

Siniša Kolarić

Towards direct spatial manipulation of virtual 3D objects using visual tracking and gesture recognition of unmarked hands

MSc Thesis

Thesis presented to the post-graduate program in Computer Science of the Department of Computer Science, PUC-Rio as partial fullfillment of the requirements for the degree of Master in Computer Science.

> Adviser : Prof. Marcelo Gattass Co–Adviser: Prof. Alberto Barbosa Raposo

Rio de Janeiro March 2008

Siniša Kolarić

Towards direct spatial manipulation of virtual 3D objects using visual tracking and gesture recognition of unmarked hands

Thesis presented to the post-graduate program in Computer Science of the Department of Computer Science, PUC-Rio as partial fullfillment of the requirements for the degree of Master in Computer Science. Approved by the following commision:

> **Prof. Marcelo Gattass** Adviser Department of Computer Science — PUC-Rio

> Prof. Alberto Barbosa Raposo Co–Adviser Department of Computer Science — PUC-Rio

> **Prof. Simone D. J. Barbosa** Department of Computer Science — PUC-Rio

Prof. Paulo Cezar P. de Carvalho National Institute for Pure and Applied Mathematics (IMPA)

> **Prof. Waldemar Celes** Department of Computer Science — PUC-Rio

Prof. José Eugenio Leal Head of the Science and Engineering Center — PUC-Rio

Rio de Janeiro, March 28, 2008

All rights reserved. Partial or full reproduction of this work without prior authorization by the university, the author or the adviser is prohibited.

Siniša Kolarić

Siniša Kolarić received his BSc degree in mathematics with a minor in computer science from the University of Zagreb, Croatia. He also concurrently studied theoretical physics for three years at the same university. Later on he worked in academia and industry for Croatian, USA and German organizations. Since 2006 he has been a graduate student at PUC-Rio and a researcher at Tecgraf/PUC-Rio. His scientific interests include computer-aided design, computational geometry and topology, solid modeling, 3D user interfaces and real-time interactive rendering.

Bibliographic data

Kolarić, Siniša

Towards direct spatial manipulation of virtual 3D objects using visual tracking and gesture recognition of unmarked hands / Siniša Kolarić; adviser: Marcelo Gattass; co–adviser: Alberto Barbosa Raposo. — 2008.

120 f.: il. (col.) ; 30 cm

Dissertação (Mestrado em Informática) — Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008. Inclui bibliografia.

1. Informática — Teses. 2. Manipulação direta espacial de objetos virtuais 3D. 3. Realidade aumentada. 4. Realidade mista. 5. Dispositivos de entrada 3D. 6. Técnicas de interação 3D. 7. Visão por computador. 8. Detecção de mãos. 9. Rastreamento de mãos. 10. Reconhecimento de gestos manuais. I. Gattass, Marcelo. II. Raposo, Alberto Barbosa. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. IV. Título.

PUC-Rio - Certificação Digital Nº 0611939/CA

Katarina Kolarić née Bubek (1948–2007)

In memory of my mother.

Acknowledgments

I would foremostly like to thank my wife Ana Lúcia who has patiently allowed me to study at the expense of household chores, holidays, parent visits and many other little things. Although he is currently too little to understand, I would also like to thank our Raul for moments of pure joy (and sometimes much needed moments of distraction) that just a happy three-year old can provide.

Big thanks to my colleagues Pablo Carneiro Elias and Thiago de Almeida Bastos who initially helped me to make my ways around PUC-Rio and amortize the culture shock which I experienced when I arrived at the campus. They made my stay here much more easier than if I had tried to discover everything all by myself. Thanks especially for including me into your study group during the first year of my graduate studies at PUC — guys you've really been of much help. I hope that I have helped you at least half as much as you have helped me.

Next I would like to thank Prof. Marcelo Gattass who made me a member of the crew at Tecgraf and this way allowed me to have access to all the resources that just an institute can provide, as well as giving me an academic home. Further, thanks for great classes that actually motivated me to adopt a computer-vision approach to the problem described in this MSc thesis.

I would also like to thank Prof. Alberto Raposo, the coordinator of Virtual Reality group at Tecgraf, for creating a great environment to work, and doing everything possible to provide all the needed resources for this work to take place.

Thanks to all the members of the Virtual Reality group and to all the people Tecgraf is composed of — no wonder that Tecgraf has been doing so well lately — just a group of very talented people can achieve such an impressive string of successes.

Special thanks to Rosane and Cosme at the library of the Department of Computer Science, for their patience and expertise, and who sometimes had to endure my less then stellar record in devolving books on time.

Finally, thanks to PUC-Rio in general — I find this university to be a great place, in a great setting, and a real place of excellence. Being here is being part of something special.

Abstract

Kolarić, Siniša; Gattass, Marcelo; Raposo, Alberto Barbosa. Towards direct spatial manipulation of virtual 3D objects using visual tracking and gesture recognition of unmarked hands. Rio de Janeiro, 2008. 120p. MSc Thesis — Department of Computer Science, Pontifical Catholic University of Rio de Janeiro.

The need to perform spatial manipulations (like selection, translation, rotation, and scaling) of virtual 3D objects is common to many types of software applications, including computer-aided design (CAD), computer-aided modeling (CAM) and scientific and engineering visualization applications. In this work, a prototype application for manipulation of 3D virtual objects using free-hand 3D movements of bare (that is, unmarked, uninstrumented) hands, as well as using one-handed and two-handed manipulation gestures, is demonstrated. The user moves his hands in the work volume situated immediately above the desktop, and the system effectively integrates both hands (their centroids) into the virtual environment corresponding to this work volume. The hands are being detected and their posture recognized using the Viola-Jones detection method, and the hand posture recognition thus obtained is then used for switching between manipulation modes. Full 3D tracking of up to two hands is obtained by a combination of 2D "flocksof-KLT-features" tracking and 3D reconstruction based on stereo triangulation.

Keywords

Direct manipulation of virtual 3D objects. Augmented reality. Mixed reality. 3D input devices. 3D interaction techniques. Computer vision. Hand detection. Hand tracking. Hand gesture recognition.

Resumo

Kolarić, Siniša; Gattass, Marcelo; Raposo, Alberto Barbosa. Rumo à manipulação direta espacial de objetos virtuais 3D usando rastreamento baseado em visão e no reconhecimento de gestos de mãos sem marcadores. Rio de Janeiro, 2008. 120p. Dissertação de mestrado — Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

A necessidade de executar manipulações espaciais (como seleção, deslocamento, rotação, e escalamento) de objetos virtuais 3D é comum a muitos tipos de aplicações do software, inclusive aplicações de computer-aided design (CAD), computer-aided modeling (CAM) e aplicações de visualização científica e de engenharia. Neste trabalho é apresentado um protótipo de aplicação para manipulação de objetos virtuais 3D utilizando movimentos livres de mãos e sem o uso de marcadores, podendo-se fazer gestos com uma ou duas mãos. O usuário move as mãos no volume de trabalho situado imediatamente acima da mesa, e o sistema integra ambas as mãos (seus centróides) no ambiente virtual que corresponde a este volume de trabalho. As mãos são detectadas e seus gestos reconhecidos usando o método de detecção de Viola-Jones. Tal reconhecimento de gestos é assim usado para ligar e desligar modalidades da manipulação. O rastreamento 3D de até duas mãos é então obtido por uma combinação de rastreamento 2D chamado "flocks-of-KLT-features" e reconstrução 3D baseada em triangulação estéreo.

Palavras-chave

Manipulação direta espacial de objetos virtuais 3D. Realidade aumentada. Realidade mista. Dispositivos de entrada 3D. Técnicas de interação 3D. Visão por computador. Detecção de mãos. Rastreamento de mãos. Reconhecimento de gestos manuais.

Summary

1	Introduction	15
1.1	Historical context	16
1.2	The motivation	17
1.3	The scope covered by this dissertation	18
1.4	The structure of this MSc thesis	19
2	Human hand	20
2.1	Introduction	20
2.2	Human hand anatomy	20
2.3	Human hand modeling	22
3	Hand gestures for manipulation	26
3.1	One-handed and gestures in general	26
3.2	Two-handed gestures	28
3.3	Modeling of hand gestures	28
3.4	Hand gesture recognition	30
4	Interaction techniques for direct 3D manipulation	32
4.1	Selecting virtual 3D objects	32
4.2	Translating virtual 3D objects	33
4.3	Rotating virtual 3D objects	35
4.4	Scaling virtual 3D objects	35
5	Computer vision for hand recognition	37
5 5.1	Computer vision for hand recognition Cameras	37 37
5.1 5.2	Cameras Digital images	37 38
5.1 5.2 5.3	Cameras Digital images Mono vision	37 38 39
5.1 5.2 5.3 5.4	Cameras Digital images Mono vision Stereo vision	37 38 39 44
5.1 5.2 5.3 5.4 5.5	Cameras Digital images Mono vision Stereo vision Color spaces	37 38 39 44 48
5.1 5.2 5.3 5.4 5.5 5.6	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling	37 38 39 44 48 48
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling Image features	37 38 39 44 48 48 50
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling Image features Hand detection	37 38 39 44 48 48 50 52
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling Image features Hand detection Hand segmentation	37 38 39 44 48 48 50 52 53
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling Image features Hand detection Hand segmentation	37 38 39 44 48 48 50 52 53 54
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling Image features Hand detection Hand segmentation	37 38 39 44 48 48 50 52 53
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling Image features Hand detection Hand segmentation Hand pose estimation Hand tracking Prototype application	37 38 39 44 48 48 48 50 52 53 54 54 56 58
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 6 6.1	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling Image features Hand detection Hand segmentation Hand pose estimation Hand pose estimation Prototype application Requirements	37 38 39 44 48 48 50 52 53 54 56 58 58
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 6 6.1 6.2	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling Image features Hand detection Hand segmentation Hand pose estimation Hand pose estimation Hand tracking Prototype application Requirements Constraints, assumptions and restrictions	37 38 39 44 48 48 50 52 53 52 53 54 56 58 58 58
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 6 6.1 6.2 6.3	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling Image features Hand detection Hand segmentation Hand pose estimation Hand pose estimation Hand tracking Prototype application Requirements Constraints, assumptions and restrictions Hand postures defined	37 38 39 44 48 48 50 52 53 52 53 54 56 58 58 58 58 59
$5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9 \\ 5.10 \\ 5.11 \\ 6 \\ 6.1 \\ 6.2 \\ 6.3 \\ 6.4 $	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling Image features Hand detection Hand segmentation Hand pose estimation Hand pose estimation Hand tracking Prototype application Requirements Constraints, assumptions and restrictions Hand postures defined Manipulation operations implemented	37 38 39 44 48 48 50 52 53 54 56 58 58 58 58 59 61
$5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9 \\ 5.10 \\ 5.11 \\ 6 \\ 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ \end{cases}$	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling Image features Hand detection Hand segmentation Hand pose estimation Hand pose estimation Hand tracking Prototype application Requirements Constraints, assumptions and restrictions Hand postures defined Manipulation operations implemented Control flow	37 38 39 44 48 48 50 52 53 54 56 58 58 58 58 58 58 59 61 63
$5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9 \\ 5.10 \\ 5.11 \\ 6 \\ 6.1 \\ 6.2 \\ 6.3 \\ 6.4 $	Cameras Digital images Mono vision Stereo vision Color spaces Human skin modeling Image features Hand detection Hand segmentation Hand pose estimation Hand pose estimation Hand tracking Prototype application Requirements Constraints, assumptions and restrictions Hand postures defined Manipulation operations implemented	37 38 39 44 48 48 50 52 53 54 56 58 58 58 58 59 61

7	Conclusions and future work	81
7.1	Contributions	81
7.2	Future work	81
Bibl	iography	83
А	Timeline of research in manipulation	91
A.1	Pre-1980s	91
A.2	1980s	94
A.3	1990s	95
A.4	2000-2008	106
В	Viola-Jones detection method	109
B.1	Haar-like features	109
B.2	Integral images	112
B.3	AdaBoost-based learning	113
B.4	Cascading strong classifiers	114
С	KLT features	116
D	Hartley-Sturm triangulation method	119

List of figures

2.1 2.2 2.3 2.4 2.5 2.6	A drawing of a human hand, with joins and bones emphasized Muscles and tendons of the human hand 3-d.o.f. hand model Rehg-Kanade 27 d.o.f. hand model Wu-Huang 27 d.o.f. hand model 33 d.o.f. hand model by Nirei et al	21 22 23 24 25 25
3.1 3.2	Taxonomy of gestures. In this work mostly the manipulative ges- tures (see extreme left of the figure) will be considered Gesture interpretation. The Recognition phase has the hand pose (Model Parameters), the database of all defined gestures (classes of trajectories) and a Grammar (serving to influence the gesture recognition depending on the current working context) as input parameters	26 30
4.1	Go-go technique extends the hand non-linearly for $ec{r} > ec{r_r}$	34
5.1 5.2 5.3 5.4	Pinhole camera, with pinhole (i.e. optical center) at \vec{C} Pinhole camera with screen in the front of \vec{C} A digital image consisting of 48×43 pixels Coordinate systems in the world-camera-projection-raster image	38 38 39
5.5 5.6	chain. Going from 3D world to 3D camera coordinates (CCS $\leftarrow \dashv$ WCS) Stereo rig. If the two cameras take a snapshot at the same instant,	40 41
5.7	the two photos make a stereo pair of photos. Triangulation. Knowing 3D positions of optical centers $\vec{C}, \vec{C'}$, focal lengths f, f' and 2D positions $\vec{u}, \vec{u'}$, we can determine 3D position \vec{X} using various triangulation methods (for example, <i>mid-point</i> and <i>polynomial</i> triangulation methods).	45 46
5.8	Mid-point triangulation method, which finds the point \vec{X} as the point that lies at the minimum distance to both rays: first ray from	
ΕO	C through \vec{u} , and the second ray from C' through \vec{u}' .	47
5.9 5.10	Tracking an object by tracking its features Taxonomy of hand pose estimation approaches	50 54
6.1 6.2	The user's workplace Three hand postures utilized by the system: HAND_POSTURE_OPEN (left), HAND_POSTURE_POINTING (middle) and HAND_POSTURE_FIST	59
	(right)	60
6.3 6.4	OP_TRANSLATE operation, based on one HAND_POSTURE_FIST posture The two-handed OP_ROTATE operation is based on two HAND_POSTURE_POINTING postures. An example of a CCW ro-	62
<u> </u>	tation shown	63
6.5	The two-handed OP_SCALE operation is based on two HAND_POSTURE_FIST postures	64

6.6	Detailed activity diagram for detection, tracking and posture recog- nition	69
6.7	3D plot of estimated hand positions, obtained by tracing a line, a	
6.8	circle and an "eight" in the workspace A hit (left) and a hit and false hit (right). Posture	71
6.9	HAND_POSTURE_OPEN A hit and multiple false hits (left), and a miss (right). Posture	72
6 10	HAND_POSTURE_OPEN The application upon startup. No hand has been detected yet,	72
	therefore hands are not being tracked, thus no static gesture is being recognized, thus no manipulation operation is being performed Application started to track hands, after both of them assumed posture HAND_POSTURE_OPEN. We can see that the application	76
6.12	placed two flocks of KLT features on both hands The right hand assumed posture HAND_POSTURE_POINTING, there- fore the application started performing the operation OP_SELECT	76
	using the right hand	77
6.13	The right hand assumed posture HAND_POSTURE_FIST, therefore the application started performing the operation OP_TRANSLATE using the right hand	77
6.14	Both hands assumed posture HAND_POSTURE_OPEN, upon which the previous manipulation operation has been cancelled	78
6.15	The left hand assumed posture HAND_POSTURE_POINTING, there- fore the application started performing the operation OP_SELECT	
6 16	using the left hand The left hand assumed posture HAND_POSTURE_FIST, therefore the	78
0.10	application started performing the operation OP_TRANSLATE using the left hand	79
6.17	Both hands assumed posture HAND_POSTURE_FIST, therefore the application started performing the operation OP_SCALE using both	
	hands	79
	Another example of OP_SCALE Both hands assumed posture HAND_POSTURE_POINTING, therefore	80
	the application started performing the operation OP_ROTATE using both hands	80
A.1	Sutherland's Sketchpad in use (Lincoln TX-2 console, lightpen)	92
A.2	Example of a drawing and calculation made in Sutherland's Sketch- pad: truss load	92
A.3	James H. Clark's system: 3D-wand (left) and HMD armature (right)	93
A.4	James H. Clark's system: 3D surface being edited (left) and its grid of control points (right)	93
A.5	"Put-That-There" system by Bolt: manipulating shapes on the wall-sized screen. The user currently points at the circular shape	95
A.6	3-Draw by Sachs et al — based on two 6-d.o.f. sensors and a	0.0
A.7	conventional non-stereo display. Krueger's VIDEODESK. Splines are controlled by fingertip positions.	96 96

A.8	Widgets by Conner et al. Translating a knife along its x axis (a), rotating a knife along an axis (b), and scaling a knife along an axis	
A.9	(c) Murakami's elastic cube for 3D deformation: schematic (left) and	97
/ 1.5	usage (right)	98
A 10	JDCAD: schematic (left) and cone selection technique (right)	99
	Mine's local selection (left) and at-a-distance selection (right)	99
	Deering's Holosketch: head-tracked stereo glasses and 3D	55
/ \. 12	mouse/wand (left) and 3D fade-up menu (right)	100
Λ 13	CHIMP by Mine: Two-handed mode selection	100
	Mine suggests proprioception as a way to address lack of haptic	101
A.14	feedback	102
Δ15	Responsive Workbench: stereo video projected on mirrors below the	102
A.15	desk (left), and persons observing a 3D house model displayed in	
	stereo (right)	102
Δ 16	Responsive Workbench: two-handed operation of zooming in	102
	ErgoDesk by Forsberg et al	103
	Some manipulation gestures by Nishino et al	104
	"Surface drawing" by Schkolne et al: modeling a guitar in five steps	
	"Surface drawing" by Schkolne et al. hodening a guitar in rive steps	105
A.20		105
A 01	shapes which "float" over the Responsive Workbench Operation GRAB in Pratini's system	105
		100
A.ZZ	Operation SCALE implemented as opening/closing the fist in Pra-	107
A 12	tini's system	107
A.23	The setup by Bettio et al. The user stands in front of a large stereo display, and manipulates the model using optically tracked hands.	108
B.1	Two types of rectangles used in the extended Viola-Jones method: 1) upright rectangle, and 2) rectangle inclined at 45° . We compute the sum of all gray-level intensities in rectangle r using function	
	sum(r).	110
B.2	Fourteen feature prototypes (templates) used in the extended Viola-	
_	Jones method	111
B.3	Example: computing a 6×2 -pixel "line feature" (see Figure B.2,	
	feature (a) in the second row) whose top left corner is located at	
	pixel (5,3)	112
B.4	The value of pixel (x, y) of the integral image I_f is equal to the	
	sum of all pixels left and up from (x,y) in image I	112
B.5	Cascade of strong classifiers using Haar-like features	115
C.1	Illustration of tracking based on KLT features. Window W is the current window, for example a rectangle of 10×10 pixels. J_W is the restriction of I on the current window W . I_W is the restriction of I on the previous window. What is being searched for, is the displacement vector \vec{d} , which enables us to position window W correctly in the current image.	117

117

List of tables

6.1	Training sets for HAND_POSTURE_OPEN	73
6.2	Detector performance for HAND_POSTURE_OPEN	73
6.3	Training sets for HAND_POSTURE_POINTING	74
6.4	Detector performance for HAND_POSTURE_POINTING	74
6.5	Training sets for HAND_POSTURE_FIST	75
6.6	Detector performance for HAND_POSTURE_FIST	75

People don't understand 3D. They experience it.

Ivan E. Sutherland, American computer scientist