

Tarcísio de Freitas Cardoso

Visão geral sobre espectros de resposta sísmica para sistemas secundários

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: João Luis Pascal Roehl Co-orientadora: Andréia Abreu Diniz de Almeida

Rio de Janeiro, setembro de 2008

Tarcísio de Freitas Cardoso

Visão geral sobre espectros de resposta sísmica para sistemas secundários

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> João Luis Pascal Roehl Orientador Departamento de Engenharia Civil – PUC-Rio

> Andréia Abreu Diniz de Almeida Co-orientadora Departamento de Engenharia Civil – PUC-Rio

> > **Tereza Denyse Pereira de Araújo** Universidade Federal do Ceara – UFC

Rodolfo Luiz Martins Suanno Universidade do Estado do Rio de Janeiro – UERJ

Raul Rosas e Silva Departamento de Engenharia Civil – PUC-Rio

> José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 08 de setembro de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Tarcísio de Freitas Cardoso

Graduou-se em Engenharia Civil, pela Universidade Federal do Rio de Janeiro em dezembro de 1980. Cursou pósgraduação em Mecânica dos Solos, na COPPE/UFRJ, pelo projeto Urânio em 1981. Ingressou na NUCLEN em março de 1982, atuando nas áreas de Análise Sísmica e de Estruturas metálicas. Atualmente trabalha na ELETRONUCLEAR, na Gerência de Análise de Tensões, atuando na área de dinâmica das estruturas.

Ficha Catalográfica

Cardoso, Tarcísio de Freitas

Visão geral sobre espectros de resposta sísmica para sistemas secundários / Tarcísio de Freitas Cardoso; orientador: João Luis Pascal Roehl; co-orientadora: Andréia Abreu Diniz de Almeida. - Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2008

v., 190 f: il.; 29,7 cm

Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil

Incluí referências bibliográficas.

1. Engenharia Civil - Teses. 2.Espectro de Resposta 3.Sistemas Secundários. 4.Análise Sísmica. 5.Sistemas Acoplados 6.Espectro de Resposta Uniformemente Provável I.Roehl, João Luis Pascal. II.Pontifícia Universidade Católica. Departamento de Engenharia Civil. III.Título

CDD: 624

"PARA SER GRANDE, sê inteiro: nada TEU exagera ou exclui. Sê todo em cada coisa. Põe quanto és No mínimo que fazes. Assim em cada lago a lua toda Brilha, porque alta vive."

(Fernando Pessoa, como Ricardo Reis 14/2/1933)

A meu pai, Edyo Cardoso. O exemplo permanece.

Agradecimentos

À Irene, pela presença, cumplicidade e partilha de vida, que nos fazem tão felizes.

À minha mãe, Taïs, que com seu carinho, compreensão e firmeza continua me educando para a vida.

Ao prof. Roehl, pela dedicação, compreensão, transmissão de conhecimentos e principalmente pelos sábios ensinamentos de vida, mais profundos e importantes.

À ELETRONUCLEAR e à PUC-Rio, pela confiança e suporte.

Aos professores e funcionários do DEC, compreensivos, prestativos e atenciosos.

Aos colegas Marcelo, Waldo, Marcos, Regina, Andréia, Denyse e Jair, que me antecederam na pesquisa e cujo trabalho apenas complemento. Aos colegas da ETN, principalmente os mais próximos e os da GAN.T, pelo apoio e incentivo. Aos colegas da pós-graduação, pelo afeto e carinho, que fizeram as nossas atividades transcorrerem com alegria e esperança, fazendo-me sentir jovem novamente.

À Paôla e à Andréia, amigas, que foram estímulo constante e a parceria que tornou possível a realização desse trabalho.

Ao amigo Prates, incentivo permanente, pelas discussões e sugestões, e à Maria Teresa, pela revisão cuidadosa do texto.

Aos amigos e aos irmãos, pelo encorajamento e apoio imprescindível para superar os momentos difíceis, causados pelas tribulações ocorridas nos últimos anos.

Ao Tarcísio e ao Tiago, por serem a confirmação concreta do valor do empenho e atitude na tentativa de um mundo melhor.

A Quem é a origem da VIDA, que é bela de se viver.

Resumo

Cardoso, Tarcísio de Freitas. **Visão geral sobre espectros de resposta sísmica para sistemas secundários.** Rio de Janeiro, 2008. 223p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

A indústria de geração elétrica de fonte nuclear baseia-se em princípios de segurança e, nos critérios de projeto, considera-se a hipótese de terremoto. Os sistemas necessários à segurança são projetados para resistir e manter a operabilidade durante e após eventos sísmicos postulados. Propõe-se um roteiro para a produção de espectros de resposta sísmica para projeto de sistemas secundários, SS, incluindo a influência do acoplamento e em base probabilística. O roteiro utiliza a ferramenta SASSI, pode ser utilizado em situações gerais de cálculo e fornece um conjunto de programas para considerar modelos tridimensionais e suas respostas para uma excitação genérica em 3 direções ortogonais; representar os efeitos de acoplamento entre o SS e o sistema principal, SP; incluir a influência dos deslocamentos relativos entre os nós de apoio do sistema secundário no sistema principal; utilizar os fatores de transposição entre espectros elásticos e inelásticos; permitir a análise probabilística e a obtenção de Espectros de Resposta Uniformemente Prováveis, acoplados ou não; incluir interfaces para a utilização de seus resultados com outros programas de utilização geral, como o MS-EXCEL. O elevado grau de automatização permite a produção de espectros de resposta com refinamentos de modelagem, alcançando uma análise mais realista, sem a necessidade de esforços adicionais aos já requeridos pela metodologia convencional. A metodologia proposta enquadra-se no encaminhamento para o contexto atual de análise sísmica de instalações nucleares, com a utilização de espectros de resposta de projeto de ameaça uniforme, específico para o sítio da instalação, e o projeto sísmico de risco consistente.

Palavras-chave

Análise Sísmica; Espectro de Resposta; Sistemas Secundários; Sistemas Secundários Acoplados; Espectro de Resposta Uniformemente Provável

Abstract

Cardoso, Tarcísio de Freitas. **Overview on secondary system seismic response spectra**. Rio de Janeiro, 2008. 223p. Dissertação de Mestrado -Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

The electric power reactor industry is based on rigid safety principles. The design criteria include seismic scenario. All safety related systems are designed to resist and to keep the operability during and after a postulated earthquake. It is suggested a procedure for the generation of in-structure seismic response spectra for secondary system design. A probabilistic approach is used and coupling effects between primary and secondary systems are taken into account. The proposed script uses SASSI system and can be used in general situations. A set of computer programs is developed to consider three-dimensional models and their responses for a generic base excitation, acting in 3 orthogonal directions; represent the coupling effect between primary and secondary systems, include the influence, on the response spectra, of the secondary system supports relative displacements; include approximated factors for transposition of elastic into inelastic response spectra; produce Uniformly Probable Response Spectra, including or not coupling effects; consider interfaces with other general programs, as the MS-EXCEL, for pos-processing purpose. The degree of automation, allows the production of response spectra including modeling refinements, reaching a more realistic analysis, without additional efforts beyond those already required by the conventional methodology. The proposed methodology is in the way of a site specific uniform hazard design response spectra, and of a consistent-risk seismic design.

Keywords

seismic analysis; response spectrum; secondary system; coupled secondary system; uniformly probable response spectra

Sumário

1 Introdução	25
1.1. Aspectos Gerais	25
1.2. Pesquisas anteriores no DEC	28
1.3. Objetivos	30
1.4. Organização do Texto	31
2 Ambientação das Análises de Sistemas Secundários	32
2.1. Tipos de Sistemas Secundários Típicos em uma PWR	32
2.2. Considerações sobre o Espectro de Resposta e a Análise Modal	
Espectral	35
2.3. Linha de Pesquisa de Respostas Sísmicas de Sistemas Secundá	rios37
3 Representação do Sistema Principal com o Programa Sassi	42
3.1. Análise no domínio da freqüência	42
3.2. O programa SASSI	44
3.3. Sistemas Principais em estudo	50
4 Excitações e Respostas nos Sistemas Secundários	73
4.1. Excitações de projeto	73
4.2. Respostas nos sistemas secundários	79
5 Roteiro de Cálculo	98
5.1. Requisitos iniciais	98
5.2. Roteiro para obtenção de Espectros de Resposta de Projeto de	
Sistemas Secundários	99
5.3. Roteiro para Sistemas Secundários Específicos	106
6 Exemplos de Utilização do Roteiro	107
6.1. Aspectos gerais	107

6.2. Comparação dos ER obtidos através do roteiro proposto e da for	ma
convencional	108
6.3. Resultados finais nos SS obtidos com a utilização dos ER, ERUP	e, e
ERAUP	130
6.4. Comentários sobre os resultados comparados	141
7 Conclusões, comentários e sugestões	142
7.1. Conclusões	142
7.2. Comentários	144
7.3. Sugestões	146
8 Referências	149
ANEXO 1: Características dinámicas do modelo utilizado para represe	entar a
RIS – modelo A1ERE	153
A1.1. Rigidez global da fundação – modelo A1ERE	153
A1.2. Verificações da resposta sísmica do modelo – modelo A1ERE	161
ANEXO 2: Manual do programa SomaMOT	172
A2.1. Introdução	172
A2.2. Dados de Entrada	173
A2.3. Arquivos de entrada e saída	174
A2.4. Lista das rotinas	175
A2.5. Fluxograma simplificado	176
ANEXO 3: Manual de utilização do programa GFiBase	179
A3.1. Introdução	179
A3.2. Dados de Entrada	180
A3.3. Arquivos de entrada e saída	183
A3.4. Lista dos arquivos e das rotinas	184
A3.5. Fluxograma simplificado	185
ANEXO 4: Manual do programa ExCapt	107
ANLAO 4. Manual uu piuyidilla EXOUIII	107
	101

A4.2. Descrição do programa	187
A4.3. Dados de Entrada	188
A4.4. Arquivos de entrada e saída	193
A4.5. Lista dos arquivos e das rotinas	194
A4.6. Fluxograma simplificado	198
ANEXO 5: Manual do programa ExeSASS/	202
AREAO 5. Manual do programa Exesassi	202
A5.1. Introdução	202
A5.2. Descrição do Programa	203
A5.3. Arquivos de entrada e saída	206
A5.4. Lista das rotinas	210
ANEXO 6: Manual para utilização do módulo ACOPLA	211
A6.1. Introdução	211
A6.2. Descrição do programa	212
A6.3. Dados de Entrada	214
A6.4. Lista das rotinas	217
A6.5. Fluxograma simplificado	219
ANEXO 7: Glossário	221

Lista de figuras

Figura 1.1 - Visão esquemática das barreiras de proteção de uma Usina PWR
(fonte: ETN) 26
Figura 2.1 - Visão esquemática funcionamento de uma Usina PWR (fonte: ETN)
32
Figura 3.1 Modelo de subestruturação do volume flexível. (a)Sistemas Total
(b)Sítio original, com indicação dos nós da fundação (c)Estrutura, com
indicação dos nós da estrutura e de interação. (Fonte:
manual teórico do SASSI2000) 45
Figura 3.2 - Vista esquemática do modelo A3Reator – (fonte: SAMPAIO 1999) 51
Figura 3.3 - Vista esquemática dos elementos da laje de fundo - modelo A3Reator
(fonte: SAMPAIO 1999) 52
Figura 3.4 - FT para os nós 177/178 - excitação horizontal - modelo A3Reator 53
Figura 3.5 - FT para os nós 177/178 – excitação vertical – modelo A3Reator 53
Figura 3.6 - Vista esquemática do prédio do reator - ERE55
Figura 3.7 - Esquema em corte das estruturas dos prédio do reator e de segurança
56
Figura 3.8 - Esquema do modelo dos prédios do reator e de segurança58
Figura 3.9 - Esquema do modelo da fundação61
Figura 3.10 - FT de acelerações – ERE – SB – excitação em X1 – onda SV 63
Figura 3.11 - FT de acelerações – ERE – SC – excitação em X1 – onda SV 63
Figura 3.12 - FT de acelerações – ERE – RIS topo – excitação em X1 – onda SV
64
Figura 3.13 - FT de acelerações – ERE – RIS +6.95m – excitação em X1 – onda
SV 64
Figura 3.14 - FT de acelerações – ERE – base – excitação em X1 – onda SV 65
Figura 3.15 - FT de acelerações – ESG – excitação em X1 – onda SV 65
Figura 3.16 - FT de acelerações – ERE – SB – excitação em X2 – onda SH 66
Figura 3.17 - FT de acelerações – ERE – SC – excitação em X2 – onda SH 67
Figura 3.18 - FT de acelerações - ERE - RIS topo - excitação em X2 - onda SH

Figura 3.19 - FT de acelerações - ERE - RIS +6.95m - excitação em X2 - onda
SH 68
Figura 3.20 - FT de acelerações – ERE – base – excitação em X2 – onda SH 68
Figura 3.21 - FT de acelerações – ESG – base – excitação em X2 – onda SH 69
Figura 3.22 - FT de acelerações – ERE – SB – excitação em X3 – onda P 70
Figura 3.23 - FT de acelerações – ERE – SC – excitação em X3 – onda P 70
Figura 3.24 - FT de acelerações - ERE - RIS topo - excitação em X3 - onda P 71
Figura 3.25 - FT de acelerações – ERE – RIS +6.95m – excitação em X3 – onda P
71
Figura 3.26 - FT de acelerações – ERE – base – excitação em X3 – onda P 72
Figura 3.27 - FT de acelerações – ESG – base – excitação em X3 – onda P 72
Figura 4.1 - Espectro de Resposta de Projeto – ERP – amortecimento 7% 74
Figura 4.2 – Função Densidade de Espectro de Potência de Projeto – FDEPP75
Figura 4.3 - THD7N7 - excitação na base atuando na direção X77
Figura 4.4 - THD7N47 - excitação na base atuando na direção Y77
Figura 4.5 - THD7N17 – excitação na base atuando na direção Z77
Figura 4.6 - THD7N7 – Amplitude dos Coeficientes de Fourier – direção X 78
Figura 4.7 - THD7N47 – Amplitude dos Coeficientes de Fourier – direção Y 78
Figura 4.8 - THD7N17 – Amplitude dos Coeficientes de Fourier – direção Z 78
Figura 4.9 - A3Reator - Nó 178 (elev. +29,15m; R=39m) FT resultante para a
direção vertical Z 85
Figura 4.10 - A3Reator - Nó 178 (elev. +29,15m; R=39m) ERZ - soma
resultante para a direção vertical Z ERZ - mcX - para excitação em X -
THD7N7 ERZ - mcZ - para excitação em Z - THD47N785
Figura 4.11 - Esquema de transferência do movimento de controle no PC para um
ponto no interior da estrutura: <i>SASSI</i> e SomaMOT 88
Figura 4.12 - SS representado por um S1GL apoiado no ponto s da estrutura 89
Figura 4.13 - comparação típica entre o ER e ERUP - excitação horizontal em X
A3Reator – nó 178 (elev.+29,15m R=39m) – ξ =3%; p=84% 90
Figura 4.14 - A3Reator - ER (nó 178 elev.+29,15m R=39m) ERAUP (SA6 -
27,5t) e (SA7 -13,8t) $\xi = 3\%$; p=84% 94

Figura 4.15 - A3Reator - ER (nó 176 elev +16,65m) e ERAUP (SA4 - 27,5t) e

 $(SA5 - 13, 8t) \xi = 3\%$; p=84%

Figura 4.16 – ER e ERNL – A3Reator, nó 176 elev.+16,65m – ξ =3% para SS específico com Fator de escoamento C=0,4 e amortecimento SS 7% 97

Figura 5.1 – Roteiro de cálculo e obtenção de ER, ERUP e ERAUP 100

- Figura 6.1 Vista esquemática de um circuito primário de 2 "loops" de uma usina tipo PWR (fonte: ETN) 109
- Figura 6.2 Vista esquemática do modelo da RIS para a obtenção dos espectros de resposta nos pontos de apoio do RPV, RCP e SG 110
- Figura 6.3 A1ERE RPV elev. +6,95m nó 116 Comparação entre Espectros de Resposta, ER – $\xi = 4\%$ – obtidos deterministicamente SASSI2000 x STRUDYN 112

Figura 6.4 - A1ERE - RPV – elev. +6,95m – nó 116 – direção horizontal X Comparação entre os Espectros de Resposta: ER; ERUP; ERAUP – $\xi = 4\%$; p=84%

- Figura 6.5 A1ERE RPV elev. +6,95m nó 116 direção horizontal Y Comparação entre os Espectros de Resposta: ER; ERUP; ERAUP – $\xi = 4\%$; p=84%
- Figura 6.6- A1ERE RPV elev. +6,95m nó 116 direção vertical Z Comparação entre os Espectros de Resposta: ER; ERUP; ERAUP – $\xi = 4\%$; p=84%
- Figura 6.7 Vista esquemática da RCP em um circuito primário de uma usina PWR (fonte: ETN) 116
- Figura 6.8 A1ERE RCP elev. +3,70m/+6,95m nós 127/135 Comparação entre Espectros de Resposta, ER, $\xi = 4\%$ - obtidos deterministicamente SASSI2000 x STRUDYN 118
- Figura 6.9 A1ERE RCP elev. +8,26m nó 135– direção horizontal X Comparação entre os Espectros de Resposta: ER; ERUP; ERAUP – $\xi = 4\%$; p=84%
- Figura 6.10 A1ERE RCP elev. +8,26m nó 135– direção horizontal Y Comparação entre os Espectros de Resposta: ER; ERUP; ERAUP – D=4%; p=84%

Figura 6.11 - A1ERE - RCP - elev. +3,70m - nó 127 - direção vertical Z

Comparação entre os Espectros de Resposta: ER; ERUP; ERAUP – $\xi = 4\%$; p=84%

- Figura 6.12 Vista esquemática da suportação típica do SG de um circuitoprimário de uma usina do tipo PWR (fonte: ETN)121
- Figura 6.13 A1ERE SG elev. +3,70m/+9,57m nós 129/136 Comparação entre Espectros de Resposta, ER, $\xi = 4\%$, obtidos deterministicamente SASSI2000 x STRUDYN 123
- Figura 6.14 A1ERE SG elev. +3,70m/+15,5m nós 129/138 Comparação entre Espectros de Resposta, ER, $\xi = 4\%$, obtidos deterministicamente SASSI2000 x STRUDYN 123
- Figura 6.15 A1ERE SG elev. +9,5m/+17,5m nós 136/138 direção X Comparação entre os tipos de resposta acoplada: ERUP; ERAUP – $\xi = 4\%$; p=84%
- Figura 6.16- A1ERE SG elev. +9,5m/+17,5m nós 136/138 direção Y Comparação entre os tipos de resposta acoplada: ERUP $\xi = 4\%$; p=84% 125
- Figura 6.17- A1ERE SG elev. +3,7m nó 129 direção Z Comparação entre os tipos de resposta acoplada: ERUP; $\xi = 4\%$; p=84% 126
- Figura 6.18 A1ERE SG elev.+9,5/+17,5m apoio nos nós 136/138– direção horizontal X Comparação entre os Espectros de Resposta: ER; ERUP; ERAUP - $\xi = 4\%$; p=84% 127
- Figura 6.19 A1ERE SG elev.+9,5/+17,5m apoio nos nós 136/138– direção horizontal Y Comparação entre os Espectros de Resposta: ER; ERUP; ERAUP - $\xi = 4\%$; p=84% 128
- Figura 6.20 A1ERE SG elev.+3,70m apoio no nó 129– direção horizontal Z Comparação entre os Espectros de Resposta: ER; ERUP; ERAUP - $\xi = 4\%$; p=84%
- Figura 6.20 Vista esquemática de um modelo de circuito primário de refrigeração do reator com 2 "loops" de uma usina do tipo PWR 131
- Figura 6.21 Vista esquemática de um modelo para análise do SS acoplado ao SP (Fonte ETN) 139
- Figura A1.1 FT de deslocamentos para carga FX=1 variação na direção X 156
- Figura A1.2 FT de deslocamentos para carga FX=1 variação na direção Y 156

Figura A1.3 – FT de deslocamentos para carga FY=1 – variação na direção X 157 Figura A1.4 – FT de deslocamentos para carga FY=1 – variação na direção Y 157 Figura A1.5 – FT de deslocamentos para carga FZ=1 – variação na direção X 158 Figura A1.6 – FT de deslocamentos para carga FZ=1 – variação na direção Y 158 Figura A1.7 – Variação do amortecimento e da rigidez global da fundação com a 159 freqüência - translação Figura A1.8 – Variação do amortecimento e da rigidez global da fundação com a freqüência - rotação 160 Figura A1.9 – FT de acelerações – base ERE – excitação em X1 – onda SV 163 Figura A1.10 – FT de acelerações – base ESG – excitação em X1 – onda SV 163 Figura A1.11 – FT de acelerações – base ERE – excitação em X2 – onda SH 164 Figura A1.12 – FT de acelerações – base ESG – excitação em X2 – onda SH 164 Figura A1.13 – FT de acelerações – base ERE – excitação em X3 – onda P 165 Figura A1.14 - FT de acelerações - base ESG - excitação em X3 - onda P 165 Figura A1.15 – FT acel. – bases ESG (nó 100) e ERE (nó 103)– excitação em X1 - onda SV 166 Figura A1.16 – FT acel. – bases ESG (nó 100) e ERE (nó 103)– excitação em X2 – onda SH 166 Figura A1.17 – FT acel. – bases ESG (nó 100) e ERE (nó 103)– excitação em X3 – onda P 167 Figura A1.18 - FT acel. - centro ERE e borda da fundação - excitação em X1 onda SV 167 Figura A1.19 – FT acel. – centro ERE e borda da fundação – excitação em X2 – onda SH 168 Figura A1.20 - FT acel. - centro ERE e borda da fundação - excitação em X3 onda P 168 Figura A1.21 – FT acel. – pontos alinhados em X1 – excitação em X1 – onda SV 169 Figura A1.22 – FT acel. – pontos alinhados em X2 – excitação em X1 – onda SV 169 Figura A1.23 – FT acel. – pontos alinhados em X1 – excitação em X2 – onda SH 170

Figura A1.24 - FT acel. - pontos alinhados em X2 - excitação em X2 - onda SH

170

Figura A1.25 – FT acel. – pontos alinhados em X1 – excitação em X3 – onda P 171

Figura A1.26 – FT acel. – pontos alinhados em X2 – excitação em X3 – onda P 171

Lista de tabelas

Tabela 3.1 - Propriedades dos materiais usados nas análises	57
Tabela 3.2 - Correlação dos nós com as massas concentradas do modelo	59
Tabela 3.3 - Freqüências naturais com a estrutura fixa na base [Hz]	60
Tabela 4.1 - Limites recomendados para escolha de análise acoplada	91
Tabela 6.1 - Coeficientes de rigidez global da fundação	108
Tabela 6.2 - Freqüências naturais [Hz] e pesos modais do RPV, desacoplad	lo do
SP	111
Tabela 6.3 - Freqüências naturais de vibração [Hz] e pesos modais das l	RCP,
consideradas desacopladas do SP	116
Tabela 6.4 - Freqüências naturais de vibração [Hz] e pesos modais dos	SG,
considerados desacoplados do SP	122
Tabela 6.5 - Descrição dos casos de comparação	130
Tabela 6.6 - D47 ER STRUDYN x D49 ER SASSI - comparação de acelera	ições
[g]	133
Tabela 6.7 - D47 ER STRUDYN x D49 ER SASSI - comparação	o de
deslocamentos [cm]	133
Tabela 6.8 - D47 ER STRUDYN x D49 ER SASSI - comparação de forças	s nos
suportes dos SGs – [kN]	133
Tabela 6.9 - D49 ER SASSI x D50 ERUP SASSI x A51 ERAUP comparaçã	io de
acelerações	134
Tabela 6.10 - D49 ER SASSI x D50 ERUP SASSI x A51 ERAUP comparaçã	ăo de
deslocamentos	135
Tabela 6.11 - D49 ER SASSI x D50 ERUP SASSI x A51 ERAUP comparaçã	io de
forças nos suportes dos SG – [kN]	135
Tabela 6.12 - ERAUP Tipos 1, 2, 3 e 4 - comparação de acelerações [g]	137
Tabela 6.13 - ERAUP Tipos 1, 2, 3 e 4 - comparação de deslocamentos [cm]	137
Tabela 6.14 - ERAUP Tipos 1, 2, 3 e 4 - comparação de forças nos suporte	es do
SG Forças Normais - [kN]	137
Tabela 6.15 - Resultados em aceleração obtidos por diferentes métodos - [g]	139

Tabela 6.16 - Resultados em deslocamento obtidos por diferentes métodos -	· [cm]
	140
Tabela A1.1 - Pontos utilizados para comparação das FT de deslocamentos	154
Tabela A1.2 - Coeficientes de rigidez global da fundação	159
Tabela A.5.1 - Nomenclatura dos arquivos *.inp.	207
Tabela A5.2 - Nomenclatura dos arquivos *.out gerados	208
Tabela A5.3 - Nomenclatura dos arquivos *.tap gerados.	209

Lista de símbolos

Romanos:

a, a, a _i	coeficientes constantes
<i>A</i> , <i>B</i>	constantes
С	matriz de rigidez global, complexa
\widetilde{C}	matriz de amortecimentos
d_{\max}	maior distância entre nós de interação
E	módulo de elasticidade
E(t)	energia total de um sistema oscilatório
f_{\max}	maior freqüência de interesse
f(t)	força, no domínio do tempo
$F(\omega)$	força, no domínio da freqüência
$F_s(\omega)$	espectro de Fourier de uma função temporal $\ddot{u}_s(t)$
$H(\omega)$	função de transferência
$\overline{H}_X(\omega)$	função de transferência combinada, para a direção X, das
	excitações aplicadas às direções X, Y e Z
$k_{n,j}(\omega_{0i})$	parcela da rigidez de acoplamento, referente ao nó <i>n</i> , para a
	freqüência $\omega_{_{0i}}$
$ksp_{n,j}(\omega_{0i})$	rigidez local do sistema principal, referente ao nó n , para a
	freqüência $\omega_{_{0i}}$
Κ	matriz de rigidez complexa
$K(\omega_{0i})$	rigidez global de acoplamento, para a freqüência $\omega_{\scriptscriptstyle 0i}$
\widetilde{K}	matriz de rigidez, complexa
$L_T(t*)$	probabilidade de nenhuma ultrapassagem pela barreira
	durante o intervalo de tempo [0,t*)
m	massa

М	matriz de massas, complexa					
\widetilde{M}	matriz de massas					
Р	probabilidade de não ultrapassagem de uma barreira					
r, r_i	coeficientes constantes					
$Sa(\xi,\omega)$	espectro de pseudo-acelerações					
$Sv(\xi,\omega)$	espectro de pseudo-velocidades					
$Sd(\xi,\omega)$	espectro de deslocamentos					
<i>t</i> , <i>t</i> _{<i>i</i>}	tempo					
T(t)	energia cinética de um sistema oscilatório					
u ,	deslocamento, velocidade e aceleração, no domínio do					
	tempo					
\ddot{u}_b	aceleração na base					
$u_s, \dot{u}_s, \ddot{u}_s$	deslocamento, velocidade e aceleração, em um ponto na					
	estrutura					
U	vetor de deslocamentos, no domínio da freqüência					
U_f'	vetor de deslocamento de campo livre, no domínio da					
	freqüência					
\ddot{U}_s	vetor de acelerações, no domínio da freqüência					
v	velocidade de propagação de onda					
V(t)	energia potencial de um sistema oscilatório					
$X_{f\!f}$	matriz de impedância, no domínio da freqüência					
Ζ	probabilidade do processo se iniciar abaixo do valor da					
	barreira					
$Z(\omega)$	impedância					

Gregos:

α	razão	de	decréscimo	da	probabilidade	de	primeira
	ultrapa	ssage	em				
β	razão entre freqüências						
$\Delta \omega$	intervalo de freqüências						
ξ	amortecimento						
λ_{i}	momento espectral de i-ésima ordem						
ς	deslocamento						
γ	peso es	specí	fico				
τ	intervalo de tempo						
ν	coeficiente de Poisson						
ω	freqüência						
ω_0	freqüência natural						
$\omega_{\scriptscriptstyle D}$	freqüêr	ncia n	atural do siste	ema a	imortecido		
Φ	modo de vibração, deslocamentos						
$\Phi_{u_s}(\omega)$	Função	Den	sidade de Es	spectr	o de Potência	para	a função
	$\ddot{u}_{s}(t)$						
η , $\dot\eta$, $\ddot\eta$	desloca	amen	to, velocidade	e e a	celeração de ur	n osc	ilador de
	2GL						

Lista de abreviaturas

A1ERE	nome de modelo de edifício do reator utilizado como						
	exemplo						
A3Reator	nome de modelo de edifício do reator utilizado como						
	exemplo						
С	Fator de escoamento						
CQC	Combinação quadrática dos modos						
D	Amortecimento						
ER	Espectro de resposta no interior da estrutura						
ERAUP	Espectro de resposta acoplada uniformemente provável						
ERE	edifício do reator						
ERNL	Espectro de resposta não linear						
ERP	Espectro de Resposta de Projeto						
ERUP	Espectro de resposta uniformemente provável						
ESG	edifício de segurança						
ETN	Eletronuclear						
FDEP	Função densidade de espectro de potência						
FDEPP	Função densidade de espectro de potência de projeto						
FT	Função de transferência						
FTD	Função de transferência de deslocamentos						
GL	Grau de liberdade						
IMR	Rotinas para consideração da influência dos modos rígidos						
L	onda de superície, do tipo de Lowe						
MPRS	"Multi Point Response Spectra" - análise modal espectral						
	com excitação múltipla						
OBE	"Operating Basis Earthquake" - Terremoto de operação de						
	projeto						
р	probabilidade de não ultrapassagem						
Р	onda de corpo de compressão, do tipo P						
PWR	"Pressurized Water Reactor" - Reator a água pressurizada						
R	onda de superície, do tipo de Rayleigh						

RCL	"Reactor Coolant Loop" - Circuito primário de refrigeração do reator
RCP	"Reactor Coolant Loop" - Bomba principal do circuito
	primário de refrigeração do reator
RIS	"Reactor Internal Structure" - Estrutura interna do edifício do
	reator
RPV	"Reactor Pressure Vessel" - Vaso de pressão para o núcleo
	do reator
S1GL	Sistema com um grau de liberdade
S2GL	Sistema com dois graus de liberdade
SASSI	"System for Analysis of Soil-Structure Interaction" - Sistema
	de programas para análise de interação solo-estrutura
SB	"Shield Building" - Estrutura de proteção externa
SC	"Steel Containment" - Estrutura de aço de contenção
SG	"Steam Generator" - Gerador de Vapor
SH	componente horizontal da onda de corpo de cisalhamento,
	do tipo S
SP	Sistema principal
SS	Sistema secundário
SSE	"Safe Shutdown Earthquake" - Terremoto de desligamento
	seguro
SSS	Sistema secundário simplificado
SV	componente vertical da onda de corpo de cisalhamento, do
	tipo S
SVGL	Sistema com vários graus de liberdade
TF	Transformada de Fourier
UHRS	"Uniform Hazard Response Spectra" - Espectro de resposta
	de projeto uniformemente provável
URRS	"Uniform Risk Response Spectra" - Espectro de resposta de
	projeto de risco uniforme
Vp	velocidade de propagação da onda P
Vs	velocidade de propagação da onda S
X1, X2, X3	Direções ortogonais do sistema global de eixo X, Y e Z

Lista de programas

SASSI	Sistema de programas para análise de interação solo-
	estrutura
SITE	Módulo do SASSI para análise do movimento de campo
	livre
POINT	Módulo do SASSI para calcular matriz de impedância
MOTOR	Módulo do SASSI para análise de forças harmônicas
	aplicadas
HOUSE	Módulo do SASSI para gerar modelo de elementos finitos
ANALYS	Módulo do SASSI para solução da equação do movimento
COMBIN	Módulo do SASSI para combinação de FT
MOTION	Módulo do SASSI para obtenção das respostas dinâmicas a
	uma excitação
ExeSASSI	Gerenciador para execução dos módulos do SASSI -
	linguagem visual Basic VB6
SomaMOT	programa em FORTRAN para somar resultados do MOTION
ACOPLA	Módulo do ExeSASSI para possibilitar análises acopladas
GFiBase	programa em C++ para gerar FDEP nas posições escolhidas
ExConf	programa em C++ para fazer análise probabilística
ACS-SASSI	versão comercial do SASSI, pela firma Advanced Computed
	Softwares
SHAKE	programa para análise iterativa de campo-livre
STRUDYN	programa para análise análise estrutural dinâmica e estática
DYNRES	módulo do STRUDYN para gerar espectros de resposta
ANSYS	programa geral para análise de tensões, lineares e não
	lineares
PosExeSassi modelo de planilha de cálculo, MS-EXCEL, para pós-	
	processamento do ExeSASSI
PlotaFT	macro da planilha PosExeSASSI.xlt, em VB, para plotar FT
PloaEsp	macro da planilha PosExeSASSI.xlt, em VB, para plotar

espectros e FDEP