

Hugo Guillermo Jiménez Pacheco

SUPER-RESFRIAMENTO DA ÁGUA EM CÁPSULAS CILÍNDRICAS: PARÂMETROS DE INFLUÊNCIA

Tese de doutorado

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica da PUC -Rio.

Orientador: Sergio Leal Braga

Rio de Janeiro, 08 de maio de 2008

Hugo Guillermo Jimenez Pacheco

SUPER-RESFRIAMENTO DA ÁGUA EM CÁPSULAS CILÍNDRICAS: PARÂMETROS DE INFLUÊNCIA

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pósgraduação em Engenharia Mecânica do Departamento de Engenharia Mecânica da PUC - Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sergio Leal Braga Orientador Departamento de Engenharia Mecânica – PUC – Rio

Prof. José Alberto dos Reis Parise Departamento de Engenharia Mecânica – PUC-Rio

Prof. Carlos Valois Maciel Braga Departamento de Engenharia Mecânica – PUC-Rio

Prof. Marcos Sebastião de Paula Gomes Departamento de Engenharia Mecânica - PUC-Rio

Prof. Carlos Eduardo Leme Nóbrega Departamento de Engenharia Mecânica – CEFET

Prof. Gisele Maria Ribeiro Vieira Departamento de Engenharia Mecânica – CEFET

> Prof. Juan José Milón Guzmán Universidad Católica San Pablo – Perú

> > Prof. José Eugenio Leal Coordenador Setorial do

Centro Técnico Científico-PUC-Rio

Rio de Janeiro, 08 de maio de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Hugo Guillermo Jiménez Pacheco

Graduou-se na Engenharia Química na UNSA (Universidade Nacional de San Agustín de Arequipa – Peru) em 1991. Cursou o Mestrado em Engenharia Mecânica na PUC-Rio, concluindo em agosto de 2003. Pesquisador no Laboratório de Refrigeração e Aquecimento - LRA da PUC-Rio.

Ficha Catalográfica

Jiménez Pacheco, Hugo Guillermo

Super-resfriamento da água em cápsulas cilíndricas: parâmetros de influência / Hugo Guillermo Jiménez Pacheco; orientador: Sergio Leal Braga. – 2008.

98 f.: il. ; 30 cm

Tese (Doutorado em Engenharia Mecânica)– Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

1. Engenharia mecânica Teses. 2. _ Nucleação. Mudança de fase. 4. 3. Super-resfriamento. Termoacumulação. 5. 6. Refrigeração. 7. Condicionamento de ar. I. Braga, Sergio Leal. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

...É preciso pensar para aceitar, calar para resistir e agir para vencer.

(H. G. J. P.)

Agradecimentos

Agradeço especialmente a Deus, por me permitir conhecer o Brasil e sua gente amável.

Agradeço ao meu Orientador, Professor Sergio Leal Braga, pelo apoio, a força, as idéias e a amizade.

Aos meus pais Pilar e Hugo, pela confiança e apoio, aos meus irmãos Gloria e Gustavo que me incentivaram nesta jornada.

À Marianella e meu filho Julver Frank pelo carinho, compreensão, e apoio para a culminação deste trabalho.

Ao pessoal do ITUC, em especial à Elizabeth, Fada, Rosa, Marcos e Renato. Aos funcionários do DEM: Rosely, Flávia, Márcia, Leninaldo e Lorenzo.

Aos meus amigos do LRA, Elizabet, Juan, Epifanio, Joel, Luis e Frank.

Agradeço ao Hugo Angel, Melisa, Lilian, Rosane, Viviane, pela amizade e o apoio.

Agradeço também a todos os professores e funcionários do departamento de Engenharia Mecânica, pelos ensinamentos.

Aos professores que participaram da Comissão Examinadora e a todos aqueles que de alguma forma incentivaram o desenvolvimento deste trabalho.

Pelos auxílios concedidos, agradeço ao CNPq e à PUC-Rio.

À MEMÓRIA DO MESTRE JANDIR, PELA EXCELENTE CONSTRUÇÃO DESTA BANCADA EXPERIMENTAL E DE MUITAS OUTRAS MAIS.

Jiménez P, Hugo Guillermo; Sergio Leal Braga (Orientador). Estudo do Super-resfriamento da Água em Cápsulas Cilíndricas: Parâmetros de Influência. Rio de Janeiro, 2008. 98p. Tese de Doutorado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Um dispositivo experimental foi desenvolvido para o estudo do superresfriamento da água em cápsulas cilíndricas visando sua utilização em processos de termoacumulação. A bancada experimental é constituída basicamente por: seção de teste, sistema de resfriamento, sistema de visualização, sistema de aquisição e armazenamento de dados. A temperatura do fluido externo, ou fluido de transferência (FT), uma solução aquosa de álcool a 50% por volume, foimantida constante por um banho de temperatura controlada durante cada teste. O trabalho foi dividido em quatro etapas. A primeira trata do estudo estatístico do super-resfriamento e da nucleação, em que foram utilizados 3 materiais distintos (alumínio, acrílico e PVC) para cápsulas de 30 e 80 mm de diâmetro com diferentes tipos de rugosidade, e diferentes temperaturas do FT. A segunda etapa investiga a Taxa de Resfriamento, parâmetro que quantifica a queda da temperatura e influencia fortemente o super-resfriamento e a nucleação. Na terceira etapa, foi estudada a influência da rugosidade da parede interna da cápsula. Nesta etapa, quatro cápsulas de alumínio distintas, com diferentes rugosidades, foram utilizadas. Finalmente, na quarta etapa foram realizadas visualizações do fenômeno de nucleação. Os resultados obtidos indicam que o material da cápsula (condutividade e rugosidade) e a temperatura do FT têm grande influência nos fenômenos de super-resfriamento e nucleação da água em cápsulas cilíndricas, afetando fortemente o processo de mudança de fase.

Palavras-chave

Nucleação, mudança de fase, termoacumulação, super-resfriamento, refrigeração, condicionamento de ar.

Abstract

Hugo G. Jiménez Pacheco; Sergio Leal Braga (Advisor). Study of the Supercooling of the Water in Cylindrical Capsules: Parameters of Influence. Rio de Janeiro, 2008. 98 p. D.sc Tese – Mechanic Engineering Department, Pontificia Universidade Católica do Rio de Janeiro.

An experimental device was developed for the super-cooling water in cylindrical capsules study, seeking its use in term-accumulation processes. The experimental set is constituted basically by: test section, cooling system, visualization system, and data logger system.

The temperature of the external fluid, or transfer fluid (FT), an alcohol aqueous solution with 50% per volume, it was maintained unchangeably with a bath controlled temperature during each test. The work was divided in four stages. The first one is about the statistical study of the super-cooling and nucleation, where 3 distinct materials were used (aluminum, acrylic and PVC) for capsules of 30 and 80 mm diameter, different roughness type, with different temperatures of FT. The second stage investigates the Cooling Rate, parameter that quantifies the falling of the temperature and it influences strongly the super-cooling and the nucleation process. In the third stage, the influence of the internal wall of the capsule was studied. In this stage, four different capsules of aluminum, with different roughness were used. Finally, in the fourth stage, visualizations of the nucleation phenomenon were accomplished. The obtained results indicate that the capsule material (conductivity and roughness) and the FT temperature has great influence in the phenomena of super-cooling and nucleation of the water in cylindrical capsules, affecting, strongly, the process of phase change.

Keywords

Cooling-rate, nucleation, phase change, super-cooling, thermal storage, supercooled water.

Sumário

1 Introdução	17
1.1. Processos de Termoacumulação	18
1.2. Termoacumulação em Cápsulas	19
1.3. Fenômeno de Super-Resfriamento	20
1.4. Super- Aquecimento e Super-Resfriamento de Água em	
Laboratório	22
1.5. Pesquisa Bibliográfica	22
1.6. Posicionamento e Objetivos do Trabalho	25
2 Abordagem Experimental	27
2.1. Dispositivo Experimental	27
2.2. Seção de teste	29
2.2. Seção de Resfriamento	32
2.2.1. Banhos de Temperatura constante	33
2.2.2. Reservatórios	33
2.2.3. Fluido de transferência (FT)	34
2.3. Sistema de Visualização	34
2.4. Sistema de Aquisição e Processamento de Dados	35
2.5. Procedimento experimental	36
2.5.1. Temperatura do fluido de transferência (FT)	38
2.5.2. Número de Testes Realizados	39
2.6. Parâmetros Estudados	41
2.6.1. Taxa de resfriamento	41
2.6.2. Rugosidade da parede Interna da Cápsula	41
2.6.3. Fenômenos de Nucleação e Super- resfriamento	43
2.6.4. Visualização do Super-Resfriamento e Nucleação	43
2.7. Incertezas Envolvidas	43

3.1. Introdução do Estudo de Super-Resfriamento e Nucleação	45	
3.1.1. Super-Resfriamento sem Nucleação	45	
3.1.2. Super-Resfriamento com Nucleação	46	
3.1.3. Hiper- Resfriamento com Nucleação	48	
3.1.4. Super-Resfriamento Duplo		
3.2. Estudo da Taxa de Resfriamento		
3.2.1. Estudo do Conceito de Taxa de Resfriamento		
3.2.2. Estudo da Taxa de Resfriamento	55	
3.3. Análise Estatística do Super-Resfriamento e da Nucleação	59	
3.4. Tempo Total até a nucleação	68	
3.5.	71	
Visualização do Super-Resfriamento e Nucleação	71	
4 Conclusões	82	
4.1. Curvas Características do Processo de Resfriamento em		
Cápsulas	82	
4.2. Análise da Taxa de Resfriamento	82	
4.3. Análise Estatística do Super-Resfriamento e da Nucleação	83	
4.4. Tempo Total até a nucleação	83	
4.5. Visualização do Super-Resfriamento e Nucleação	84	
4.6. Trabalhos Futuros	84	
4.6.1. Processo de nucleação forçada pela influenciadas externa		
como interna.	84	
4.6.2. Variação do sentido do fluxo no fluido de transferência	84	
4.6.3. Obter o mapeamento interno das temperaturas do MMF	85	
4.6.4. Intervalo de aquisição de dados.	85	
5. Referências Bibliográficas	86	
6 Anexos	90	
6.1. Parâmetros da Rugosidade	90	
6.1.1. Rugosidade média	90	
6.1.2. Rq (rugosidade média quadrática)	92	
6.1.3. Rt (rugosidade total)	92	

6.1.4. Comprimento de amostragem (Cut off)	93
6.2. Análise da incerteza	94
6.2.1. Incerteza de temperatura	94
6.2.2. Incerteza do Volume	98
6.2.3. Incerteza da taxa de resfriamento	98

Lista de figuras

Figura 1. Diagrama geral do processo de termo acumulação	19
Figura 2. Modelo de cápsulas.	20
Figura 3. Super-resfriamento de água em cápsulas	21
Figura 4. Classificação do Super-resfriamento (Milón e Braga, 2003)	21
Figura 5. Água em estado metaestável, Debenedetti (1996)	22
Figura 6. Esquema do modelo experimental	28
Figura 7. Fotografia da bancada experimental	28
Figura 8. Detalhe da seção de teste	29
Figura 9. Corte transversal da seção de teste	30
Figura 10. Fotografia do compensador de volume para o MMF	30
Figura 11. Cápsulas cilíndricas de diferentes materiais e diâmetros	31
Figura 12. Fotografias das cápsulas de alumínio em diferentes diâmetros	31
Figura 13. Fotografia das cápsulas de diferentes diâmetros e materiais	31
Figura 14. Distribuição dos sensores de temperatura na cápsula	32
Figura 15. Detalhe do reservatório superior	33
Figura 16. Detalhe da câmara para visualizar	34
Figura 17. Câmera de isolamento para visualização.	35
Figura 18. Fotografia da seção de aquisição e processamento de dados	35
Figura 19. Etapa inicial do procedimento experimental	36
Figura 20. Etapa Final do Procedimento experimental	37
Figura 21. Tempo de resposta do banho de controle BTC ₁	38
Figura 22. Detalhe da distribuição dos termopares dentro da cápsula	41
Figura 23. Incerteza da rugosidade em cápsulas de alumínio de 30 mm	44
Figura 24. Incerteza da rugosidade em cápsulas de alumínio de 80 mm	44
Figura 25. Cápsula de alumínio T _{FT} -4ºC, 30 mm de diâmetro	45
Figura 26. Super-resfriamento em alumínio ξ= 2,08 μm FT -6ºC,	
para 80 mm	46
Figura 27. Resfriamento da cápsula cilíndrica de acrílico FT -6°C,	
ξ= 2,10 μm D=30 mm	47
Figura 28. Super-resfriamento em alumínio ξ= 9,51 μm FT -8°C,	
D=80 mm	47
Figura 29. Hiper-resfriamento em acrílico, ξ= 0,05 μm FT -10°C, 80 mm	48

Figura 30. Resfriamento da cápsula de alumínio, T _{FT} = -10°C,	
ξ=2,62 μm, D=30 mm	49
Figura 31. Resfriamento da cápsula de alumínio, ξ= 9,51 μm,	
T _{FT} = -10°C, D = 80 mm	50
Figura 32. Característica da taxa de resfriamento	51
Figura 33. Taxa de resfriamento, cápsula de alumínio e	
temperaturas -6°C, -10 °C D = 30 mm	52
Figura 34. Taxa de Resfriamento, cápsula de alumínio e	
temperatura -8°C, -8°C D=80 mm	53
Figura 35. Taxa de resfriamento para FT -8ºC com 30 e 80 mm	
de diâmetro	54
Figura 36. Taxa de Resfriamento para diferentes materiais de 30 mm	55
Figura 37. Variação do Dt com a TR para cápsulas de alumínio	
de 30 mm com diferentes rugosidades	56
Figura 38. Variação do Dt com a TR para cápsulas de alumínio	
de 80 mm com diferentes rugosidades	57
Figura 39. Variação do Dt com a TR para cápsulas de alumínio	
de 80 mm com diferentes rugosidades	58
Figura 40. Variação do Dt com a TR para cápsulas de alumínio com	
diferentes diâmetros	59
Figura 41. Probabilidade de Super-resfriamento, em diferentes	
temperaturas em cápsulas de 30 mm de diâmetro	61
Figura 42. Probabilidade de Super-resfriamento em diferentes	
temperaturas FT, cápsulas de 30 mm de diâmetro	62
Figura 43. Probabilidade de Nucleação em diferentes	
temperaturas FT, cápsulas de 80 mm de diâmetro	63
Figura 44. Probabilidade de Nucleação em diferentes	
temperaturas FT, cápsulas de 80 mm de diâmetro	63
Figura 45. Probabilidade de super-resfriamento em diferentes	
temperaturas FT em cápsulas de Alumínio de 30 mm de diâmetro	64
Figura 46. Probabilidade de nucleação em diferentes temperaturas	
FTem cápsulas de Alumínio de 30 mm de diâmetro	65
Figura 47. Probabilidade de super-resfriamento em diferentes	
temperaturas FT, cápsulas de Alumínio de 80 mm de diâmetro	66

Figura 48. Probabilidade de nucleação em diferentes temperaturas FT,	
cápsulas de Alumínio de 30 mm de diâmetro	66
Figura 49. Probabilidade de super-resfriamento em diferentes	
temperaturas FT, cápsulas de Alumínio de 30 e 80 mm de diâmetro	67
Figura 50. Probabilidade de nucleação em diferentes temperaturas FT,	
cápsulas de Alumínio de 30 mm e 80 mm de diâmetro	68
Figura 51. Cápsulas de alumínio 30 e 80 mm de diâmetro para	
FT = -10 °C e diferentes rugosidades.	69
Figura 52. Experiências para FT = -8ºC em cápsulas de 30 mm,	
45 mm e 80 mm de diâmetro, comparação com Milón e Braga (2003)	70
Figura 53. Experiências para FT -10 °C em cápsulas de 30,45 e	
80 mm de diâmetro , comparação com Milón e Braga (2003)	70
Figura 54. Posição dos sensores dentro da cápsula cilíndrica	
para estudo da visualização do fenômeno de nucleação	71
Figura 55. Curva característica do fenômeno de nucleação e posição dos	
termopares na cápsula de acrílico com T _{FT} = -8 °C, para 80 mm de	
diâmetro	72
Figura 56. Processo de nucleação em relação à temperatura de mudança	
de fase do MMF para T _{FT} = -8 °C em cápsulas de acrílico,	
para 80 mm de diâmetro	73
Figura 57. Curva característica do fenômeno de nucleação, posição dos	
termopares, cápsula de alumínio para T _{FT} = -8 ºC, 80 mm de diâmetro	74
Figura 58. Processo de nucleação em relação à temperatura de mudança	
de fase do MMF para T _{FT} = -8 °C em cápsulas de alumínio	75
Figura 59. Curva característica do fenômeno de nucleação,	
posição dos termopares, cápsula de alumínio T _{FT} = -10 ºC,	
para 80 mm de diâmetro	76
Figura 60. Processo de nucleação em relação à temperatura de	
mudança de fase do MMF para T _{FT} = -10 ºC em cápsulas de alumínio	77
Figura 61. Curva característica do fenômeno de nucleação, posição	
dos termopares, cápsula de alumínio e T _{FT} = -6 ºC,	
para 30 mm de diâmetro	78
Figura 62. Processo de nucleação em relação à temperatura de	
mudança de fase do MMF para T _{FT} = -6 °C em cápsulas de alumínio	79

Figura 63. Curva característica do fenômeno de nucleação,	
posição dos termopares, cápsula de alumínio e T _{FT} = -8 ºC,	
para 30 mm de diâmetro	80
Figura 64. Processo de nucleação em relação à temperatura de	
mudança de fase do MMF para T_{FT} = -8 °C em cápsula de alumínio	81

LISTA DE TABELAS"

Tabela 1. Número de testes realizados para diâmetro de 30 mm	. 39
Tabela 2. Número de testes realizados para diâmetro de 80 mm	.40
Tabela 3. Número de testes realizados para diâmetro de 45 mm	.40
Tabela 4. Características do Rugosímetro	.42
Tabela 5. Valores da Rugosidade para alumínio, acrílico e PVC,	
para 30 mm	.42
Tabela 6. Valores da Rugosidade para alumínio, acrílico e PVC,	
para 80 mm	.42
Tabela 7. Incertezas envolvidas durante a experiência	.43

Lista de símbolos

α_{P}		coeficiente de expansão isotérmica
BTC)	banho da temperatura constante
BTC	C-CI	banho de temperatura constante para estabelecer a
		condição inicial da temperatura na cápsula
СС		posição no eixo da cápsula
C_p		calor específico à pressão constante
Dt		tempo total de super-resfriamento
FT		fluido de transferência
GSF	२	grau de super-resfriamento
Κ _T		compressibilidade isotérmica
MM	F	material com mudança de fase
ΡI		posição na parede interna da cápsula
potic	ct	potência instalada com termoacumulação
potis	st	potência instalada sem termoacumulação
PVC	2	Polyvinylchloride
R		raio da cápsula
Rm		posição do raio no meio da cápsula
Δt_a		intervalo de tempo de aquisição
T_{FT}		temperatura do fluido de transferência
Τi		temperatura inicial do MMF
T _m		temperatura de mudança de fase
T _{mm}	e	temperatura máxima de massa específica
Tn		temperatura de nucleação do MMF
Τ _{ΡΙ}		temperatura da parede interna da cápsula
t _{TN}		tempo total até acontecer a nucleação
TR		taxa de resfriamento
z		espessura da parede da cápsula
ρ		massa específica
-		
	Período de pico	Intervalo de tempo em que o consumo de energia
	Ĩ	elétrica é elevado
	Nu el es e e -	Inícia da formação da cala (mailman tina)
	nucleação	micio da formação de gelo (qualquer fipo)

Super-resfriamento Quando a temperatura de um fluido (água pura p.e.) fica abaixo da temperatura de mudança de fase em estado líquido metaestável