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7 
Related Work  

In this chapter we present works that are directly related to our own. We 

have separated them into six categories: (i) static analysis tools and techniques; 

(ii) empirical studies regarding the exception handling code; (iii) AO fault models 

and bug patterns; (iv) studies regarding aspects interactions; (v) verification 

approaches for AO software; (vi) collateral effects of aspect libraries reuse.  

7.1. 
Static Analysis Tools and Techniques 

Several static analysis tools and techniques have been proposed so far to 

address problems related to exception handling code in different programming 

languages. They can be classified in two main categories: (i) machine-directed 

approaches – techniques developed to be integrated in compilers (e.g. 

optimization of exception handling (Ogasawara et al., 2001)) or data-flow analysis 

tools in the presence of exceptions (Sinha and Harrold, 1998); and (ii) human-

directed approaches – intended to help developers build robust programs (i.e., 

reasoning about exceptions (Sinha and Harrold., 2000; Robillard and Murphy, 

2003) and detecting potential faults on exception handling code (Bruntink et al., 

2006)). Machine-directed approaches are outside the scope of this thesis. Human-

directed approaches have been proposed for three languages: ML (Fahndrich et 

al., 1998; Yi and Ryu, 2002), Ada (Schaefer and Bundy, 1993), and Java 

(Robillard and Murphy, 2003; Jo et al., 2004; Fu et al., 2005). 

In ML, methods do not support the definition of exception interfaces, and 

exceptions are represented as singular values (Garcia and Rubira, 2001) - they are 

not represented in hierarchical structures. Uncaught exception analysis was first 

introduced in ML. Fahndrich et al (1998) developed EAT an exception analysis 

tool on top of BANE, a general framework for implementing constraint-based 

analysis. Yi and Ryu (2002) developed an exception analyzer, also based on the 

use of control-flow analysis and a set-constraints framework, but with a different 

purpose: to detect uncaught exceptions in ML programs. These works focused on 
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performance and cost tradeoffs involved in the analysis, and did not address how 

exception flow information could be used for finding faults on the exception 

handling code such as unintended handlers. 

Schaefer and Bundy (1993) proposed a tool that calculates the list of 

exceptions that escape from each method of programs developed in Ada. This 

approach focused on finding potential faults on exception handling code (e.g., 

unused handlers); but since exceptions in Ada are not represented in hierarchical 

structures, problems related to exception subsumption  were not considered. 

Some static analysis solutions were proposed to support the reasoning about 

the flow of exceptions in Java programs. Robillard and Murphy (2003) developed 

a tool called Jex that analyses the flow of exceptions in Java Programs. Based on 

Java source code, this tool performs static analysis in order to find the propagation 

paths of checked and unchecked exception types. It discovers uncaught exceptions 

and exception subsumptions which may represent potential faults. They use the 

class hierarchy analysis (CHA) to construct the program call graph traversed 

during the analysis. CHA algorithm yields a less precise call graph when 

compared to the one used in our approach (as detailed in Section 5.3.2). 

Moreover, the Jex tool requires the source code of the program to be analyzed, 

some libraries used by the application may not available during analysis which 

also affects the tool precision. 

Jo et al. (2004) applied the idea of Yi and Ru (2002) to Java programs, to 

detect too general method exception interfaces (i.e., list of checked exceptions 

associated with each method) and unnecessary handlers. This approach does not 

consider the unchecked exceptions, and does report the exception path for each 

exception thrown on a system. Fu and Ryder (2005) proposed a static analysis 

tool, built upon Soot framework for bytecode analysis and SPARK a call graph 

builder to analyze the exception flow on Java programs. This tool generates the 

exception paths to specific exceptions (e.g., IOException) thrown on the system, 

supports a white-box coverage testing of error recovery code (i.e., the code inside 

exception handlers) of server applications written in Java based on fault injection. 

The static analysis tool performs code instrumentation to: (i) guide the fault 

injection and (ii) record the recovery code exercised. Fu et al. (2007) extended the 

tool proposed in (Fu et al., 2005; Fu and Ryder, 2005) in order to compute 
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exception chains (i.e., a combination of semantically-related exception paths). The 

exception chains are capable of representing in one single path the propagation 

paths of one exception that is wraped in other exception and than rethrown - 

instead of representing just discrete segments (exception paths) of each exception. 

Such analysis enabled by a Data-Reachability analysis algorithm that statically 

analyses the handled body (catch clause) linking each exception with its root 

cause, after the exception paths are calculated. 

Our approach leverages the previous proposals on exception flow analysis 

to the analysis of AspectJ programs, which none of them handles. The exception 

flow analysis solution most similar to ours is the one proposed by Fu et al. (2005). 

Although, both solutions are built on top of Soot framework for bytecode analysis 

and used SPARK framework to build the program call graph they differ: in focus 

and tool characteristics. The tool proposed by Fu et al. (2005) analyzes the 

program bytecode, however id does not interpret the specific statement added to 

the Java bytecode by the AspectJ weaver. In our tool we have defined a set of 

heuristics to interpret the code added to the Java bytecode. Moreover, while their 

work supports a white box testing approach (performing code instrumentation, 

and fault injection) our static analysis tool tries to statically find bugs in the 

exception handling code (detection of uncaught exceptions and exception 

subsumption and exception handling contract checking). We opt for detecting 

faults statically instead of through testing approaches  since early detection and 

prevention of faults is less costly (Bruntink et al., 2006) and testing exceptions is 

inherently difficult (see Chapter 2, Section 2.3.1.1).  

7.2. 
Empirical Studies regarding the Exception Handling Code  

Cabral and Marques (2007) performed a quantitative study in which they 

examined the source code samples of 32 different OO applications, written in Java 

and .NET. The goal of their study was to identify how exceptions were handled 

inside each application. They examined the code inside every exception handler 

and observed that the actions taken by them were usually very simple (e.g., 

logging and present a message to the user). This work did not consider the 

exceptions thrown inside each application, how the exceptions flow within the 
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applications (i.e., exception paths), nor the number of uncaught exceptions, and 

exception subsumptions.  

In the context of aspect-oriented software development, some the empirical 

studies have been conducted to investigate investigated the use of aspects to 

modularize the exception handling code (Lippert and Lopes, 2000; Filho et al. 

2006; Filho et al. 2007).  

Lippert and Lopes (2000) performed a seminal study to investigate the use 

of AO constructs to modularize the exception handling code a large OO 

framework called JWAM. The goal of this study was to assess the usefulness of 

aspects for separating exception handling code from the normal application code. 

The authors observed that when the application adopts a general error handling 

policy (i.e. does not depends on specific characteristics of application modules), 

the use of aspects to modularize exception detection and handling brings several 

benefits, such as: better code reuse and a consequent decrease in the number of 

LOC. In their study, they obtained a large reduction in the amount of exception 

handling code present in the application – from 11% of the total code in the OO 

version to 2.9% in the AO version.  

Castor Filho et al (2006) performed a similar study whose goal was to 

understand the benefits and limitations of using aspects to modularize the 

exception handling code in realistic scenarios. In this study, the authors attempted 

to aspectize the exception handling code of four different applications (i.e., one 

AO application and three OO applications). This work revealed that the 

aspectization and reuse of exception handlers is not straightforward as advocated 

beforehand by (Lippert and Lopes, 2000). Instead, it depends on a set of factors, 

such as: the type of exceptions being handled, what the handler does, the amount 

of contextual information needed; what the method raising the exception returns; 

and what the throws clause actually specifies.  

Castor Filho et al (2007) elaborated a catalog of best and worst practices 

related to the aspectization of exception handling. This catalog aims at helping 

developers to decide when they should or should not extract exception handling 

code to aspects. Such decision is based on the influence of the aspectization on 

coupling, cohesion, and separation of concerns metrics.  

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA



 150 

All the aforementioned studies (Lippert and Lopes, 2000; Filho et al. 2006; 

Filho et al. 2007) aimed at aspectizing exception handling constructs, they did not 

tackle the problems that may arise when exceptions flow from aspect advices. 

Moreover, even though they pointed out some of the limitations of AspectJ 

constructs for handling exceptions, they did not assess the error-proneness of 

AspectJ mechanisms to handle exceptions.  

Our empirical study takes into account these issues, neglected by 

aforementioned studies: (i) the consequences of exceptions signaled by aspects, 

(ii) the error-proneness of AspectJ constructs for handling exceptions. 

Furthermore, our work aimed at providing a better understanding of the flow of 

exceptions in AO applications identifying possible flaws in the usage of aspects in 

the presence of exceptions (catalogue of bug patterns). As a consequence, our 

study helps programmers to verify the reliability of the exception handling code in 

AspectJ systems. 

 

7.3. 
AO Fault Models and Bug Patterns  

The new constructs available in aspect-oriented languages, represent also 

new sources of faults. For that reason works have been proposed aiming at 

characterizing the new kinds of faults that can happen in AO programs (Alexander 

et al., 2004; Ceccato et al., 2005; Baekken, 2006; Bækken and Alexander, 2006; 

Zhang and Zhao, 2007).  

Alexander et al. (2004) proposed a candidate fault model which includes a 

set of fault types related to AspectJ features. Bækken (2006) presents a fine-

grained fault model for pointcuts and advice in AspectJ programs based on the 

work presented by (Alexander et al., 2004). Alexander’s fault model was later 

extended by Ceccato et al. (2005), who characterized faults related to “incorrect 

changes in exceptional control flow”. In this work he mentions that the exceptions 

thrown or softened represent sources of potential faults in AO programs, but they 

do not detail the potential failures that can derive from them, such as: uncaught 

exceptions and unintended handler actions and obsolete handlers.  
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Regarding bug patterns in AO programs, Zhang and Zhao (2007) presented 

a set of general bug patterns for AspectJ programs. Bug patterns differ from the 

fault model presented on the previous works, since they represent “recurring 

relationship between potential bugs and explicit errors in a program”.  

None of these authors mentioned above (Alexander et al., 2004; Ceccato et 

al., 2005; Baekken, 2006; Bækken and Alexander, 2006; Zhang and Zhao, 2007) 

tackled the potential problems related to the exception handling code in AO 

programs (e.g., unstable exception interfaces). Moreover, none of these works 

conducted an observational study to provide evidences of the proposed bug 

patterns, or fault models. The set of bug patterns presented in our work are 

specifically related to exception handling code in AO software. They represent 

recurring faults found throughout a fine-grained analysis of a set of AO 

applications presented in Chapter 3. Furthermore, the above mentioned authors do 

not detail the consequences the exceptions thrown by aspects in the context of 

aspect library reuse or propose an approach to deal with them. 

 

7.4. 
Aspect Interactions 

Since aspects crosscuts other concerns, they often exert broad influences on 

these (e.g. by modifying their semantics, structure or behavior). These 

dependencies between the aspectual and non aspectual elements of a system may 

lead to either desirable or (more often) unwanted and unexpected interactions. 

Some works have been proposed in order to (i) investigate and categorize such 

dependencies and (ii) devise ways to deal them (Clifton and Leavens, 2002; Katz, 

2006; Weston et al., 2007; Rinard, 2004 ). 

Clifton and Leavens (2002) proposed a first categorization of aspects, to 

support the modular reasoning AO programs. They classified aspects as 

Observers - aspects that do not change any specification of the base module - and 

Assistants - aspects that affect in some way the specification of the base module. 

They also propose an extension to AO language on which the base modules 

should explicitly reference the aspects that affect their specifications. This work 

does not account for the interference between aspects. 
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Rinard (2004) developed a program analysis system that automatically 

classifies interactions between aspects and methods. This classification is based in 

two main factors: (i) the control flow elements that effect how and when the 

added behavior executes; (ii) the scope (set of fields) accessed by methods and 

advice.  The major contribution of this work is the use of points-to analysis  and 

scope analysis (Salcianu, 2001) to determine which fields aspects and methods 

modifies.  

Katz (2006) provided a categorization of aspects based on classes of 

temporal properties (e.g., safety, liveness, or existence properties) that are 

guaranteed to hold for a system with any aspect of a specific category woven into 

it. According to this classification scheme aspects can be: (i) spectative - that only 

gather information about the system to which they are woven; (ii) regulative - that 

change the flow of control but do not change the computation done to existing 

fields (e.g., define which methods are activated in which conditions); and (iii) 

invasive - that do change values of existing fields, but still should not invalidate 

desirable properties. The categories are used as a basis to analyze the interaction 

between aspects and the base code. 

Weston et al. (2007) present an approach for detecting aspect interference 

using incremental data-flow analysis. Based on the analysis of def-use pairs this 

approach reveals subtle interactions between aspects (e.g., and aspect modifies a 

variable that is passed as an argument to a method, which is advised by another 

aspect). The results of the interference analysis are presented in the form of aspect 

categories. It categorizes aspects in two broad classifications: (i) interference 

between aspects and the base code and (ii) interference between two aspects. This 

categorization is built on the previously proposed categorizations detailed before.  

The works presented above focused on interactions between aspects and 

classes within normal control flow. Most of them aim at providing a program 

analysis algorithm that automatically recognizes these interaction patterns. 

However, the interaction analysis proposed by them does not account for the 

effects of exception occurrences and exception handling constructs. In our work 

we could observe that new kinds of interaction, between aspects and classes, 

emerged from the exceptional scenarios (e.g., one class catches one exception 

thrown by an aspect). Such Signaler-Handler relationships between the elements 

of an AO system, helps on the definition of the exception handling policy of an 
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AO system and also can be used as a coupling metric between these elements on 

exceptional scenarios.  

 

7.5. 
Verification Approaches for AO Systems 

The techniques and tools proposed so far to assure the quality of aspect-

oriented code mainly focus on: (i) test-input generation (Xie and Zhao, 2006); and 

(ii) definition of test criteria (Zhao, 2003; Lemos et al., 2007); and (iii) test 

selection based on branch and interaction coverage, dataflow coverage (Xie et al., 

2006), and mutation testing (Anbalagan and Xie, 2006).  

Xie and Zhao (2006) proposed Aspectra a test generation framework that 

leverages an existing OO test-generation tool to generate integration tests for the 

woven classes. Aspectra generates the test input but does not define a test oracle. 

Therefore, manual effort is still needed to inspect the executions of the selected 

tests in order to verify weather the test failed or succeeded. This work was later 

extended by Xie et al (2006). They proposed Raspect, a framework for detecting 

redundant unit (i.e., advised methods, advice, and intertype methods) tests for 

AspectJ programs. This framework detects redundant tests that do not exercise the 

new behavior. Therefore it selects only non-redundant tests from the automatically 

generated test suites, thus allowing the developer to spend less time in inspecting 

this reduced set of tests.  

Anbalagan and Xie (2006) proposed a pointcut mutation testing tool, whose 

goal is to inject faults into an existing program, and check whether the test suite is 

sensitive enough to detect the injected fault. The tool proposed by Anbalagan and 

Xie works in three stages. First it identifies join points that are matched by a 

pointcut expression, generates mutants (i.e., variations of the pointcut expression 

that resemble closely the original one) of this pointcut expression. Next, it 

identifies join points that are matched by these mutants. The mutants’ matched 

join points are then compared with those of the original pointcut and these 

mutants are classified as different types of mutants for selection.  

Zhao (2003) adapted the OO data-flow testing approach proposed by (Sinha 

and Harrold., 2000) for the test of AspectJ programs. When Zhao’s testing 

approach was proposed, the AspectJ weaver combined aspects and classes by 
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inlining the pieces of advice in the affected join points - aspect and non-aspect 

code was mixed without explicit reference to the aspects. As a consequence, this 

testing approach considers clusters of aspects and classes as the units to be tested 

– the advice code can only be tested when combined to the code affected by it. 

Lemos et al (2007) defined a family of control flow and data flow based 

testing criteria for the structural test of AspectJ programs. They propose the 

derivation of a control and data flow models for aspect-oriented programs based 

on the static analysis of the woven bytecode. Using this model, called aspect-

oriented def-use graph (AODU), is used as the basis to define aspect-oriented 

testing criteria. The testing criteria proposed in this work were in the JaBUTi/AJ 

testing tool. 

The techniques and tools presented above focus on the normal control flow 

of programs. They do not account for the exceptions signaled and handled inside 

the system, and consequently does not propose a way of assuring the reliability of 

the exception-handling code of AO systems. In our approach we opt for assuring 

the reliability of the exception handling code though an approach based on static 

analysis because it is difficult to simulate the exceptional conditions during tests, 

and the huge number of different exceptions that can happen in a system may lead 

to test-case explosion problem as mentioned before.  

7.6. 
Collateral Effects of Aspect Libraries Reuse  

As mentioned before aspect libraries are a relatively new artifact and best 

practices for their development and reuse still need to be explored in detail. 

Although, they enable the reuse of typical crosscutting concerns (e.g., monitoring, 

transaction management) they can also bring new challenges to AO software 

development. So far, initial work has been developed which investigate the 

problems related to library aspects reuse (McEachen and Alexander, 2005; Apel et 

al., 2006; Lopez-Herrejon et al., 2006).  

These works discuss unanticipated aspect composition problems in the 

context of incremental software development, such as: an aspect may affect 

subsequent integrated elements even though they were implemented without being 

aware of them. Such unanticipated aspect compositions can lead to unpredictable 

effects and errors.  
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However, these works do not tackle the problems that may arise when 

exceptions flow from re-used. In our work we investigated the collateral effects of 

reusing aspects in the presence of exceptions.  Moreover, although some problems 

related to aspect libraries reuse are similar to the ones associated with OO libraries 

reuse, we have shown that some characteristics of AO compositions aggravated 

the problems (see Chapter 6, Section 6.1.1).  

 

7.7. 
Summary 

In this chapter we presented the works we believed are directly related to the 

work presented here. Since our work can be divided in three main parts (i) the 

exploratory study, (ii) the exception-flow analysis tool for AspectJ programs, and 

(iii) the verification approach for exception handling code, the related work were 

presented in categories related to each one of them.  

Next chapter concludes the work presented in this dissertation, summarizing 

the main contributions of this thesis and pointing directions for future work. 
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