109
6.5.1.1. Ensaios Drenados e Não Drenados	109
6.5.1.2. Ensaios Drenados com Amostras Não Amolgadas	
e Remoldadas	110
6.5.1.3. Ensaios com s' Constante e Aumento	

de Poro-Pressão (APP)	111
6.5.1.4. Comparação com Solo Estruturado	112
6.5.2. Módulo Inicial	114
6.5.2.1. Efeito do Índice de Vazios	114
6.5.2.2. Ensaios Drenados com Amostra Indeformada	
e Remoldada	115
6.5.3. Ensaios com s' Constante e Aplicação	
de Poro-Pressão (APP)	116
7 Desenvolvimento de Equipamento Triaxial Não Saturado	118
7.1. Descrição do Equipamento	121
7.1.1. Câmara Triaxial	122
7.1.2. Sistema de Medição de Variação de Volume Total	126
7.1.3. Sistema de Aquisição de Dados e Controle	131
7.1.4. Sistema de Aplicação de Pressões	132
7.1.5. Instrumentação	133
8 Conclusões e Sugestões para Futuros Trabalhos	135
8.1. Conclusões	135
8.2. Sugestões para Futuros Trabalhos	137

Lista de Figuras

Figura 2.1 – Comportamento de solo com Cimentação	
(Vaughan et al, 1988).	24
Figura 2.2 – Ensaio Triaxial em Rocha Calcária	
(Lagioia & Nova, 1995).	26
Figura 2.3 – Superfície de Plastificação para Solos	
(a) Sedimentares (b) Residuais (Leroueil & Vaughan. 1990).	26
Figura 2.4 – Pontos de Plastificação de Areia	
Carbonática Cimentada Artificialmente (Coop & Atkinson, 1993).	27
Figura 2.5 – Representação Estado Crítico (Atkinson & Bransby, 1978).	28
Figura 2.6 – Comportamento do Material ao Cisalhamento	
(Atkinson & Bransby, 1978).	29
Figura 2.8 – Linha de estado crítico (Atkinson & Bransby, 1978).	31
Figura 2.9 – Superficie de Roscoe (Atkinson & Bransby, 1978).	32
Figura 2.10 – Resultados típicos de ensaios triaxiais	
convencionais drenados em amostras pré-adensadas (Wood, 1991).	33
Figura 2.11 – Resultados em termos de trajetórias de tensões	
de um ensaio triaxial convencional drenado (Wood, 1991).	34
Figura 2.12 – Ensaios Triaxiais em argilas pré-adensadas (Parry, 1960).	35
Figura 2.13 – Superfície de Hvorslev (reta AB) e de Roscoe	
(linha BC) em conjunto com as linhas de estado críticos (ponto B)	
e alinha de compressão isotrópica (ponto C) (Parry, 1960).	35
Figura 2.14 – Superfície de Roscoe e Hvorslev (Wood, 1991).	36
Figura 2.15 – Esquema do equipamento de ensaios triaxiais	
para solos não saturados (Wheeler & Sivakumar, 1992).	38
Figura 2.16 – Eletronível tipo <i>Imperial College</i> desenvolvido na PUC-Rio.	39
Figura 3.1 – Imagem de Satélite (Fonte Google Earth).	40
Figura 3.2 – Área de Estudo (Georreferenciamento).	41
Figura 3.3 – Mapa Geoambiental.	43
Figura 3.4 – Mapa Geomorfológico.	45
Figura 3.5 – Vegetação Parque Nacional Dois Irmãos.	46

Figura 3.7 – Mapa de Solos.	49
Figura 4.1 – Difratômetro Siemens D 5000 e Interface do	
Software TOPAS da Bruker AXS.	53
Figura 4.2 – Microscópio Óptico Zeiss AxioPlan 2IE.	58
Figura 4.3 – Prensa Triaxial de Deformação Controlada	
- Wykeham Farrance WF100072.	59
Figura 4.4 – Sistema de Aquisição de Dados Orion.	60
Figura 4.5 – Câmara Triaxial.	62
Figura 4.6 – Equipamento Triaxial com Tensão Controlada	
(Imperial College).	64
Figura 4.7 – Prensa Pneumática (<i>Imperial College</i>).	68
Figura 4.8 – Eletroníveis (Imperial College).	69
Figura 4.9 – Abertura de Bloco para Moldagem.	71
Figura 4.10 – Preparação de Corpo de Prova.	71
Figura 5.1 – Distribuição Granulométrica.	76
Figura 5.3 – Lâmina Petrográfica.	78
Figura 5.4 – Lamina Petrográfica – Ampliação do Detalhe na Fig. 5.3.	78
Figura 5.5 – Difratograma Material Retido na peneira 40.	80
Figura 5.6 – Difratograma Material Retido na peneira 200.	80
Figura 5.7 – Difratograma Material Retido na peneira 400.	81
Figura 5.8 – Curva de retenção de umidade.	82
Figura 5.9 – Curva Característica com ajustes.	84
Figura 5.10 – Curva de Distribuição de Poros.	84
Figura 5.11 – Curva de Distribuição de Poros	85
Figura 5.12 – Curva característica – Porosimetria de Mercúrio.	86
Figura 5.13 – Lâmina Petrográfica Completa.	87
Figura 6.1 – Comparação entre as curvas σd : εaxial com	
εvolumétrica :εaxial (Ensaios Triaxiais Consolidados Drenados	
em amostras Não amolgadas).	94
Figura 6.2 – Trajetória de Tensão (Ensaios Triaxiais Consolidados	
Drenados em amostras Não amolgadas).	95
Figura 6.3 – Comparação entre as curvas σd : εaxial com	
evolumétrica : eaxial (Ensaios Triaxiais Consolidados Drenados	

em amostras Remoldadas).	96
Figura 6.4 – Trajetória de Tensão (Ensaios Triaxiais Consolidados	
Drenados em amostras Remoldadas).	97
Figura 6.5 – Comparação entre as curvas σd : εaxial com	
Δu : εaxial (Ensaios Triaxiais Consolidados Não Drenados).	98
Figura 6.6 – Trajetória de Tensão (Ensaios Triaxiais	
Consolidados Não Drenados).	99
Figura 6.7 – Comparação entre as curvas σd : εaxial com	
evolumétrica : eaxial (Ensaios Triaxiais Consolidados Drenados	
com Controle da Trajetória de Tensões).	101
Figura 6.8 – Trajetória de Tensão (Ensaios Triaxiais Consolidados	
Drenados com Controle da Trajetória de Tensões).	102
Figura 6.9 – Comparação entre as curvas σd : εaxial com	
evolumétrica : eaxial (Ensaios Triaxiais Consolidados Drenados	
com Controle da Trajetória de Tensões – s' cte.).	103
Figura 6.10 – Trajetória de Tensão (Ensaios Triaxiais Consolidados	
Drenados com Controle da Trajetória de Tensões – s' cte.).	104
Figura 6.11 – Comparação entre Módulos Iniciais para ensaios CD.	106
Figura 6.12 – Comparação entre Módulos Iniciais para ensaios CDR.	106
Figura 6.13 – Comparação entre Módulos Iniciais para ensaios CIU.	107
Figura 6.14 – Comparação entre Módulos Iniciais para ensaios	
de descarregamento lateral.	108
Figura 6.15 - Comparação entre Módulos Iniciais para ensaios com	
s' constante.	108
Figura 6.16 – Envoltória Única de Resistência.	109
Figura 6.17 – Trajetória de Tensões dos Ensaios Drenados.	110
Figura 6.18 – Trajetória de Tensões dos Ensaios s' constante e APP.	112
Figura 6.19 – Trajetória de Tensões Comparada com Estudos Anteriores.	113
Figura 6.20 – Efeito do Índice de Vazios nos Módulos Iniciais.	115
Figura 6.21 – Módulos Iniciais dos Ensaios Drenados Remoldado	
e Indeformado.	116
Figura 6.22 – Módulos Iniciais dos Ensaios Drenados sob trajetória de tens.	117
Figura 7.1 – Ciclo de Controle.	118
Figura 7.2 – Equipamento Triaxial Não Saturado.	119

Figura 7.3 – Visão Geral do Equipamento Triaxial para Ensaios	
Não Saturados.	121
Figura 7.4 – Detalhe Câmara Dupla.	122
Figura 7.5 – Acesso de tubulações a Câmara Triaxial.	124
Figura 7.6 – Top cap e pedestal.	125
Figura 7.7 – Conjunto Top Cap e Pedestal.	126
Figura 7.8 – Sistema de Variação de Volume.	129
Figura 7.9 – Reservatório em PVC.	129
Figura 7.10 – Calibração do Sistema de Medição de Variação	
de Volume Total.	131
Figura 7.11 – Calibração do Sistema de Medição de Variação de Volume.	131
Figura 7.12 – Box (Controlador de Pressão).	132

Lista de Tabelas

Tabela 2.1 - Características físicas típicas de solos residuais	
brasileiros (Sandroni, 1981).	22
Tabela 2.2 – Revisão dos Equipamentos Triaxiais Desenvolvidos.	37
Tabela 5.1 – Índices Físicos.	75
Tabela 5.2 – Distribuição Granulométrica.	75
Tabela 5.4 – Limites de Atterberg.	76
Tabela 5.5 – Resultados da observação com a lupa binocular.	79
Tabela 5.6 – Equação de Calibração do Papel Filtro.	82
Tabela 5.7 – Equações de Ajuste para a Curva Característica.	83
Tabela 5.8 – Valores dos Parâmetros de Ajuste (Curva Característica).	83
Tabela 5.9 – Classificação IUPAC (Diâmetro de Poros).	85
Tabela 5.10 – Relação das Porosidades Através da Técnica de	
Microscopia Digital de Varredura.	87
Tabela 5.11 – Porosidades Através das diferentes.	88
Tabela 6.1 – Representação das nomenclaturas utilizadas	91
Tabela 6.2 – Resumo das Propriedades dos Corpos de Prova.	92
Tabela 6.3 – Relação de ensaios instrumentados com Eletronível.	104
Tabela 6.4 – Valores dos Parâmetros de Resistência.	110
Tabela 6.5 – Valores dos Parâmetros de Resistência APP.	112
Tabela 7.1 – Relação de Acessos Câmara Triaxial.	123
Tabela 7.2 – Relação de Materiais Utilizados para Calibração	
Prévia do MVVT.	130

Lista de Quadros

Quadro 6.1 – Organograma dos ensaios triaxiais realizados. Quadro 7.1 – Convenção das Linhas.	90
	120