Pontifícia Universidade Católica do Rio de Janeiro

Jhonny Oswaldo Huertas Flores

Síntese direta de hidrocarbonetos a partir do gás de síntese sobre catalisadores híbridos baseados em Zeólita H-ferrierita

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Química da PUC-Rio como requisito parcial para obtenção do título de Doutor em Ciências.

Orientador: Prof^a. Maria Isabel Pais da Silva

Rio de Janeiro, Abril de 2008

Pontifícia Universidade Católica

do Rio de Janeiro

Jhonny Oswaldo Huertas Flores

Síntese direta de hidrocarbonetos a partir do gás de síntese sobre catalisadores híbridos baseados em Zeólita H-ferrierita

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Ciências pelo Programa de Pós-Graduação em Química da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Profa. Maria Isabel Pais da Silva Orientadora Departamento de Química – PUC-Rio

Prof. Fernando Cosme Rizzo Assunção Depto. de Ciência dos Materiais e Metalurgia – PUC-Rio

> Dra. Lúcia Gorestin Appel Divisão de Química Inorgânica - INT

Prof. Luiz Eduardo Pizarro Borges Departamento de Engenharia Química - IME

Profa. Cristiane Assumpção Henriques

Departamento de Engenharia Química - UERJ

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 24 de abril de 2008

Todos os direitos reserados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Jhonny Oswaldo Huertas Flores

Engenheiro Químico graduado pela Universidade de San Agustin no Peru. Mestrado em Química Inorgânica na área de catálise heterogênea pela Pontifícia Universidade Católica do Rio de Janeiro.

Ficha Catalográfica

Huertas Flores, Jhonny Oswaldo

Síntese direta de hidrocarbonetos a partir do gás de síntese sobre catalisadores híbridos em zeólita H-ferrierita / Jhonny Oswaldo Huertas Flores ; orientadora: Maria Isabel Pais da Silva. – 2008.

199 f. : il. ; 30 cm

Tese (Doutorado em Química) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

1. Química – Teses. 2. Catalisadores híbridos. 3. Hidrocarbonetos. 4. Gás de síntese. 5. Ferrierita. I. Silva, Maria Isabel Pais da. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Química. III. Título.

CDD: 540

PUC-Rio - Certificação Digital Nº 0410384/CA

Dedico esta tesis a Dios, a mi madre y hermana por su apoyo y espera

Agradecimentos

À Professora Maria Isabel Pais da Silva.

Às instituições que financiaram esta pesquisa, CAPES e CNPq e a PUC-Rio pela bolsa de isenção.

Ao técnico Henrique pelo seu apoio no laboratório.

A Gloria e Danielle pela sua ajuda e amizade nas análises de Absorção Atômica.

A Sandra pela sua ajuda nas análises de FRX.

Ao Professor Roberto Avillez pela colaboração no refinamento pelo método de Rietveld das minhas análises de DRX.

Ao Noberto pela sua imensa ajuda na montagem da unidade de teste catalítico.

Aos meus amigos da PUC-Rio.

Aos professores que participaram da Comissão examinadora.

Resumo

Huertas Flores, Jhonny Oswaldo; Da Silva, Maria Isabel. **Síntese direta de hidrocarbonetos a partir do gás de síntese sobre catalisadores híbridos baseados em zeólita H-ferrierita**. Rio de Janeiro, 2008. 199p. Tese de Doutorado – Departamento de Química, Pontifícia Universidade Católica de Rio de Janeiro.

Existe uma crise energética devido ao excessivo consumo do petróleo e à contaminação em suas diversas formas. Há enormes reservas de gás natural e a conversão deste gás em combustíveis líguidos a partir do gás de síntese, que vem do gás natural, via metanol, e posterior transformação do metanol em hidrocarbonetos é uma interessante alternativa. Catalisadores híbridos formados por um catalisador de síntese de metanol e um material ácido poroso, geralmente uma zeólita, são empregados para esta síntese direta. Seis famílias de catalisadores híbridos foram sintetizadas onde diversas variáveis foram testadas como: método de preparação do catalisador híbrido, método de preparação do catalisador de síntese de metanol, fase ativa, razão catalisador de síntese de metanol/zeólita, acidez da zeólita e diferente promotor. A zeólita empregada em todos os sistemas foi a H-ferrierita. O método de preparação influenciou nas propriedades estruturais, texturais, morfológicas, ácidas e catalíticas do catalisador híbrido. O melhor método de preparação do catalisador híbrido foi o método de coprecipitação-sedimentação que se mostrou mais ativo em temperaturas acima de 300°C. Observaram-se diferenças morfológicas nas partículas do catalisador de síntese de metanol (CSM) quando diferentes métodos de preparação foram empregados. O cobre, entre as fases ativas, mostrou-se a melhor na síntese direta de hidrocarbonetos a partir do gás de síntese em temperaturas acima de 300°C. A melhor razão catalisador de síntese de metanol/zeólita, nesta síntese direta, foi de 2:1. O cromo no sistema Cu-Zn-Al favoreceu a atividade em 250°C. Baixas razões acidez total/área de Cu⁰ e altas temperaturas (350 e 400°C) favoreceram maiores conversões e seletividades em propano e butano, baixas temperaturas (300°C) favoreceram a formação de DME. Altas razões acidez total/área de Cu⁰ favoreceram a formação de etano. A distribuição dos produtos na síntese direta de hidrocarbonetos a partir do gás de síntese foi dependente da temperatura de reação. Éter dimetílico apresentou um máximo em 300°C. A síntese do metanol, parece ser a etapa limitante do processo.

Palavras-chaves

Catalisadores híbridos; hidrocarbonetos; gás de síntese e ferrierita.

Abstract

Huertas Flores, Jhonny Oswaldo; Da Silva, Maria Isabel. **Direct synthesis** of hydrocarbons from synthesis gas over hybrid catalysts based on H-ferrierite zeolite. Rio de Janeiro, 2008. 199p. Doctorade Tesis – Departamento de Química, Pontifícia Universidade Católica de Rio de Janeiro.

An energy crisis due to the extreme consumption of the oil and to the contamination in its diverse forms exists. There are enormous natural gas reserves and the conversion of this gas in liquid fuels from the synthesis gas, through methanol, and posterior transformation of methanol in hydrocarbons is an interesting alternative. Hybrid catalysts based in methanol synthesis catalyst and an acidic porous material such as zeolites, are used for this direct synthesis. Six groups of hybrid catalyst were prepared and several properties studied such: preparation method of the hybrid catalyst, preparation method of the methanol synthesis catalyst, active site, CuO-ZnO-Al2O3/H-ferrierite ratio, acidity of the zeolite and different promoter. The zeolite used in all the systems was the ferrierite. The preparation method influenced the structural, textural, morphologic, acid and catalytic properties of the hybrid catalyst. The coprecipitationsedimentation method was more active in temperatures above 300°C. Morphologic differences in particles of the catalyst of methanol synthesis were observed when different preparation methods were used. The copper as active site was the better in the direct synthesis of hydrocarbons from synthesis gas in temperatures above 300°C. The best CuO-ZnO-Al₂O₃/H-ferrierite catalyst ratio, in this direct synthesis, was 2:1. The chromium in the Cu-Zn-Al system favored the activity in 250°C. Low acidity/metallic area Cu⁰ ratio and high temperatures (350 and 400°C) favored higher activities and selectivities in propane and butane. lower temperatures (300°C) favored the DME formation. High acidity/metallic area Cu⁰ ratio favored the formation of ethane. The hydrocarbons distribution was dependent on the reaction temperature. Dimethyl ether showed a maximum at 300°C. The methanol, seens to be the limitant step of the process.

Keywords:

Hybrid catalysts; hydrocarbons; synthesis gas and H-ferrierite.

Sumário

1 . Introdução	22
2. Revisão bibliográfica	25
2.1. Definição do problema	25
2.2. Justificativa do Projeto	26
2.3. Gás Natural	27
2.3.1. O gás natural no Brasil e sua participação na matriz energética	28
2.4. Gás de síntese	30
2.4.1. Classificação das reações do gás de síntese	33
2.4.1.1. Manufatura do hidrogênio	33
2.4.1.2. Conversão direta do gás de síntese em combustíveis e	
químicos	34
2.5. Síntese de metanol	36
2.5.1. Desenvolvimento na tecnologia de síntese de metanol	38
2.5.2. Metanol e dimetil éter a partir do gás de síntese	39
2.6. Síntese de metanol a hidrocarbonetos	40
2.6.1. A química da síntese do metanol a hidrocarbonetos:	42
2.7. Síntese direta de hidrocarbonetos a partir de gás de síntese	43
2.7.1. Síntese de hidrocarbonetos usando leitos separados	44
2.7.2. Síntese de hidrocarbonetos sobre catalisadores híbridos	45
2.7.2.1. Influência do catalisador de síntese de metanol	45
2.7.2.2. Influência do tipo de zeólita	50
2.7.2.3. Efeito da composição do catalisador	57
2.7.2.4. Influência da acidez	59
2.7.2.5. Efeito das condições operacionais	61
2.8. A zeólita Ferrierita	69
3. Procedimento Experimental	74
3.1. Sistemas catalíticos	74
3.2. Preparação dos catalisadores	75

3.2.1. Família 1	75
3.2.1.1. Mistura física (mf)	75
3.2.1.2. Coprecipitação-sedimentação (cs)	75
3.2.1.3. Coprecipitação-impregnação (ci)	76
3.2.1.4. Gel-oxalato-coprecipitação-impregnação (goci)	76
3.2.1.5. Precipitação-deposição (pd)	77
3.2.2. Família 2	77
3.2.2.1. Coprecipitação convencional a baixa supersaturação (cbss)	77
3.2.2.2. Coprecipitação convencional a alta supersaturação (cass)	77
3.2.2.3. Gel-oxalato-coprecitação-sedimentação (gocs)	77
3.2.2.4. Precipitação-Homogênea (ph)	78
3.2.3. Família 3	78
3.2.4. Família 4	79
3.2.5. Família 5	79
3.2.6. Família 6	79
3.3. Caracterização dos catalisadores	80
3.3.1. Composição química	80
3.3.2. Difração de raios-X	81
3.3.3. Análise termogravimétrica (ATG)	81
3.3.4. Propriedades texturais	82
3.3.5. Microscopia eletrônica de transmissão (MET)	82
3.3.6. Redução termoprogramada (TPR)	82
3.3.7. Dessorção termoprogramada de H ₂ (TPD-H ₂)	83
3.3.8. Espectroscopia de fotoelétron de raios-X (XPS)	84
3.3.9. Propriedades ácidas	84
3.3.9.1. Dessorção Termoprogramada de NH ₃ (TPD-NH ₃)	84
3.3.9.2. Infravermelho de d_3 -acetonitrila e piridina (FT-IR, infrared	
transformation infrared)	85
3.3.10. Teste catalítico	85
3.3.10.1. Descrição da unidade	85
3.3.10.2. Procedimento experimental	87
4. Resultados e discussões	89

4.1. Caracterização do catalisador	89
4.1.1. Composição química	89
4.1.2. Estrutura Cristalina. Difração de raios-X	91
4.1.3. Análise termogravimétrica (ATG)	105
4.1.4. Propriedades texturais	109
4.1.5. Microscopia eletrônica de transmissão (MET)	113
4.1.6. Redução termoprogramada (TPR)	121
4.1.7. Dessorção termoprogramada de H ₂ (TPD-H ₂)	128
4.1.8. Espectroscopia fotoeletrônica de raios-X (XPS)	135
4.1.9. Propriedades ácidas	139
4.1.9.1. Dessorção termoprogramada de NH ₃ (TPD-NH ₃)	139
4.1.9.2. Infravermelho de piridina e d_3 -acetonitrila (FT-IR, Fourier-	
Transform Infrared Spectroscopy)	151
4.1.10. Teste catalítico	161
4.1.10.1. Influência do método de preparação do catalisador híbrido	161
4.1.10.2. Influência do método de preparação do catalisador de	
síntese de metanol	165
4.1.10.3. Influência da fase ativa do catalisador de síntese de	
metanol	168
4.1.10.4. Influência da razão CSM/CZ	172
4.1.10.5. Influência da acidez da zeólita ferrierita	176
4.1.10.6. Influência do tipo de promotor no catalisador de síntese de	
metanol	180
4.1.10.7. Influência da pressão	184
4.1.10.8. Estabilidade do catalisador híbrido	185
4.1.10.9. Relação entre a razão acidez total/área de cobre metálico	
e a conversão	187
5 Conclusões	192
	40.4
o . Bidilografia	194

Lista de figuras

Figura 1. Evolução da produção de óleo e da queima de gás natural	
no mundo, (Almeida, (2002)).	26
Figura 2. Integração Energética do Mercosul, Fernandes (2005).	29
Figura 3. Principais usos comerciais do gás de síntese em 1994,	
Wender (1996).	31
Figura 4. Químicos comerciais —, quase comerciais — — – e	
potencialmente comerciais gerados a partir do gás de síntese	
na década de noventa, Wender (1996).	32
Figura 6- Energia livre de Gibbs na hidrogenação do monóxido	
de carbono, Wender (1996).	37
Figura 7 - Equilíbrio do metanol como função da temperatura e	
pressão, Wender (1996).	39
Figura 8 - Conversão de equilíbrio do gás de síntese versus a	
pressão a 240°C, Wender (1996).	40
Figura 10 - Gasolina e produtos destilados via metanol e tecnologia	
Mobil ZSM-5, Wender (1996).	41
Figura 11 - Rota da reação de metanol a hidrocarbonetos,	
Stöcker (1999).	42
Figura 12. Conversão de equilíbrio do CO para diferentes produtos	
como função da temperatura; pressão 2,1 MPa, gás de síntese:	
H ₂ /CO = 2/1, Asami (2004).	44
Figura 13. Influência do tipo de zeólita no catalisador híbrido	
baseado em Pd/SiO ₂ na hidrogenação do CO, Fujimoto (1985).	52
Figura 14. Influência do tipo de zeólita no catalisador híbrido baseado	
em Cu-Zn na na distribuição dos produtos na síntese de HC a partir	
do gás de síntese, Asami (2004).	53
Figura 15. Distribuição dos produtos da reação de conversão do	
metanol em hidrocarbonetos sobre diferentes zeólitas, Ihm (1998).	55
Figura 16. Resultados da hidrogenação do CO ₂ sobre catalisadores	
híbridos baseados em CuZnOZrO ₂ /SAPO. Efeito da acidez. A-alta	

quantidade de sítios ácidos, B-baixa quantidade de sítios ácidos.	
p = 2,8 MPa, H ₂ /CO ₂ = 3, W/F = 20 g-cat h/mol, Ihm (1998).	57
Figura 17. Rendimento e conversão sobre um catalisador híbrido	
e distribuição dos hidrocarbonetos sobre um catalisador híbrido	
USY/Cu-ZnO em função da temperatura. W/F = 2,25 g cat h/mol,	
2,1 MPa, H ₂ /CO = 2, Asami (2004).	62
Figura 18. Estrutura tridimensional vista ao longo da direção [001].	69
Figura 19. Estrutura do anel de oito e dez átomos vistas ao longo da	
direção [010] e [001], esquerda e direita, respectivamente.	70
Figura 20. Esquema da unidade de teste catalítico.	86
Figura 21. Difratogramas dos catalisadores híbridos pertencentes a	
família 1: (A) sem calcinar e (B) calcinados.	92
Figura 22. Difratogramas dos catalisadores híbridos: (a) reflexões na	
direção do plano 003 dos catalisadores da família 1 sem calcinar e	
(b) picos das fases dos catalisadores baseados no método oxalato da	
família 1 e 2 sem calcinar. α–ZnC₂O₄.2H₂O, ∇ CuC₂O₄.xH₂O e	
▼ H-ferrierita.	93
Figura 23. Difratogramas dos catalisadores híbridos pertencentes	
a família 2: (A) sem calcinar e (B) calcinados.	94
Figura 24. Difratogramas dos catalisadores híbridos correspondentes	
a família 3: (A) sem calcinar e (B) calcinados. NR, picos de	
fases não reconhecidas.	95
Figura 25. Difratogramas dos catalisadores híbridos correspondentes	
à família 4: (A) sem calcinar e (B) calcinados.	96
Figura 26. Difratogramas dos catalisadores híbridos correspondentes	
à família 5: (A) sem calcinar e (B) calcinados.	97
Figura 27. Difratogramas dos catalisadores híbridos pertencentes	
a família 6: (A) sem calcinar e (B) calcinados.	98
Figura 28. Perfis da análise termogravimétrica do cataliadores	
híbridos sem calcinar. (a) cs e (b) ci.	106
Figura 29. Perfis da análise termogravimétrica dos catalisadores	
híbridos sem calcinar. (a) pd e (b) ph.	106
Figura 30. Perfis da análise termogravimétrica do catalisadores	

híbridos sem calcinar. (a) goci e (b) CrZA.	107
Figura 31. Perfis da análise termogravimétrica do catalisadores	
híbridos sem calcinar. (a) CCrZA e (b) PdZA.	108
Figura 32. Perfis da análise termogravimétrica do catalisadores	
híbridos sem calcinar. (a) CPdZA e (b) CZZr.	108
Figura 33. Perfis da análise termogravimétrica do catalisadores	
híbridos sem calcinar. (a) CZMo e (b) CZCs.	109
Figura 34. Micrografias do sistema híbrido mf.	113
Figura 35. Micrografias do sistema híbrido mf.	114
Figura 36. Micrografias do sistema híbrido cs.	114
Figura 37. Micrografias do sistema híbrido cs.	114
Figura 38. Micrografias do sistema híbrido cs.	115
Figura 39. Micrografias do sistema híbrido ci.	115
Figura 40. Micrografias do sistema híbrido ci.	115
Figura 41. Micrografias do sistema híbrido goci.	116
Figura 42. Micrografias do sistema híbrido goci.	116
Figura 43. Micrografias do sistema híbrido goci.	117
Figura 44. Micrografias do sistema híbrido pd.	117
Figura 45. Micrografias do sistema híbrido pd.	117
Figura 46. Micrografias do sistema híbrido pd.	118
Figura 47. Micrografias do sistema híbrido cass.	118
Figura 48. Micrografias do sistema híbrido cass.	118
Figura 49. Micrografias do sistema híbrido cass.	119
Figura 50. Micrografias do sistema híbrido ph.	119
Figura 51. Micrografias do sistema híbrido ph.	120
Figura 52. Micrografias do sistema híbrido ph.	120
Figura 53. Micrografias do sistema híbrido ph.	120
Figura 54. Sistema híbrido PdZA.	121
Figura 55. Sistema híbrido PdZA.	121
Figura 56. Perfis da redução termoprogramada dos sistemas das	
famílias 1 (A) e 2 (B).	122
Figura 57. Perfis da redução termoprogramada dos sistemas das	
famílias 3 (A) e 4 (B).	123

Figura 58. Perfis da redução termoprogramada dos sistemas das	
famílias 5 (A) e 6 (B).	124
Figura 59. Perfis da dessorção termoprogramada de H ₂ . (A)	
família 1 e (B) família 2.	129
Figura 60. Perfis da dessorção termoprogramada de H ₂ . (A)	
família 3 e (B) família 4.	130
Figura 61. Perfis da dessorção termoprogramada de H ₂ . (A)	
família 5 e (B) família 6.	131
Figura 62. Espectro de XPS da região 2p dos sistemas	
híbridos calcinados.	135
Figura 63. Espectros de XPS da região 3d dos sistemas híbridos	
calcinados com diferentes promotores.	137
Figura 64. Espectro de XPS da região 3d dos sistemas	
híbridos calcinados.	138
Figura 65. Espectro de XPS da região 2p dos sistemas	
híbridos reduzidos baseados em cobre, zinco e alumínio.	138
Figura 66. Perfis da dessorção termoprogramada de NH ₃ da zeólita	
ferrierita com diferente acidez.	140
Figura 67. Perfis da dessorção termoprogramada de NH ₃ dos	
sistemas (A) família 1 e (B) família 2.	141
Figura 68. Perfis da dessorção termoprogramada de NH ₃ dos	
sistemas (A) família 3 e (B) família 4.	142
Figura 69. Perfis da dessorção termoprogramada de NH ₃ dos	
sistemas (A) família 5, (B) família 6.	143
Figura 70. Distribuição percentual dos sítios ácidos identificados	
a partir da TPD-NH₃ dos sistemas híbridos.	149
Figura 71. (A) Relação entre área específica BET e sítios ácidos.	
(B) acidez total e características texturais.	151
Figura 72. (A) Espectro na região dos grupos OH da zeólita	
H-ferrierita onde, (a) sem piridina; e com piridina evacuada	
a (b) 25°C, (c) 150°C e (d) 250°C. (B) Espectro da região de	
adsorção da piridina após evacuação a (a) 25°C (b) 150°C	
e (c) 250°C.	152

Figura 73. Espectros dos sistemas híbridos na região de adsorção	
da piridina. (A) família 1 e (B) família 2.	153
Figura 74. Espectros dos sistemas híbridos na região de adsorção	
da piridina. (A) família 3 e (B) família 4.	154
Figura 75. Espectros dos sistemas híbridos na região de adsorção	
da piridina. (A) família 5 e (B) família 6.	155
Figura 76. (A) Espectro na região dos grupos OH da zeólita	
H-ferrierita onde, (a) sem d_3 -acetonitrila; e com d_3 -acetonitrila	
evacuada a (b) 25°C, (c) 150°C e (d) 250°C. (B) Espectro da região	
de adsorção da d₃-acetonitrila após evacuação a (a) 25°C (b) 150°C	
e (c) 250°C.	156
Figura 77. Espectro dos sistemas híbridos na região de adsorção da	
d₃-acetonitrila (A) família 1 e (B) família 2.	158
Figura 78. Espectro dos sistemas híbridos na região de adsorção da	
d₃-acetonitrila (A) família 3 e (B) família 4.	159
Figura 79. Espectro dos sistemas híbridos na região de adsorção da	
d₃-acetonitrila (A) família 5 e (B) família 6.	159
Figura 80. Influência do método de preparação do catalisador	
híbrido na conversão do gás de síntese; p=2,1 MPa;	
W/F=4,8 g cat h/mol; $H_2/CO = 2/1$.	161
Figura 81. Distribuição dos hidrocarbonetos C1 a C6 dos sistemas	
da família 1 a 250°C e 300°C (% carbono).	163
Figura 82. Distribuição dos hidrocarbonetos C1 a C6 dos sistemas	
da família 1 a 350°C e 400°C (% carbono).	164
Figura 83. Influência do método de preparação do catalisador	
de síntese de metanol na conversão do gás de síntese, 2,1 MPa,	
W/F=4,8 g cat h/mol, $H_2/CO = 2/1$.	165
Figura 84. Distribuição dos hidrocarbonetos C1 a C6 dos sistemas	
da família 2 a 250°C e 300°C (% carbono).	167
Figura 85. Distribuição dos hidrocarbonetos C1 a C6 dos sistemas	
da família 2 a 350°C e 400°C (% carbono).	168
Figura 86. Influência da fase ativa no catalisador de síntese de	
metanol na conversão do gás de síntese, 2,1 MPa,	

W/F=4,8 g cat h/mol, $H_2/CO = 2/1$.	169
Figura 87. Distribuição dos hidrocarbonetos C1 a C6 dos sistemas	
da família 3 a 250°C e 300°C (% carbono).	171
Figura 88. Distribuição dos hidrocarbonetos C1 a C6 dos sistemas	
da família 3 a 350°C e 400°C (% carbono).	172
Figura 89. Influência da razão CSM/CZ conversão do gás de	
síntese, 2,1 MPa, W/F=4,8 g cat h/mol, H ₂ /CO = 2/1.	173
Figura 90. Distribuição dos hidrocarbonetos C1 a C6 dos sistemas	
da família 4 a 250°C e 300°C (% carbono).	175
Figura 91. Distribuição dos hidrocarbonetos C1 a C6 dos sistemas	
da família 4 a 350°C e 400°C (% carbono).	176
Figura 92. Influência da acidez da zeólita ferrierita na conversão do	
gás de síntese, 2,1 MPa, W/F=4,8 g cat h/mol, $H_2/CO = 2/1$.	177
Figura 93. Distribuição dos hidrocarbonetos C1 a C6 dos sistemas	
da família 5 a 250°C e 300°C (% carbono).	178
Figura 94. Distribuição dos hidrocarbonetos C1 a C6 dos sistemas	
da família 6 a 350°C e 400°C (% carbono).	179
Figura 95. Influência do tipo de promotor no catalisador de síntese	
de metanol na conversão do gás de síntese, 2,1 MPa,	
W/F=4,8 g cat h/mol, $H_2/CO = 2/1$.	180
Figura 96. Distribuição dos hidrocarbonetos C1 a C6 da família 6	
a 250°C e 300°C (% carbono).	182
Figura 97. Distribuição dos hidrocarbonetos C5 a C6 e DME da	
família 6 a 350°C e 400°C (% carbono).	183
Figura 98. Desempenho do sistema híbrido gocs como função	
da pressão de reação, H ₂ /CO = 2; T = 350°C, W/F=4,0 g cat h/mol.	184
Figura 99. Distribuição dos hidrocarbonetos C1 a C6 como função	
da pressão.	185
Figura 100. Desempenho do sistema híbrido cs como função do	
tempo, p = 2,1 MPa; T = 350°C; H ₂ /CO=2; W/F=4,8 g cat h/mol.	186
Figura 101. Seletividade em hidrocarbonetos e DME como função do	
tempo de reação.	186
Figura 102. Relação entre a acidez total do catalisador híbrido	

(mmol NH ₃ /m ² cat)/área de cobre metálico (m ² /g cat) vs. conversão.	187
Figura 103. Relação entre a razão número de sítios ácidos de	
Lewis/área de cobre metálico vs. conversão para todos os	
sistemas híbridos.	188
Figura 104. Relação entre a razão número de sítios ácidos de	
Lewis/área de cobre metálico vs. conversão para os sistemas	
híbridos da família 5.	189
Figura 105. Relação entre a acidez total do catalisador híbrido	
(mmol NH_3/m^2 cat)/área de cobre metálico (m ² /g cat) vs. seletividade	
em metano e etano.	189
Figura 106. Relação entre a acidez total do catalisador híbrido	
(mmol NH_3/m^2 cat)/área de cobre metálico (m ² /g cat) vs. seletividade	
em propano e butano.	190
Figura 107. Relação entre a acidez total do catalisador híbrido	
(mmol NH_3/m^2 cat)/área de cobre metálico (m ² /g cat) vs. seletividade	
em pentano e hexano.	190

Lista de tabelas

Tabela 1. Queima e ventilação de gás natural no mundo.	25
Tabela 2. Combustíveis e produtos químicos produzidos a partir	
do gás de síntese, Wender (1996).	33
Tabela 3. Resultados da hidrogenação do CO ₂ sobre catalisadores	
híbridos, Chang (1979).	47
Tabela 4. Resultados da síntese de hidrocarbonetos com diferentes	
catalisadores de síntese de metanol, Asami (2004)	47
Tabela 5. Seletividade em hidrocarbonetos e CO ₂ e distribuição	
dos hidrocarbonetos com diferentes catalisadores, Comelli (1993).	48
Tabela 6. Desempenho dos diferentes sistemas catalíticos na	
síntese direta de GLP a partir do gás de síntese, Li (2007).	49
Tabela 7. Propriedades físicas das zeólitas empregadas no	
catalisador híbrido Fujimoto (1985).	51
Tabela 8. Rendimento dos catalisadores híbridos com catalisador	
de síntese de metanol Pd/SiO ₂ , (% base CO alimentado),	
Fujimoto (1985).	51
Tabela 9. Resultados da síntese de hidrocarbonetos a partir do gás	
de síntese sobre catalisadores híbridos baseados em Cu-Zn e com	
diferente zeólita, Asami (2004).	52
Tabela 10. Desempenho catalítico dos catalisadores híbridos	
baseados em Cu-ZnO contendo diferentes tipos de zeólitas, Li (2008).	54
Tabela 11. Hidrogenação do CO ₂ sobre catalisadores híbridos	
baseados no catalisador de síntese de metanol Cu-ZnO-ZrO ₂ e	
diferentes zeólitas, Ihm (1998).	56
Tabela 12. Efeito na composição do catalisador híbrido, Asami (2005).	58
Tabela 13. Influência da razão SiO_2/AI_2O_3 na reação de gás de	
síntese à GLP sobre o catalisador híbrido Cu-ZnO/Pd-zeólita- β ,	
Fujimoto (2007).	60
Tabela 14. Hidrogenação do CO ₂ sobre o catalisador híbrido	
baseado em CuZnOZrO ₂ e HZSM-5 com diferente razão	

SiO ₂ /Al ₂ O ₃ , Li (2007).	60
Tabela 15. Influência da temperatura de reação na síntese de GLP	
a partir do gás de síntese sobre o catalisador híbrido	
(Pd-Ca/SiO ₂)/zeólita-β, Li (2007).	63
Tabela 16. Sistemas catalíticos preparados, métodos de preparação	
empregados, metais	80
no catalisador de síntese de metanol, razão CSM/zeólita e nome do	
catalisador híbrido.	80
Tabela 17. Composição percentual, teórica e experimental,	
dos sistemas catalíticos.	90
Tabela 18. Composição percentual das fases oxidadas dos	
catalisadores calcinados obtida por refinamento a partir	
do método de Rietveld.	100
Tabela 19. Composição percentual das fases oxidadas dos	
catalisadores calcinados calculadas a partir da análise	
química dos metais.	101
Tabela 20. Parâmetros de rede dos catalisador híbridos.	103
Tabela 21. Propriedades texturais dos catalisadores híbridos.	112
Tabela 22. Hidrogênio consumido, grau de redução do CuO na	
TPR e área de Cu ⁰ .	133
Tabela 23. Energias de ligação.	136
Tabela 24. Dados da acidez determinada pela	
dessorção termoprogramada de NH3 dos sistemas catalíticos.	147
Tabela 25. Rendimento em hidrocarbonetos (HC's), éter dimetílico	
(DME) e CO ₂ dos sistemas catalítico da família 1 a	
diferentes temperaturas.	162
Tabela 26. Rendimento em hidrocarbonetos, DME e CO ₂ dos	
sistemas catalítico da família 2 a diferentes temperaturas.	166
Tabela 27. Rendimento em hidrocarbonetos, DME e CO ₂ dos	
sistemas catalítico da família 3 a diferentes temperaturas.	170
Tabela 28. Rendimento em hidrocarbonetos, DME e CO ₂ dos	
sistemas catalítico da família 4 a diferentes temperaturas.	174
Tabela 29. Rendimento em hidrocarbonetos, DME e CO ₂ dos	

sistemas catalítico da família 5 a diferentes temperaturas.	178
Tabela 30. Rendimento em hidrocarbonetos, DME e CO ₂ dos	
sistemas catalítico da família 6 a diferentes temperaturas.	181
Tabela 31. Rendimento em hidrocarbonetos, DME e CO ₂ com o	
aumento da pressão.	185