4.Resultados

Para o problema proposto nesta dissertação, os três parâmetros citados no capítulo Solução Numérica (eqs. 3.8, 3.9 e 3.10) são analisados em detalhes e é realizada uma investigação como os mesmos se comportam com a variação da vazão e das condições reológicas.

Para entrada de dados no *POLYFLOW* com o modelo de Souza Mendes (equações 2.16a, 2.16b, 2.16c, 2.16d onde pelo *POLYFLOW* a equação 16a é representada pelas equações 3.1, 3.1a e 3.1b), as seguintes constantes são necessárias; J (*Jump number*), n, η_r , η_∞ *, De_{01} , $De_{\infty 1}$, De_{02} e $De_{\infty 2}$.

Como citado anteriormente, os parâmetros De_{02} e $De_{\infty 2}$ serão uma fração de De_{01} e $De_{\infty 1}$ respectivamente pelas equações:

$$De_{02} = \eta_r De_{01} \tag{4.1}$$

$$De_{\infty 2} = \eta_r De_{\infty 1} \tag{4.2}$$

Em todas as simulações realizadas mantiveram-se alguns parâmetros constantes:

- $De_{\infty 1}$ nulo, o que conseqüentemente torna $De_{\infty 2}$ nulo também;
- $J = 10^3$; e
- A geometria do problema com $L/L_0 = 1$, $L_0/R_0 = 1$ e $R_0/R = 4$.

A escolha de $De_{\infty 1}$ e $De_{\infty 2}$ nulos baseou-se na análise da elasticidade do problema. Como analisado anteriormente, quando $\dot{\gamma} < \dot{\gamma}_0$ a equação de Souza Mendes recai numa equação de Oldroyd-B e, neste caso ($De_{\infty 1}e$ $De_{\infty 2}$ nulos), quando $\dot{\gamma} > \dot{\gamma}_2$ a equação de Souza Mendes recairá na equação SMD. Assim, em uma única simulação haverá regiões elásticas e outras puramente viscosas com regiões de transição entre estas duas, ou seja, com $\dot{\gamma}_0 < \dot{\gamma} < \dot{\gamma}_2$.

Para determinação do *Jump number J* utilizou-se o valor 10⁶ quando se testava a equação SMD, obtendo fácil convergência neste caso. Este valor de *J*

está em concordância com os resultados obtidos em [1] para o fluido *Carbopol*. Porém, quando se passou a testar a equação de Souza Mendes mantendo-se este valor de J não se conseguiu mais a convergência. Diversos testes foram realizados visando a convergência com este valor de J tais como mudança no refinamento da malha, redução da elasticidade e de vazão. Por fim testou-se a diminuição no valor do *jump number* e para valores menores ou iguais a 10^3 a simulação convergia. Desta forma, o valor mais próximo da realidade em que houve convergência foi usado para as simulações, ou seja, $J = 10^3$.

Para simplificar o tipo de fluido simulado foi criado um código para defini-lo. Segundo este código cada fluido é representado por uma seqüência de uma letra seguida de dois números. Assim o fluido seria definido como fluido XY, onde cada letra (X ou Y) indica um parâmetro reológico do fluido.

O número (Y) indica o valor de n (índice de power-law da equação 2.16a). Este índice pode ser 1 ou 2, indicando n = 0,5 ou n = 0,8 respectivamente.

O último número (Z) indica o valor de η_r , que representa a relação entre $De_{2r}\ e\ De_{1r}\ pela\ fórmula\ De_{2r}=\eta_rDe_{1r}\ .$ Este índice pode ser 1, 2 ou 3, indicando $\eta_r=0,\ \eta_r=0$,125 ou $\eta_r=0$,3 respectivamente. Na tabela 4.1 segue um resumo destes parâmetros.

Parâmetro	Variável representada	Índice	Valor
Х	n	1 2	0,5 0,8
Y	η_{r}	1 2 3	0 0,125 0,3

Tabela 4.1: Resumo do código para um fluido XY.

Assim após definido o fluido, tem-se, por exemplo, que o Fluido 21 De_R 2,5 tem J = 10^3 , n = 0,8 e η_r = 0 e Deborah reológico 2,5. Outro exemplo são os fluidos do tipo 1 que tem J = 10^3 , n = 0,5 e incluem todas as simulações em relação a η_r .

4.1.Comparação entre Fluidos do tipo 1 e tipo 2

4.1.1.Perda de Carga - ∆p*

Este parâmetro representa quanto de perda de carga é decorrente da presença da concavidade na tubulação. Para se tornar um parâmetro de comparação independente do tipo de fluido, fez-se a adimensionalização com a tensão encontrada na parede do duto menor (figura 2.1).

A variação da perda de carga com o índice n, com a razão η_r , com a velocidade de entrada e com o número de Deborah reológico é mostrada nas Figuras 4.1 a 4.4.

Com base nestas figuras pode-se observar que Δp^* é independente de Deborah reológico para o conjunto de parâmetros testados. Assim, para a determinação da relação entre vazão e perda de carga, informação importante para aplicações em engenharia, basta um modelo Newtoniano generalizado (como o SMD, por exemplo). Esta característica já havia sido verificada na literatura quando se tem um escoamento permanente e puramente cisalhante [5].

Com relação à velocidade, Δp^* é diretamente proporcional, do mesmo modo que os fluidos newtonianos. Porém o aumento de Δp^* torna-se menor em velocidades maiores. Por exemplo, o aumento de Δp^* quando se passa da velocidade 3 para a 5 é superior ao aumento de Δp^* quando se passa da velocidade 10 para a 15 (ver figura 4.4).

A perda de carga é proporcional à velocidade do fluido, sendo que no caso de um fluido *power-law*, por exemplo, a vazão em um duto é dada por [5]:

$$Q = C(\Delta P)^{1/n} \tag{4.3}$$

onde Q é a vazão, ΔP é a perda de carga, C é uma constante de proporcionalidade e n é o expoente *power-law*. Como n é menor que a unidade e pela equação 4.3, para n e C fixos, um pequeno ΔP é responsável por uma grande variação de vazão, como se verifica pela figura 4.4.

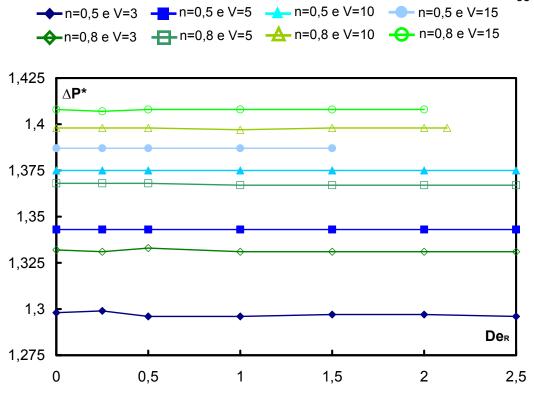


Figura 4.1: Δp * X De_R para os fluidos 11 (n=0,5 e η_r =0) e 21 (n=0,8 e η_r =0)

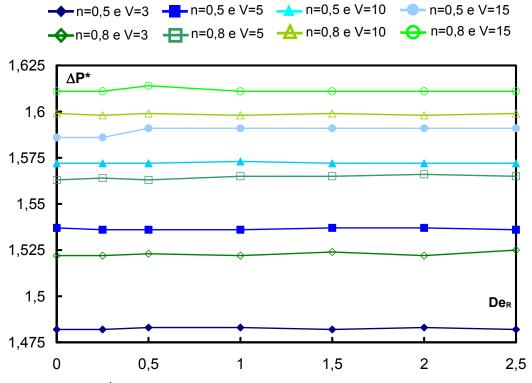


Figura 4.2: $\Delta p * X De_R$ para os fluidos 12 (n=0,5 e η_r =0,125) e 22 (n=0,8 e η_r =0,125)

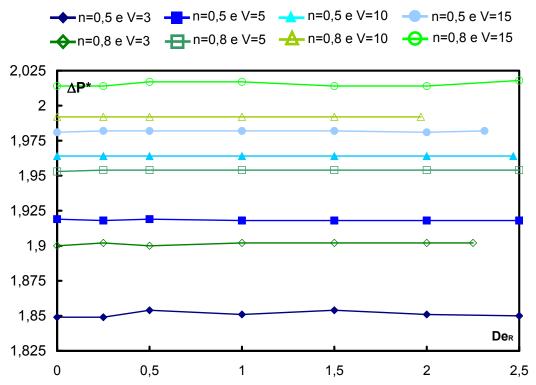


Figura 4.3: $\Delta p * X De_R$ para os fluidos 13 (n=0,5 e η_r =0,3) e 23 (n=0,8 e η_r =0,3)

Com relação ao índice n, Δp^* é diretamente proporcional, com grande influência deste parâmetro. Isto pode ser visto novamente pela equação 4.3. Se a modificarmos para colocar ΔP em função de n, obtém-se da equação 4.4 uma relação entre Δp^* e n exponencial:

$$\Delta P = \frac{Q^{n}}{C} \tag{4.4}$$

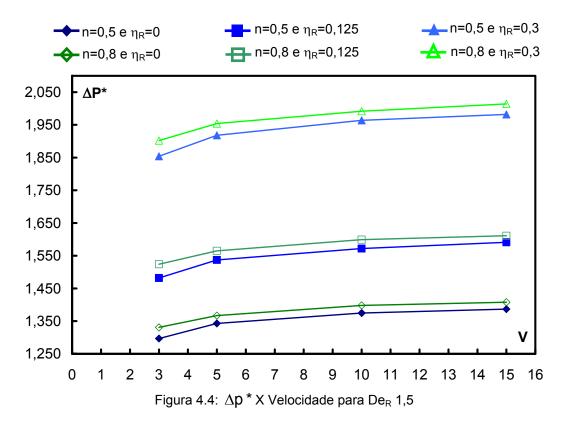
Com relação a η_r , Δp^* também é diretamente proporcional, sendo esta a variável que mais influencia a queda de pressão. A variável η_r relaciona o tempo de retardo com o tempo de relaxamento. Quando η_r é nulo, esta equação recai na equação de Maxwell, e quando η_r é unitário λ_1 (tempo de relaxação) iguala λ_2 (tempo de retardo). Neste último caso, o primeiro coeficiente da tensão normal, Ψ_1 , dado pelas equações 2.12 e 1.6 (para um fluido de Oldroyd-B) se anula [5]. Assim, pelos resultados, conclui-se que sem tensões normais para absorver a perda de carga, Δp^* será maior.

$$\tau_{xx} - \tau_{yy} = -\Psi_1 \dot{\gamma}_{xy}^2 \tag{1.6}$$

$$\Psi_1 = 2\eta_0 (\lambda_1 - \lambda_2) \tag{2.12}$$

Então com base no parágrafo anterior, quanto maior η_r (e consequentemente menor a diferença das tensões normais) maior será Δp^* .

Nota-se que tanto η_r , quanto n, quando crescem e se aproximam da unidade, o fluido torna-se mais próximo de um liquido newtoniano e maior será Δp^* .



Apesar de apenas se mostrar a variação da perda de carga com a velocidade para a condição de número de Deborah reológico igual a 1,5, para outros De fixos o perfil é exatamente o mesmo, já que a perda de carga é independente do número de De_R.

4.1.2.Eficiência de Deslocamento - φ

Este Parâmetro representa percentualmente o volume de fluido na cavidade que é deslocado. O volume restante está abaixo da tensão de escoamento caracterizando o fluido estagnado.

A variação da eficiência de deslocamento com n, η_{r} , com a velocidade de entrada e com o número de Deborah reológico é mostrada nas Figuras 4.7 a 4.16.

Com base nestas figuras pode-se observar que ϕ é diretamente proporcional a velocidade do escoamento. Haja vista que quanto maior a velocidade maior será a taxa de deformação $\dot{\gamma}$ e, conseqüentemente, maior a região viscoplástica na concavidade.

Além disso, nota-se que para velocidades baixas (3 e 5), φ tem uma queda suave a partir do número de De_R igual a 0,5 como mostrado, principalmente, nas figuras 4.7, 4.8 e 4.9, caracterizando uma pequena influência da elasticidade sobre o volume viscoplástico. Isto ocorre porque em baixas velocidades, mais da metade do volume do liquido presente na cavidade está estagnado (φ < 0,5). Ainda, pela equação de Souza Mendes (2.16 a 2.16c), esta região *unyielded* (ou não deformada) é a única que possui elasticidade (já que $De_{\infty 1}e$ $De_{\infty 2}$ foram considerados nulos nas simulações). Além disso, o fluido quando está no duto com raio menor está em sua maioria *yielded*, já que $\dot{\gamma} > \dot{\gamma}_0$ em praticamente todo duto (no centro do duto $\dot{\gamma}$ =0 por exemplo). Quando entra na cavidade ele expande e parte do fluido fica estagnado ($\dot{\gamma} < \dot{\gamma}_0$), apresentando desta forma elasticidade. A elasticidade presente no fluido irá atuar de forma a manter o escoamento que o fluido apresentava, ou seja, irá expandir o fluido, reduzindo assim o valor esperado de φ .

Assim, pode-se concluir que quando a elasticidade mostra-se elevada (De > 0,5) e a maior parte da cavidade apresenta elasticidade, esta região tende a expandir, reduzindo assim a região viscoplástica da cavidade.

Com relação à n, a eficiência de deslocamento ϕ é inversamente proporcional, com pequena influência apenas em baixas velocidades (3 e 5). Além disso, verifica-se que este parâmetro tende a diminuir a influência de Deborah reológico com relação à ϕ descrita no parágrafo anterior.

O expoente n tem influência direta apenas na plasticidade do material já que aparece apenas na função viscosidade. Assim, ao se analisar esta função na equação 2.16a verifica-se que esta variável atua na região de transição entre os dois patamares de viscosidade constante (J e η_∞ *).

Pela observação da figura 4.5 nota-se que, na região de transição da viscosidade com $\dot{\gamma} < \dot{\gamma}_1$ ($\dot{\gamma}_1$ = 1), a viscosidade do fluido quando o expoente é 0,8 é menor do que a viscosidade quando o expoente é 0,5 e isto se inverte quando

 $\dot{\gamma} > \dot{\gamma}_1$. Porém, a ordem de grandeza da viscosidade quando $\dot{\gamma} < \dot{\gamma}_1$ é bem superior a ordem de grandeza da viscosidade quando $\dot{\gamma} > \dot{\gamma}_1$. Sendo que ambas regiões estão no escoamento viscoplástico ($\dot{\gamma} > \dot{\gamma}_0$).

Desta forma, analisando apenas o escoamento viscoplástico, quando n for maior a viscosidade média do fluido será menor. E quanto menor a viscosidade menor é a resistência ao escoamento, ou seja, quanto maior n maior será ϕ , como verificado nas figuras 4.10 e 4.11.

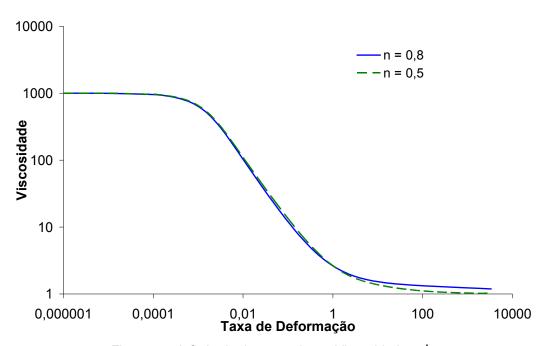


Figura 4.5: Influência de n na relação Viscosidade x $\dot{\gamma}$

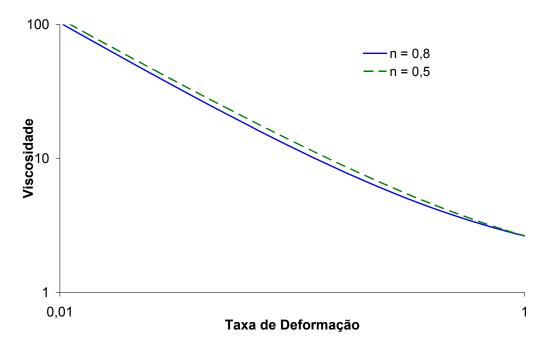
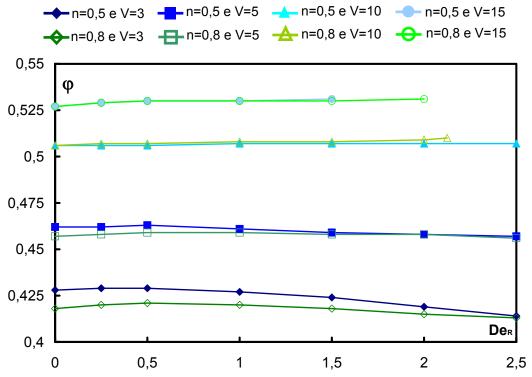


Figura 4.6: Detalhe da figura 20

Para De maiores que 0,5 começa a aparecer o efeito da elasticidade, sendo amortecido pela viscoplasticidade, ambos comentados anteriormente.

Para velocidades maiores, taxas de deformações maiores são alcançadas em todo escoamento. Desta forma, menor será a região que ocorre a diferença de viscosidade quando $\dot{\gamma} < \dot{\gamma}_1$ e assim os fluidos com expoente *power-law* 0,5 e 0,8 passam a ter ϕ semelhantes. Esta última conclusão mostra que a diferença de viscosidade que ocorre na região $\dot{\gamma} > \dot{\gamma}_1$ entre os fluidos com n 0,5 e 0,8 é desprezível.

Em relação a η_r , a diferença encontrada da eficiência de deslocamento ϕ foi menor que 1%, o que indica que as tensões normais não influenciam neste parâmetro quando comparada com as demais variáveis.



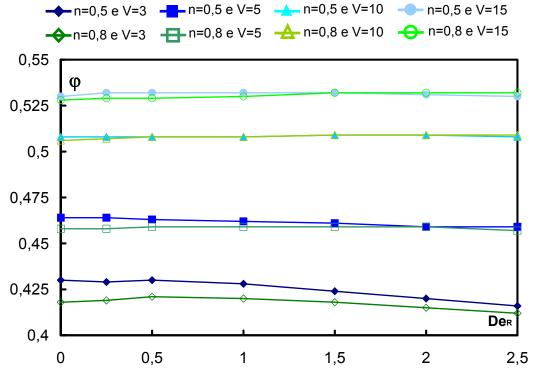


Figura 4.8: φ X De_R para os fluidos 12 (n=0,5 e η_r =0,125) e 22 (n=0,8 e η_r =0,125)

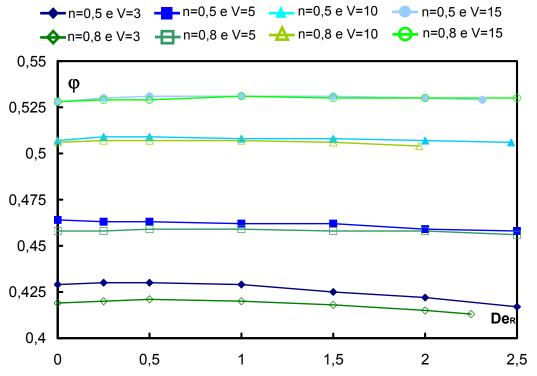


Figura 4.9: $\phi~$ X De $_R$ para os fluidos 13 (n=0,5 e η_r =0,3) e 23 (n=0,8 e η_r =0,3)

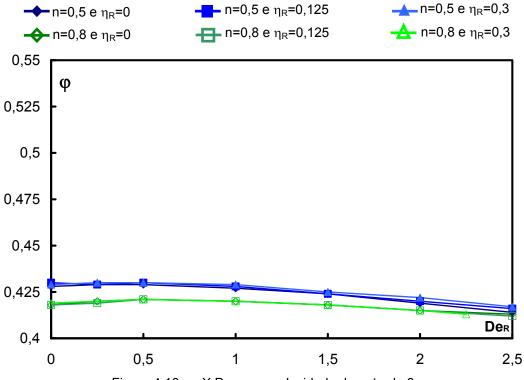


Figura 4.10: ϕ X De_R para velocidade de entrada 3

Der

2,5

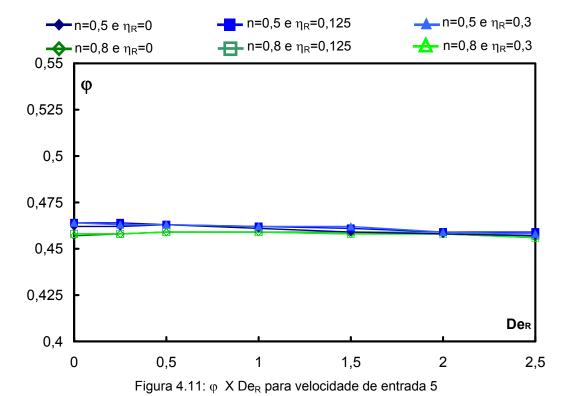
2

0,425

0,4

0

0,5



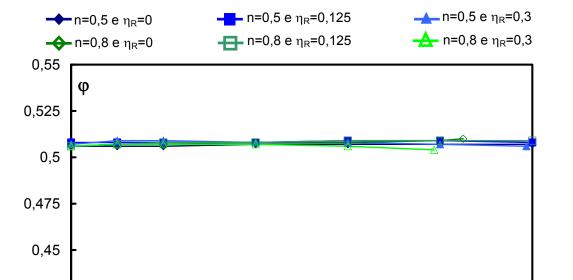
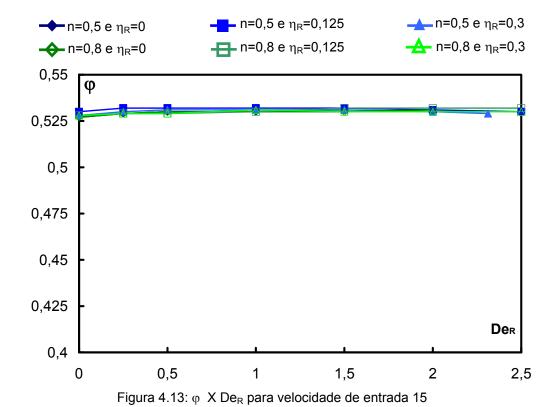
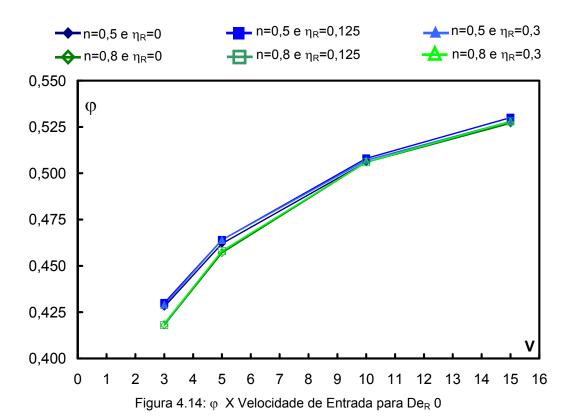


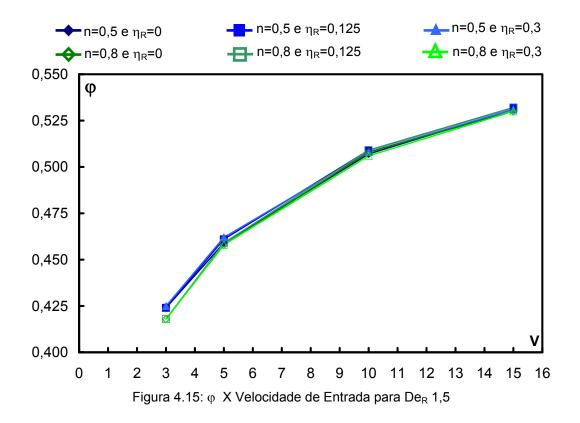
Figura 4.12: ϕ X De_R para velocidade de entrada 10

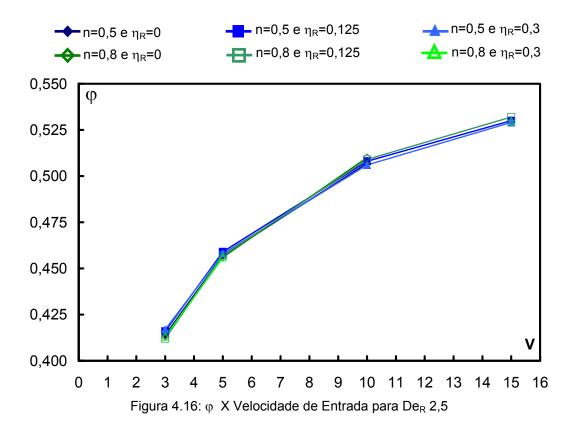
1,5

1









4.1.3.Assimetria - As

O parâmetro *As* mede percentualmente quanto do volume que está escoando da cavidade encontra-se na metade inicial da cavidade (x < 0 na figura 2.1). O objetivo final de *As* é a mensuração da assimetria que se constatou em testes experimentais preliminares a esta dissertação [1].

A variação da Assimetria com n, η_r , com a velocidade de entrada e com o número de Deborah reológico é mostrada nas Figuras 4.20 a 4.26.

Com base nestas figuras pode-se observar que a Assimetria As é fortemente influenciada pelo número de Deborah reológico, sendo diretamente proporcional ao mesmo. Além disso, todos os escoamentos são simétricos quando De_R é nulo (As = 0,5), o que havia sido comprovado em [1] quando se simulou esta geometria com um fluido viscoplástico. A assimetria crescente com Deborah reológico pode ser explicada pelo efeito de memória das partes do fluido que possuem elasticidade.

A assimetria da cavidade pode ser explicada e analisada pelo perfil da tensão presente na cavidade. Como mostrado no exemplo das figuras 4.17, 4.18 e 4.19, onde o fluido é o 12 (n = 0,5 e η_R = 0,125) com v = 3 e De_R = 2,5, a tensão presente na cavidade é assimétrica e esta assimetria surge exclusivamente devido à tensão elástica. No caso da tensão elástica, pelos resultados, a tensão elástica é mais pronunciada na região de transição da região *yielded* e *unyielded*, nos vértices da geometria. Além disso, na região de transição mais próxima da entrada da cavidade, a região da tensão elástica é maior. Nos vértices, pela mudança de geometria brusca a tensão elástica se pronuncia para evitar a mudança do escoamento com o efeito de memória. Na transição da região *yielded* e *unyielded* a tensão elástica novamente se pronuncia devido à mudança do escoamento entre estas duas regiões, sendo que na região de entrada da cavidade existem os dois efeitos superpostos fazendo com que a tensão elástica seja maior que no resto da cavidade.

Decorrente deste efeito de memória, quanto maior for o número de Deborah reológico, maior será este efeito de memória do fluido e, consegüentemente, maior será a assimetria.

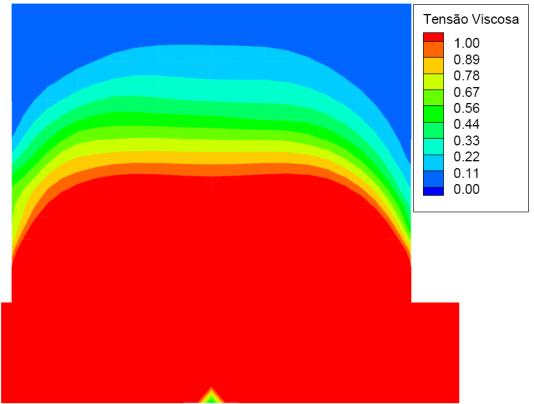


Figura 4.17: Tensão Viscosa

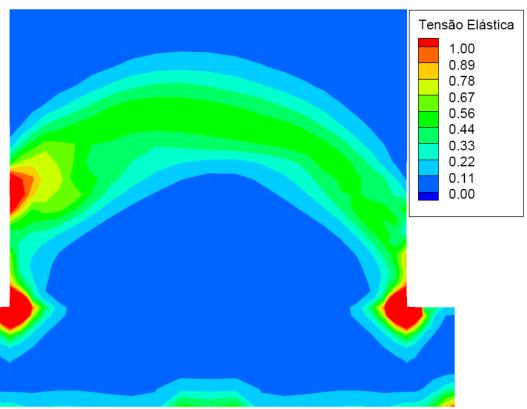


Figura 4.18: Tensão Elástica

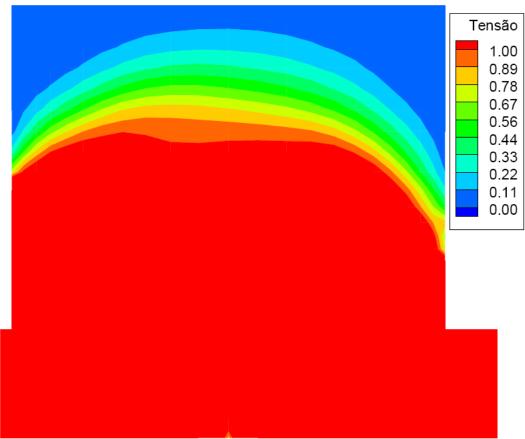


Figura 4.19: Tensão Total

Em relação à velocidade, As é inversamente proporcional a esta variável. Em velocidades maiores, maior será φ . Assim, a região com elasticidade será menor e, conseqüentemente, a tensão de compressão sobre a região simplesmente plástica será menor.

Em relação a η_r , As é inversamente proporcional. Isto mostra que quanto maior as tensões normais maior será a assimetria. Porém para os fluidos 11 e 21, a partir de De_R 1,5 a taxa de crescimento de As com De_R torna-se menor. Isto mostra que o parâmetro λ_2 na equação 4.2 começa a influenciar na assimetria em números de Deborah reológico mais elevados.

Apesar das conclusões descritas nesta seção, nota-se que os valores de As nos diferentes fluidos e comparados pelas variáveis analisadas são muito próximos. Analisando a dependência de As com as variáveis verificou-se que apenas o número de Deborah reológico e a velocidade possuem efeito significativo com este parâmetro. As demais variáveis não apresentaram variação de As superior a 1%, que foi a precisão verificada nos testes de malha. Desta forma, dentro das considerações de precisão realizadas anteriormente, conclui-se que As é independente de η_r e n.

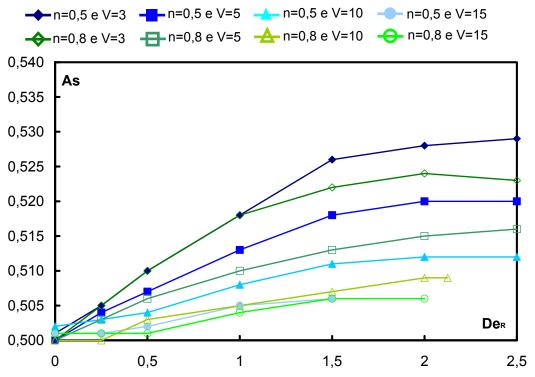


Figura 4.20: As X De_R para os fluidos 11 (n=0,5 e η_r =0) e 21 (n=0,8 e η_r =0)

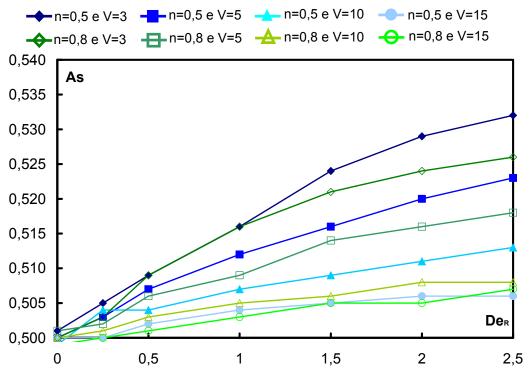


Figura 4.21: As X De_R para os fluidos 12 (n=0,5 e η_r =0,125) e 22 (n=0,8 e η_r =0,125)

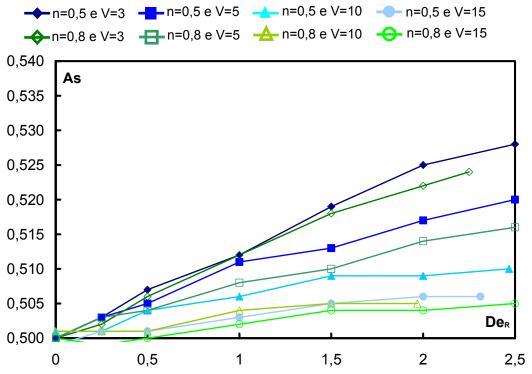
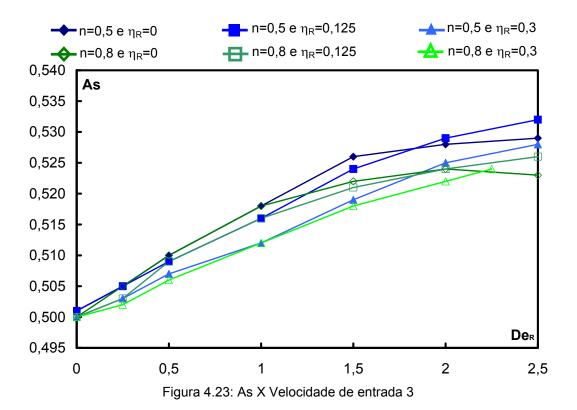
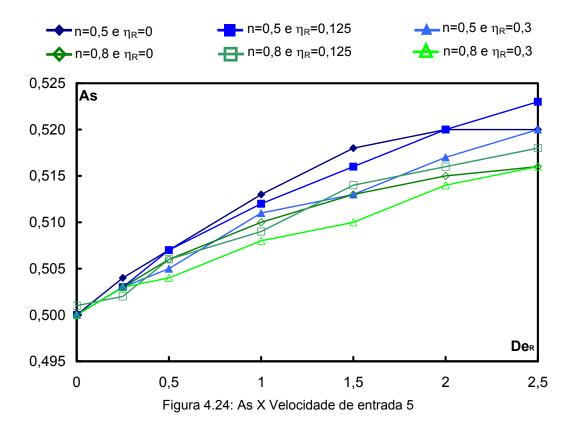
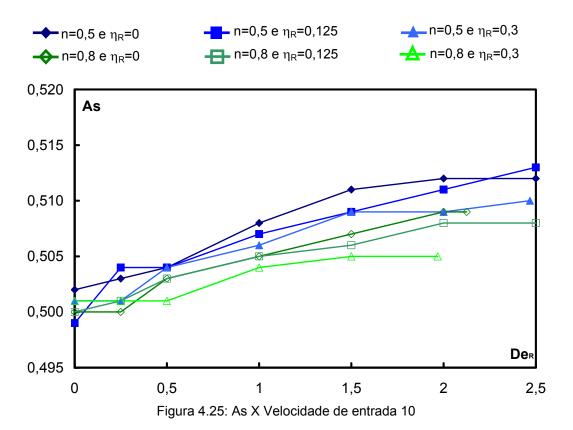


Figura 4.22: As X De_R para os fluidos 13 (n=0,5 e η_r =0,3) e 23 (n=0,8 e η_r =0,3)









4.1.4. Volume yielded

Para se obter os dados referentes a ϕ e As foi analisado o comportamento de cada fluido na cavidade. Apesar de alguns resultados parecerem semelhantes, os dados mostrados nas seções anteriores são mais precisos, mostrando quantitativamente o comportamento dos fluidos. Aqui são mostrados apenas qualitativamente estes resultados, a partir das isocurvas do módulo do tensor taxa de deformação. As figuras 4.27 a 4.50 mostram o módulo do tensor taxa de deformação e ilustram as regiões não deformadas ou unyielded ($\dot{\gamma} < \dot{\gamma}_0$, região mais clara) e deformadas ou yielded ($\dot{\gamma} > \dot{\gamma}_0$, região mais escura) na cavidade, para cada caso.

Figura 4.27: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 11 com velocidade igual a 3 e De igual a 0; 1,5; 2,5 .

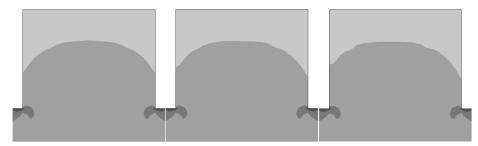


Figura 4.28: $\dot{\gamma}=\dot{\gamma}_0$ no fluido 11 com velocidade igual a 5 e De igual a 0; 1,5; 2,5.



Figura 4.29: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 11 com velocidade igual a 10 e De igual a 0; 1,5; 2,5.

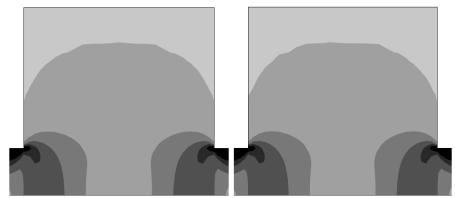


Figura 4.30: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 11 com velocidade igual a 15 e De igual a 0; 1,5.

Figura 4.31: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 12 com velocidade igual a 3 e De igual a 0; 1,5; 2,5.

Figura 4.32: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 12 com velocidade igual a 5 e De igual a 0; 1,5; 2,5.

Figura 4.33: $\dot{\gamma}=\dot{\gamma}_0\,$ no fluido 12 com velocidade igual a 10 e De igual a 0; 1,5; 2,5 ..

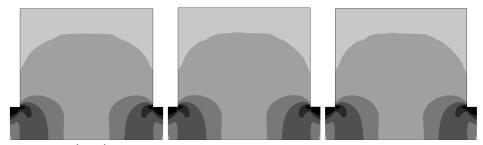


Figura 4.34: $\dot{\gamma}=\dot{\gamma}_0$ no fluido 12 com velocidade igual a 15 e De igual a 0; 1,5; 2,5.

Figura 4.35: $\dot{\gamma}=\dot{\gamma}_0\,$ no fluido 13 com velocidade igual a 3 e De igual a 0; 1,5; 2,5.

Figura 4.36: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 13 com velocidade igual a 5 e De igual a 0; 1,5; 2,5.

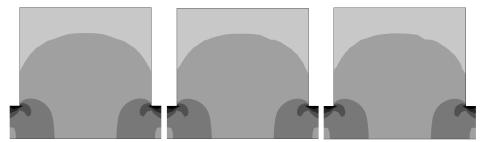


Figura 4.37: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 13 com velocidade igual a 10 e De igual a 0; 1,5; 2,3.

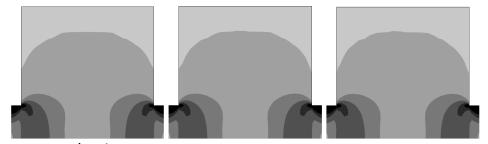


Figura 4.38: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 13 com velocidade igual a 15 e De igual a 0; 1,5; 2,3.

Como mostrado nos resultados anteriores, pode-se notar a assimetria quando se analisa apenas o perfil das cavidades. Também se percebe com facilidade o crescimento de ϕ com a velocidade. Além disso, pela visualização da cavidade nota-se que à medida que se aumenta a velocidade ou De_R a região *yielded* torna-se menos circular e mais achatada.

Figura 4.39: $\dot{\gamma}=\dot{\gamma}_0\,$ no fluido 21 com velocidade igual a 3 e De igual a 0; 1,5; 2,5.

Figura 4.40: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 21 com velocidade igual a 5 e De igual a 0; 1,5; 2,5.

Figura 4.41: $\dot{\gamma}=\dot{\gamma}_0\,$ no fluido 21 com velocidade igual a 10 e De igual a 0; 1,5; 2,125.

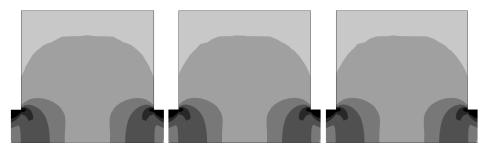


Figura 4.42: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 21 com velocidade igual a 15 e De igual a 0; 1,5; 2.

Figura 4.43: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 22 com velocidade igual a 3 e De igual a 0; 1,5; 2,5.

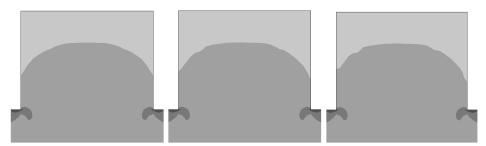


Figura 4.44: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 22 com velocidade igual a 5 e De igual a 0; 1,5; 2,5.

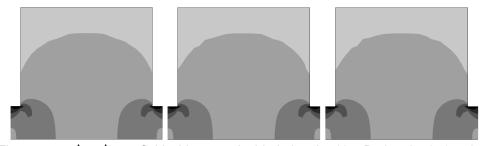


Figura 4.45: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 22 com velocidade igual a 10 e De igual a 0; 1,5; 2,5.

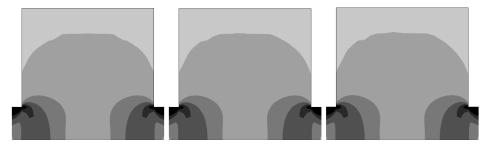


Figura 4.46: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 22 com velocidade igual a 15 e De igual a 0; 1,5; 2,5.

Figura 4.47: $\dot{\gamma}=\dot{\gamma}_0$ no fluido 23 com velocidade igual a 3 e De igual a 0; 1,5; 2,5.

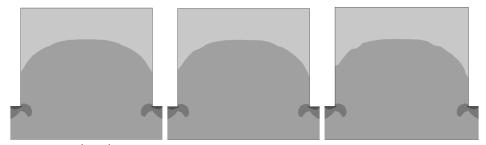


Figura 4.48: $\dot{\gamma}=\dot{\gamma}_0\,$ no fluido 23 com velocidade igual a 5 e De igual a 0; 1,5; 2,5.



Figura 4.49: $\dot{\gamma} = \dot{\gamma}_0$ no fluido 23 com velocidade igual a 10 e De igual a 0; 1,5; 2.

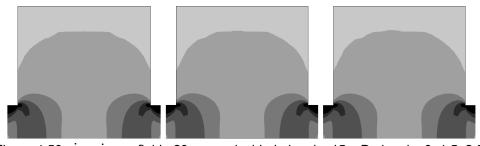


Figura 4.50: $\dot{\gamma}=\dot{\gamma}_0\,$ no fluido 23 com velocidade igual a 15 e De igual a 0; 1,5; 2,5.