

Luiz Alberto Di Salvio

Influência da pressão de operação no desempenho de transmissores diferenciais de pressão Uma análise metrológica.

Dissertação de Mestrado

Dissertação de mestrado apresentada à Pontifícia Universidade Católica do Rio de Janeiro, como parte integrante dos requisitos para obtenção do título de Mestre em seu Programa de Pós Graduação em Metrologia Área de Concentração: Metrologia para Qualidade e Inovação.

Orientador: Prof. Alcir de Faro Orlando

Rio de Janeiro Abril de 2008

Luiz Alberto Di Salvio

Influência da pressão de operação no desempenho de transmissores diferenciais de pressão Uma análise metrológica.

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Metrologia do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora e homologada pela Coordenação Setorial de Pós-Graduação, formalizado pelas respectivas assinaturas.

Comissão Examinadora:

Prof. Dr. Alcir de Faro Orlando Orientador Departamento de Engenharia Mecânica Programa de Pós-Graduação em Metrologia (PósMQI) Pontifícia Universidade Católica do Rio de Janeiro(PUC-Rio)

Prof. Dr. Mauro Speranza Neto

Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro(PUC-Rio)

Prof. Dr. Eloi Fernandez Y Fernandez

Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro(PUC-Rio)

Coordenação Setorial de Pós-Graduação:

Prof. José Eugenio Leal Coordenador Setorial de Pós-Graduação do

Centro Técnico Científico (PUC-Rio)

Rio de Janeiro, 04 de abril de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Luiz Alberto Di Salvio

Graduado em Engenharia Elétrica pela Universidade Federal de Minas Gerais em 1976, foi professor de eletro técnica do Instituto de Ensino Tecnológico de Minas Gerais de marco de 1975 a janeiro de 1977, trabalhou como engenheiro de manutenção elétrico na Ultrafértil S.A de fevereiro de 1977 à dezembro de 1979, foi supervisor de Manutenção Elétrica/Eletrônica de aciaria da Companhia Siderúrgica Paulista de dezembro de 1979 a outubro de 1985, trabalhou como engenheiro de manutenção no Setor de Elétrica e Instrumentação da Refinaria Presidente Bernardes de Cubatão de outubro de 1985 a outubro de 1989, foi engenheiro de projetos e obras de Instrumentação/Elétrica na Refinaria Presidente Bernardes de Cubatão de outubro de 1989 a dezembro de 2000, foi transferido para a UN-BC para trabalhar como engenheiro de projetos e obras na área de Instrumentação/ Elétrica/ Automação, onde continua até os dias atuais.

Ficha Catalográfica

Di Sálvio, Luiz Alberto

Influência da pressão de operação no desempenho de transmissores diferenciais de pressão - Uma análise metrológica./ Luiz Alberto Di Salvio ; orientador: Alcir de Faro Orlando. – 2008.

140 f. : il. (color.) ; 30 cm

Dissertação (Mestrado em Metrologia para a Qualidade e Inovação)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

 Metrologia – Teses. 2. transmissor diferencial de pressão.
 transdutor capacitivo.
 calibração de transmissores de pressão.
 Orlando, Alcir de Faro.
 Pontifícia Universidade Católica do Rio de Janeiro.
 Programa de Pós-Graduação em Metrologia para a Qualidade e Inovação.
 Título.

Agradecimentos

A Deus, pelos dons da saúde, inteligência e pelo privilégio de estudar e realizar este curso.

À Petrobras, em particular a "Unidade de Negócios Bacia de Campos" (UN-BC) por ter me proporcionado excelentes condições para realizar este curso.

Ao meu orientador Professor Alcir de Faro Orlando pelo apoio e pela paciência no desenvolvimento desta dissertação.

Aos meus colegas do laboratório de calibração da UN-BC, Eduardo Abreu da Silva e Luiz Venâncio Matos de Carvalho pelo apoio e disponibilização do laboratório de pressão, sem o qual não seria possível a finalização deste trabalho.

Ao Técnico de Instrumentação, Renato Rocha Roma pelo apoio na realização de todos os experimentos.

Ao Coordenador do Programa de Pós Graduação em Metrologia, Qualidade e Inovação (Pós- MQI), Maurício Nogueira Frota, por ter me auxiliado no desenvolvimento deste trabalho.

Aos meus pais, João Di Salvio e Maria Pinheiro Di Salvio (in memorian), pela educação, atenção e carinho durante suas vidas.

À minha tia, Francisca Pinheiro (in memorian), pela educação, atenção e carinho durante sua vida.

À minha esposa Marisa Andrade Pedrosa Di Salvio e aos meus filhos Laisa Pedrosa Di Salvio e Luiz Paulo Pedrosa Di Salvio, pela ajuda e paciência nos momentos mais difíceis durante o curso de mestrado.

Aos professores da Comissão Examinadora.

Resumo

Di Salvio, Luiz Alberto. Orlando, Alcir de Faro. **Influência da pressão de operação no desempenho de transmissores diferenciais de pressão Uma análise metrológica. -** Rio de Janeiro, 2008. 140p. Dissertação de Mestrado - Programa de Pós-Graduação em Metrologia, Pontifícia Universidade Católica do Rio de Janeiro.

Nesta dissertação é realizada uma análise experimental da influência da pressão estática na medição de pressão diferencial com transmissores eletrônicos, dotados de sensores capacitivos ou sensores de silício ressonante, cuja tecnologia é amplamente difundida nos dias atuais por serem de elevada repetitividade, reprodutibilidade, exatidão e baixa histerese. A medição de pressão diferencial é amplamente utilizada na indústria de Petróleo, com o objetivo de medição de vazão, nível, entupimento de filtros e medição de interface óleo água. A calibração dos transmissores de pressão diferencial é feita no país a pressão atmosférica, não se preocupando com a influência da pressão estática do processo sobre seu desempenho. Como sua principal contribuição, o trabalho apresenta uma metodologia inovadora ainda não disponível no país de calibração de transmissores de pressão diferencial na pressão de operação, melhorando a confiabilidade e a incerteza das medições de vazão de líquidos e gases nas indústrias em geral. As faixas estudadas de pressão estática (0 a 20000 KPa) e diferencial (40 a 250 KPa), atendem a utilização interna da área de produção e exploração da Petrobras. A simples substituição da máquina de ensaio e seus instrumentos é suficiente para a calibração em uma faixa mais ampla, utilizando-se da mesma metodologia. Para alcançar os resultados, um dispositivo de amplificação de pressão foi desenvolvido neste estudo e utilizado em cada extremidade do transmissor de pressão, para aumentar a pressão desde valores próximos da atmosférica, que podem ser medidos com boa exatidão e repetitividade, até sua pressão de operação. Durante sua utilização, a pressão diferencial em suas extremidades é deduzida a partir dos valores medidos próximos da pressão atmosférica e do fator de amplificação. A incerteza dos resultados foi estimada e a metodologia foi utilizada para mostrar que a curva de calibração de um transmissor de pressão varia com sua pressão de operação.

Palavras-chave

Metrologia; transmissor diferencial de pressão; transdutor capacitivo; calibração de transmissores de pressão.

Abstract

Di Salvio, Luiz Alberto; Orlando, Alcir de Faro. (Advisor) **Influence of the operation pressure on the performance of a differencial pressure transmitter – A metrological analysis.** – Rio de Janeiro, 2008. 140p. MSc. Dissertation – Centro Técnico Científico, Pontificia Universidade Católica do Rio de Janeiro.

This paper deals with an experimental analysis of the static pressure influence upon the measurement of the differential pressure. Using capacitive or silicon resonator transducers, the electronic transmitters used in the experiment are thoroughly diffused nowadays due to their repetitiveness, reproducibility, accuracy and low hysteresis. The measurement of the differential pressure is widely employed in the petrol industry for determining the flow rate, level, blockage of filters and the oil-water interface. The calibration of the differential pressure transmitters is made in Brazil at atmospheric pressure, since there is little concern about the static pressure influence on the transducer performance. As a main contribution, this study presents a calibration methodology of differential pressure transmitters, still unavailable in the country, increasing its reliability and reducing the uncertainty of measuring the flow of liquid or gaseous substances. The ranges of the studied static pressure (from 0 to 20000 KPa) and differential pressure (from 40 to 250 KPa) cover Petrobras production and exploration operating conditions. The same methodology can be applied to wider ranges, by properly sizing the calibrating device and the related instruments. To achieve the results, a pressure amplification device was developed and used at each port of the pressure transmitter. A methodology was also developed in this study to determine the amplification factor from near atmospheric values, which can be measured very accurately, up to the operating pressure of the transmitter. Thus, during the calibration of a pressure transmitter, the pressure differential at the transmitter ports is deduced from the measured value at nearly atmospheric pressure and the amplification factor. The uncertainty of the results were estimated and the methodology was used for the calibration of a pressure transmitter, showing that its calibrating curve varies with the operating pressure.

Keywords

Metrology; Differential Pressure Transmitter; Capacitive Transducer; Pressure Transmiter Calibration.

Sumário

1.	Introdução 1.1. Apresentação 1.2. Objetivos	17 17 18
2.	Fundamentos Teóricos 2.1. Conceitos Metrológicos 2.1.1. O Sistema Internacional de Unidades 2.1.2. Padrão 2.1.3. Padrão de Referência 2.1.4. Padrão Primário 2.1.5. Padrão Nacional 2.1.6. Calibração 2.1.7. Rastreabilidade 2.1.8. Exatidão de Medição 2.1.9. Repetitividade 2.1.10. Reprodutibilidade 2.1.11. Histerese 2.1.12. Calibração de um Instrumento 2.1.13. Mensurando 2.2. Pressão 2.2.1. Conceito de Pressão 2.2.2. Pressão Diferencial 2.2.3. Pressão Absoluta 2.2.4. Pressão Absoluta 2.2.4. Pressão Atmosférica 2.2.6. Instrumentos de medição de pressão 2.2.7. Balança de Peso Morto 2.2.7.2. Correções 2.2.8. Manômetro 2.2.8.1. Descrição 2.2.8.1. Descrição 2.2.9. Análise das Incertezas 2.2.10. Introdução ao Guia para Expressão da Incerteza de Medição 2.2.11. Metodologia para Obtenção da Incerteza	$\begin{array}{c} 19\\ 19\\ 19\\ 20\\ 20\\ 20\\ 21\\ 21\\ 22\\ 22\\ 23\\ 23\\ 25\\ 26\\ 27\\ 28\\ 28\\ 30\\ 30\\ 32\\ 33\\ 36\\ \end{array}$
3.	 Princípios de medição usados pelos Transmissores a serem utilizados 3.1. O Capacitor 3.1.1. Descrição Geral 3.1.2. Capacitância 3.1.3. Energia 3.1.4. Circuitos Elétricos 3.1.5. Associação de Capacitores 3.1.6. Aplicações 3.2. Sensores por Silício Ressonante 3.2.1. Conceitos Básicos 3.2.2. Considerações de Projeto 3.2.2.1. A Idéia Básica 	 39 39 39 41 43 44 45 48 48

 3.2.2.2. Porque o Uso do Silício 3.2.3. Porque o uso do Ressonador Torcional 3.2.4. Porque Bobina de somente uma Volta? 3.2.5. Porque Detecção Capacitiva e Realimentação 	51 53 55 59
4. Transmissores Utilizados nos Experimentos	66
4.1. O transmissor de Pressão com elemento Sensor em Célula	00
Capacitiva de Fabricação SMAR. 4 1 1. Descrição Eurocional	60 67
4.1.1. Descrição l'uncional 4.1.2. Tipos de Transmissores	69
4.1.3. Selo Remoto	70
4.1.4. Ligações do Transmissor	70
4.1.5. Descrição Funcional do Sensor	73
4.1.6. Descrição Funcional dos Circuitos	74
4.1.7. Principais Características Técnicas	77
4.1.8. Especificações de Desempenno	79
4.2. O Transmissor com elemento de síncio ressonante de labricação Yokogawa	81
4.2.1. Introdução	81
4.2.2. Transdutores de Pressão	81
4.2.3. Elemento Principal de Medição de Pressão	82
4.2.4. Desempenho do Sensor de Silício Ressonante	83
4.2.5. O Transmissor Série EJA	84
4.2.5.1. Exatidão	85
4.2.5.2. Efeitos da Pressão Estática e Temperatura	85
4.2.5.3. Sobre pressao	80
4.2.5.4. ESIDUIIUDUE 4.2.6. Especificações gerais do Transmissor de Pressão Diferencial	07
modelo FJX110A	87
4.2.6.1. Span e Limites de Faixa	88
4.2.6.2. Especificação de Conformidade	88
4.2.6.3. Exatidão para o Span Calibrado	88
4.2.6.4. Efeitos da Temperatura Ambiente por alteração de 28 ⁰ C	89
4.2.6.5. Estabilidade em Condições normais de Operação	89
4.2.6.6. Efeitos da Tensão de Alimentação	89
4.2.6.7. Tempo de Resposta	90
4.2.7. Especificações Funcionais	90 90
4.2.7.2 Auto Diagnóstico	90
4.2.8. Condições Normais de Operação	90
4.2.8.1. Limites de Temperatura Ambiente	90
4.2.8.2. Limites de pressão de trabalho	90
4.2.8.3. Tensão de suprimento e carga vista pelo transmissor	90
4.2.8.4. Tensão de Suprimento	91
4.2.9. Instalação do Transmissor	91 01
4.2.9.1. Exemplos de Conexao de Linna de Impulso 4.2.9.2. Copeção dos Cabos do Alimontação o Singlio esive do	91
Transmissor	92

PUC-Rio - Certificação Digital Nº 0513371/CB

5. Procedimento Experimenta	93
5.1. A Máquina de Teste	93
5.1.1. Descrição	93
5.1.2. Procedimento de Calculo das constantes $\alpha \in \beta$.	97
5.1.3. Calibração da Máquina de Teste	97
5.1.3.1. Calibração do cilindro " x "	98
5.1.3.2. Calibração do cilindro " Y "	100
5.1.3.3. Conclusões da Calibração da Máquina de Teste	101
5.2. Calibração dos Transmissores	102
5.2.1. Metodologia da Calibração	102
5.2.1.1. Calibrações para pressão estática igual a atmosférica	103
5.2.2. Calculo de Incerteza das Calibrações dos transmissores	103
5.2.2.1. Para pressões estáticas de 100 kgf/cm ² a 200 kgf/cm ²	103
5.2.2.2. Para pressão estática igual a pressão atmosférica	104
5.3. Calibração do Transmissor Yokogawa	104
5.4. Análise dos resultados da calibração	115
5.5. Calibração do Transmissor SMAR	116
5.6. Análise dos resultados da calibração	127
6. Conclusões Finais	128
Referências Bibliográficas	130
Apêndices	132

Lista de Figuras

Figura 1 Pressão em um fluído estático em função da posição	24
Figura 2 Elevadores Hidráulicos	25
Figura 3 Pressão diferencial	26
Figura 4 Comparação entre pressão absoluta e manométrica	27
Figura 5 Esquemático de uma balança de peso morto	29
Figura 6 Manômetro para medição de pressão com fluidos estáticos	31
Figura 7 O capacitor de placas planas paralelas	40
Figura 8 Polarização em um capacitor energizado	42
Figura 9 Associação de capacitores em paralelo	43
Figura 10 Associação de capacitores em série	44
Figura 11 Disposição Física dos Sensores de Silício Ressonante	45
Figura 12 Conjunto do Sensor de Silício propriamente dito	46
Figura 13 Esquemático do Conjunto Sensor	46
Figura 14 Circuito Eletrônico Equivalente	47
Figura 15 Gráfico mostrando as Freqüências de Saída X Pressão	48
Figura 16 Estrutura Básica e Seção em corte do Ressonador	50
Figura 17 Esquemático em Blocos do Sensor	51
Figura 18 Tipos de Vibração de uma Barra	53
Figura 19 Ressonadores Torcionais	54
Figura 20 Dimensões da Bobina	56
Figura 21 Ótimo Torque em função da Razão W/L	57
Figura 22 Cálculos computacionais das Configurações das Bobinas e Torques	58
Figura 23 Diferentes Técnicas de Detecção da Vibração	59

Figura 24 Diagrama em Blocos da Malha de Realimentação Capacitiva	61
Figura 25 Arranjo e Dimensões do Capacitor de Detecção	62
Figura 26 Alteração na capacitância do capacitor de detecção, para largos ângulos de deslocamento e diferentes distâncias entre as placas.	64
Figura 27 Alteração na capacitância do capacitor de detecção, para pequenos ângulos de deslocamento e diferentes distâncias entre as placas.	e 64
Figura 28 Esquemático da Célula Capacitiva	68
Figura 29 Esquemático interno do Transmissor de Pressão	69
Figura 30 Selo remoto para conexão ao processo	70
Figura 31 Localização do Transmissor e Tomadas	71
Figura 32 Ligação do LD301, trabalhando como transmissor.	72
Figura 33 Reta de Carga	72
Figura 34 Célula Capacitiva	73
Figura 35 Curva de Carga Externa X Tensão de Alimentação	77
Figura 36 Corrente de saída X Variável, mostrando saturação e falha do Equipamento	78
Figura 37 Chip do sensor de silício	82
Figura 38 variação das freqüências em função da pressão aplicada ao sensor	83
Figura 39 Estabilidade do sensor de silício ressonante (com compensação ao longo do tempo) 84
Figura 40 O transmissor série EJA	85
Figura 41 Erros de linearidade e histerese em função da pressão de entrada	86
Figura 42 Desvios devido as mudanças de temperatura e pressão estática	86
Figura 43 Erro em função de ciclos de sobre pressão	87
Figura 44 Relação entre a fonte de tensão e a resistência de carga externa	91
Figura 45 Instalação de linha de impulso, para líquido, gás e vapor	92

Figura 46 Conexão dos cabos de alimentação ao transmissor	92
Figura 47 Desenho esquemático dos 02 êmbolos dentro do cilindro	94
Figura 48 Vista geral da Máquina de Teste	96
Figura 49 Relação entre Pa e Pb, mostrando a equação da reta ajustada (cil. X)	99
Figura 50 Relação entre Pa e Pb, mostrando a equação da reta ajustada (cil. Y)	101
Figura 51 Relação entre o ∆P _{real} e ∆P lido pelo transmissor (Pressão atmosférica)	105
Figura 52 Relação entre o erro e o ΔP_{real} (Pressão atmosférica)	105
Figura 53 Relação entre o ΔP_{real} e ΔP lido pelo transmissor (100kgf/cm ²)	106
Figura 54 Relação entre o erro e o ΔP_{real} (100kgf/cm ²)	107
Figura 55 Relação entre o ΔP_{real} e ΔP lido pelo transmissor (100kgf/cm ²)	108
Figura 56 Relação entre o erro e o o ΔP_{real} (100kgf/cm ²)	108
Figura 57 Relação entre o ΔP_{real} e ΔP lido pelo transmissor (100kgf/cm ²)	109
Figura 58 Relação entre o erro e o ΔP_{real} (100kgf/cm ²)	110
Figura 59 Relação entre o ΔP_{real} e ΔP lido pelo transmissor (160kgf/cm ²)	111
Figura 60 Relação entre o erro e o ΔP_{real} (160kgf/cm ²)	111
Figura 61 Relação entre o ΔP_{real} e ΔP lido pelo transmissor (100kgf/cm ²)	112
Figura 62 Relação entre o erro e o ΔP_{real} (100kgf/cm ²)	113
Figura 63 Relação entre o ΔP_{real} e ΔP lido pelo transmissor (200kgf/cm ²)	114
Figura 64 Relação entre o erro e o o ΔP_{real} (200kgf/cm ²)	114
Figura 65 Relação entre o ΔP_{real} e ΔP lido pelo transmissor para várias pressões estáticas	115
Figura 66 Relação entre o ∆P _{real} e ∆P lido pelo transmissor (Pressão atmosférica)	116
Figura 67 Relação entre o erro e o o ΔP_{real} (Pressão atmosférica)	117
Figura 68 Relação entre o ΔP_{real} e ΔP lido pelo transmissor (100 kgf/cm ²)	118

Figura 69 Relação entre o erro e o ΔP_{real} (100kgf/cm ²)	118
Figura 70 Relação entre o ΔP_{real} e ΔP lido pelo transmissor (120kgf/cm ²)	119
Figura 71 Relação entre o erro e o ΔP_{real} (120kgf/cm ²)	120
Figura 72 Relação entre o ΔP_{real} e ΔP lido pelo transmissor (140kgf/cm ²)	121
Figura 73 Relação entre o erro e o ΔP_{real} (200kgf/cm ²)	121
Figura 74 Relação entre o ΔP_{real} e ΔP lido pelo transmissor (160kgf/cm ²)	122
Figura 75 Relação entre o erro e o ΔP_{real} (160kgf/cm ²)	123
Figura 76 Relação entre o ΔP_{real} e ΔP lido pelo transmissor (180kgf/cm ²)	124
Figura 77 Relação entre o erro e o ΔP_{real} (180kgf/cm ²)	124
Figura 78 Relação entre o ΔP_{real} e ΔP lido pelo transmissor (200kgf/cm ²)	125
Figura 79 Relação entre o erro e o ΔP_{real} (200kgf/cm ²)	126
Figura 80 Relação entre o ΔP_{real} e ΔP lido pelo transmissor para várias pressões estáticas	127

Lista de tabelas

Tabela 1 - Configurações ótimas para uma dada área (10 ⁶ µm)	57
Tabela 2 – Posição do transmissor em relação ao fluido de processo	71
Tabela 3 – Span e limite de faixa para os três tipos de cápsula	88
Tabela 4 – Exatidão para cápsula tipo H	88
Tabela 5 – Exatidão para cápsula tipo M	89
Tabela 6 – Exatidão para cápsula tipo L	89
Tabela 7 – Efeitos da temperatura para cápsulas tipo L, M e H	89
Tabela 8 - Especificação dos componentes da máquina de teste	95
Tabela 9 - valores medidos no cilindro "X"	98
Tabela 10 - valores medidos no cilindro "Y"	100
Tabela 11 – Calibração a pressão atmosférica	104
Tabela 12 – Calibração a pressão de 100 kgf/cm ²	106
Tabela 13 – Calibração a pressão de 120 kgf/cm²	107
Tabela 14 – Calibração a pressão de 140 kgf/cm ²	109
Tabela 15 – Calibração a pressão de 160 kgf/cm²	110
Tabela 16 – Calibração a pressão de 180 kgf/cm²	112
Tabela 17 – Calibração a pressão de 200 kgf/cm²	113
Tabela 18 – Calibração a pressão de atmosférica	116
Tabela 19 – Calibração a pressão de 100 kgf/cm ²	117
Tabela 20 – Calibração a pressão de 120 kgf/cm²	119
Tabela 21 – Calibração a pressão de 140 kgf/cm²	120
Tabela 22 – Calibração a pressão de 160 kgf/cm ²	122

Tabela 23 – Calibração a pressão de 180 kgf/cm²	123
Tabela 24 – Calibração a pressão de 200 kgf/cm²	125

Lista de símbolos e nomenclaturas

Inmetro – Instituto Nac. de Metrologia , Normalização e Qualidade Industrial

- Nist National Institute of Standards and Technology
- BIPM Bureau International des Poids et Mesures
- CIPM Comitê International de Pesos e Medidas
- CGPM Conferência Geral de Pesos e Medidas
- RBC Rede Brasileira de Laboratório de Calibração
- A, Af Área , Área do flutuador
- df Diâmetro da Base do Flutuador
- dF ; dA ; dP Derivada da força , da área , da pressão
- E Força do empuxo sobre o flutuador
- F Força qualquer
- glocal- Aceleração da Gravidade Local .

g_{standard} – Aceleração da gravidade normal ao nível do mar .

- P; p Pressão em unidades do SI, pressão em unidade qualquer.
- ΔP Pressão diferencial
- Mf Massa do flutuador
- U Incerteza Expandida
- K Fator de abrangência