4 Resultados Numéricos

Neste capítulo, são apresentadas as estimativas dos valores dos parâmetros de desempenho de erro em dois cenários. No primeiro cenário, o enlace sofre apenas degradação devida a chuvas, enquanto que, no segundo, degradações devidas a chuvas e interferências externas são consideradas simultaneamente.

As metodologias apresentadas no Capítulo 3 foram utilizadas para estimar as taxas EBR, SER, SESR e BBER em enlaces do sistema fixo terrestre localizados em latitudes de $20^{\circ}S$, 0° e $20^{\circ}N$. Em cada uma dessas latitudes foi escolhido um valor de longitude correspondente à posição geográfica em terra, na qual as interferências externas (geradas por sistemas de satélite HEO) fossem significativas. As localizações consideradas são apresentadas na Tabela 4.1.

Tabela 4.1: Localização dos receptores

Pontos	P_1	P_2	P_3
Latitude	$20^{\circ}S$	0°	$20^{\circ}N$
Longitude	300°	310°	77°

As características dos enlaces do serviço fixo terrestre (enlaces vítimas) são apresentadas na Tabela 4.2.

Características do enlace	
Frequência	18 GHz
Comprimento	8 km
Polarização	Vertical
Ângulo de elevação	0°
Ganho da antena receptora	48 dB
Número de bits por bloco	801
Número de blocos por segundo	192000
Modulação	QPSK e QAM-128

Tabela 4.2: Características do enlace terrestre

O comportamento estatístico da atenuação causada por chuvas, representado por sua FPDC $C_x(\chi)$, é calculada pelo procedimento descrito na Recomendação ITU-R P.530-11, apresentado no Apêndice C.

As interferências externas consideradas nos exemplos apresentados foram provenientes de três sistemas HEO de satélites, todos com os mesmos parâmetros técnicos e a mesma estrutura orbital. Duas diferentes estruturas orbitais foram utilizadas. Os detalhes de cada uma delas são apresentados na Tabela 4.3.

	Estrutura A	Estrutura B
Altitude do apogeu (km)	39520	27288,3
Altitude do perigeu	950	517,4
Excentricidade	0,7247	$0,\!66$
Inclinação do plano orbital (graus)	63,4	$63,\!435$
Período orbital (h)	12	8
Número de planos orbitais	9	15 (9N, 6S)
Argumento do perigeu	-90°	-90° para N, 90° para S
Número de satélites por plano	1	1
Latitude ativa mínima	54	45

Tabela 4.3: Características técnicas dos sistemas HEO

O comportamento estatístico da razão I/N correspondente à interferência agregada gerada por três sistemas HEO, todos com os mesmos parâmetros técnicos e com a mesma estrutura orbital, foi determinada em [13] para sistemas com as estruturas orbitais da Tabela 4.3. A partir desses resultados, foi possível obter o comportamento estatístico da degradação devida às interferências externas consideradas em cada um dos exemplos, uma vez que esta degradação se escreve

$$Y = 1 + \frac{I}{N} \tag{4-1}$$

ou, em dB,

$$y = 10\log\left(1 + 10^{\frac{i/n}{10}}\right) \tag{4-2}$$

onde i/n é a razão I/N em dB.

Note que (4-2) permite escrever

$$C_{y}(\gamma) = 1 - F_{y}(\gamma)$$

$$= 1 - P\left(10log\left(1 + 10^{\frac{i/n}{10}}\right) \le \gamma\right)$$

$$= 1 - P\left(\frac{i}{n} \le 10log\left(10^{\gamma/10} - 1\right)\right)$$

$$= 1 - F_{i/n}\left(10log\left(10^{\gamma/10} - 1\right)\right)$$

$$= C_{i/n}\left(10log\left(10^{\gamma/10} - 1\right)\right)$$
(4-3)

Conforme mencionado anteriormente, as metodologias apresentadas no Capítulo 3 foram utilizadas para estimar os parâmetros de desempenho de erro em receptores do serviço fixo terrestre localizados em três latitudes distintas: $20^{\circ}S$, 0° e $20^{\circ}N$. Em cada uma dessas latitudes, duas estruturas orbitais foram consideradas para os satélites HEO responsáveis pelas interferências externas (ver Tabela 4.3). E ainda, em cada latitude e para cada estrutura orbital, foi determinado o valor de azimute de apontamento da antena receptora para o qual são atingidos valores significativos de atenuação. Os resultados para cada uma dessas latitudes são apresentados nas seções 4.1, 4.2 e 4.3 para $\alpha = 10$.

4.1

Caso 1: Receptor localizado na latitude 20°S

Neste caso, a longitude escolhida foi 300° (ver Tabela 4.1). Para estas coordenadas, foram calculados os valores da taxa de chuva $R_{0,01}$ e da atenuação $A_{0,01}$ excedidos por 0,01% do período referente a um ano. Estes valores são iguais a

$$R_{0,01} = 60 \ mm/h \tag{4-4}$$

$$A_{0,01} = 23,93 \,\mathrm{dB} \tag{4-5}$$

Com base nestes dados, são determinados os valores A_P (em dB) de atenuação excedidos durante a percentagem de tempo P (ou seja, com probabilidade p = P/100) que, considerando-se (C-8), são dados por

$$A_P = 1,675P^{-(0,855+0,139\log_{10}(P))} , 10^{-3} \le P \le 1$$
(4-6)

O intervalo de validade dos valores de A_P calculados por (4-6) é dado por $[A_1, A_{0,001}]$, ou seja, por [1, 7, 34, 5].

Na definição da FDPC da degradação x devida a chuvas, considera-se a probabilidade p_w da atenuação ser excedida no pior mês. Esta probabilidade é obtida a partir da percentagem de tempo P com que A_P é excedida no período de um ano, de acordo com a metodologia da Recomendação ITU-R P.841-4. O resultado desta metodologia é apresentado no Apêndice C.2. Tem-se assim

$$p_w = \frac{P_w}{100} \tag{4-7}$$

onde P_w é alculado a partir de P através de (C-8).

A FDPC de x é, então, obtida através da relação

$$C_x(\chi)\Big|_{\chi=A_P} = p_w \quad , \tag{4-8}$$

variando-se A_P de $-\infty$ a $+\infty$.

Note que essa FDPC só é válida para X no intervalo

$$I_x = [1, 7, 34, 5] \,\mathrm{dB}$$
 (4-9)

A Figura 4.1 apresenta a Função Distribuição de Probabilidade Cumulativa de x $(C_x(X))$ para latitude de 20°S e longitude de 300°.

Figura 4.1: Função Distribuição Cumulativa de x para latitude de $20^\circ S$ e longitude de 300°

Interferência Externa: três sistemas HEO com Estrutura Orbital A

Neste caso, a função densidade de probabilidade $(p_y(\gamma))$ e a função distribuição de probabilidade cumulativa $(C_y(\gamma))$ da degradação y, obtidas a partir dos resultados de [13], são as apresentadas na Figura 4.2. O azimute escolhido tem valor igual a 359° .

Figura 4.2: Função Densidade de Probabilidade $(p_y(\gamma))$ e Função Distribuição de Probabilidade Cumulativa $(C_y(\gamma))$ de y para latitude de 20°S e longitude de 300° (Estrutura orbital A)

O comportamento estatístico da degradação z, representado por sua FDPC é determinado por (3-56). Como mencionado no Capítulo 3, pelo conhecimento parcial da FDPC da variável x, a FDPC de z $C_z(\Gamma)$ é conhecido apenas no intervalo I_z . Para o caso específico destas coordenadas e da interferência gerada por satélites com Estrutura A, tal intervalo é igual a

$$I_z = [15, 3, 35, 2] \,\mathrm{dB}$$
 (4-10)

A FDPC da variável aleatória zé ilustrada na Figura 4.3

Figura 4.3: Função Distribuição Cumulativa de z para latitude de 20°S e longitude de 300° (Estrutura orbital A)

As FDPCs das variáveis r_{eb} , r_{es} , r_{ses} e r_{bbe} foram determinadas a partir dos relacionamentos em (3-22), (3-11), (3-12) e (3-14) para os dois cenários aqui considerados (chuva e chuva com interferência). Em cada cenário, foram consideradas as modulações QPSK e QAM-128. Essas FDPCs foram determinadas para diferentes valores de $(E_b/N_0)_{cs_{[dB]}}$. As FDPCs correspondentes aos valores $(E_b/N_0)_{cs_{[dB]}} =$ 39 dB e $(E_b/N_0)_{cs_{[dB]}} =$ 49 dB são ilustradas nas Figuras 4.4 e 4.5, respectivamente.

Figura 4.4: FDPC das variáveis aletórias r_{eb} , r_{es} , r_{ses} e r_{bbe} para latitude de 20°S, longitude de 300° (Estrutura orbital A e modulação QPSK) e $(E_b/N_0)_{cs_{[dB]}} = 39$ dB (curva sólida : chuva, curva tracejada : chuva e interferência)

Figura 4.5: FDPC das variáveis aletórias r_{eb} , r_{es} , r_{ses} e r_{bbe} para latitude de 20°S, longitude de 300° (Estrutura orbital A e modulação QAM-128) e $(E_b/N_0)_{cs_{[dB]}} = 49$ dB (curva sólida : chuva, curva tracejada : chuva e interferência)

As Figuras 4.6 a 4.9 apresentam curvas dos limitantes inferiores e superiores para as estimativas dos parâmetros de desempenho de erro, em função de $(E_b/N_0)_{cs_{[dB]}}$ para as modulações QPSK e QAM-128. Estas figuras permitem uma avaliação da folga entre os limitantes de cada estimativa, bem como uma comparação entre os valores dos diferentes parâmetros de desempenho de erro.

Figura 4.6: Taxa de bloco errado para latitude de 20°S e longitude de 300° e Estrutura orbital A

Pela Figura 4.7 observa-se que, para garantir um valor de ESR= $2x10^{-3}$, a margem de $(E_b/N_0)_{cs_{[dB]}}$ na presença de chuva e interferência deve ser 4 dB acima da margem referente a situação onde a chuva é a única fonte de degradação do sinal e observa-se ainda que a margem para modulação QAM-128 deve ser 13 dB acima da margem para modulação QPSK. Da mesma forma, pela Figura (4.8), é possível verificar que, para manter um valor de SESR= $2x10^{-4}$, o acréscimo na margem de $(E_b/N_0)_{cs_{[dB]}}$ é de 3 dB quando se comparam os cenários na presença de chuva e na presença de chuva e interferência. Quando são consideradas as modulações QPSK e QAM-128, esta diferença de margem é de 11 dB.

Figura 4.7: Taxa de segundo errado para latitude de 20°
 Se longitude de 300° e Estrutura orbital A

Figura 4.8: Taxa de segundo severamente errado para latitude de 20°Se longitude de 300° e Estrutura orbital A

Figura 4.9: Taxa de bloco errado de fundo para latitude de 20°Se longitude de 300° e Estrutura orbital A

Interferência Externa: três sistemas HEO com Estrutura Orbital B

A função densidade de probabilidade $(p_y(\gamma))$ e a função distribuição de probabilidade cumulativa $(C_y(\gamma))$ da degradação y devida a interferências geradas por satélites com estrutura orbital B estão ilustradas na Figura 4.10. O azimute escolhido tem valor igual a 138°.

Figura 4.10: Função Densidade de Probabilidade $(p_y(\gamma))$ e Função Distribuição Cumulativa $(C_y(\gamma))$ de y para latitude de 20°S e longitude de 300° (Estrutura orbital B)

O intevalo $I_z(\Gamma)$ da FDPC do fator de degradação zpara esta situação é igual a

$$I_z = [25 , 34, 6] \,\mathrm{dB}$$
 (4-11)

A FDPC da variável aleatória z é ilustrada na Figura 4.11.

Figura 4.11: Função Distribuição Cumulativa de z para latitude 20°Se longitude 300° (Estrutura orbital B)

As Figuras 4.12 e 4.13 ilustram as FDPCs das variáveis r_{eb} , r_{es} , r_{ses} e r_{bbe} para $(E_b/N_0)_{cs_{[dB]}} = 39 \text{ dB}$ e $(E_b/N_0)_{cs_{[dB]}} = 49 \text{ dB}$, respectivamente.

Figura 4.12: FDPC das variáveis aletórias r_{eb} , r_{es} , r_{ses} e r_{bbe} para latitude 20°S, longitude 300° (Estrutura orbital B e modulação QPSK) e $(E_b/N_0)_{cs_{[dB]}} = 39$ dB (curva sólida : chuva, curva tracejada : chuva e interferência)

Figura 4.13: FDPC das variáveis aletórias r_{eb} , r_{es} , r_{ses} e r_{bbe} para latitude 20°S, longitude 300° (Estrutura orbital B e modulação QAM-128) e $(E_b/N_0)_{cs_{[dB]}} = 49$ dB (curva sólida : chuva, curva tracejada : chuva e interferência)

As Figuras numeradas de 4.14 a 4.17 apresentam as curvas dos limitantes inferiores e superiores em função de $(E_b/N_0)_{cs_{[dB]}}$.

Figura 4.14: Taxa de bloco errado para latitude 20°Se longitude 300° e Estrutura orbitl ${\rm B}$

Figura 4.15: Taxa de segundo errado para latitude 20°Se longitude 300° e Estrutura orbitl ${\rm B}$

Figura 4.16: Taxa de segundo severamente errado para latitude 20°Se longitude 300° e Estrutura orbitl ${\rm B}$

Figura 4.17: Taxa de bloco errado de fundo para latitude 20°Se longitude 300° e Estrutura orbitl B

4.2

Caso 2: Receptor localizado na latitude 0º

A longitude escolhida para este caso foi 310°. Os valores da taxa chuva $R_{0,01}$ e da atenuação $A_{0,01}$ excedidos por 0,01% do período referente a um ano para estas coordenadas são iguais a

$$R_{0,01} = 100 \ mm/h \tag{4-12}$$

$$A_{0,01} = 30,81 \,\mathrm{dB} \tag{4-13}$$

Os valores A_P de atenuação (em dB) excedidos durante a pecentagem Psão determinados por

$$A_P = 2,157P^{-(0,855+0,139\log_{10}(P))} , 10^{-3} \le P \le 1$$
(4-14)

O intervalo I_x para estas coordenadas é igual a

$$I_x = [2, 2, 44, 4] \,\mathrm{dB}$$
 (4-15)

A Figura 4.18 apresenta a Função Distribuição de Probabilidade Cumulativa de x $(C_x(X))$ para este Caso.

Figura 4.18: Função Distribuição Cumulativa de x para latitude de 0° e longitude de 310°

Interferência Externa: três sistemas HEO com Estrutura Orbital A

A Figura 4.19 ilustra a função densidade de probabilidade $(p_y(\gamma))$ e a função distribuição de probabilidade cumulativa $(C_y(\gamma))$ da degradação y para este caso específico. O azimute escolhido tem valor igual a 334°.

Figura 4.19: Função Densidade de Probabilidade $(p_y(\gamma))$ e Função Distribuição Cumulativa $(p_y(\gamma))$ de y para latitude de 0° e longitude de 310° (Estrutura orbital A)

O intervalo I_z , no qual a FDPC de z é conhecida, tem valor igual a

$$I_z = [17, 8, 49, 2] \,\mathrm{dB}$$
 (4-16)

A FDPC da variável aleatória zé ilustrada na Figura 4.20

Figura 4.20: Função Distribuição Cumulativa de z para latitude 0° e longitude 310° (Estrutura orbital A)

As FDPCs das variáveis r_{eb} , r_{es} , r_{ses} e r_{bbe} correspondentes a $(E_b/N_0)_{cs_{[dB]}} =$ 39 dB e $(E_b/N_0)_{cs_{[dB]}} =$ 49 dB para os dois cenários e para as duas modulações considerados estão apresentadas nas Figuras 4.21 e 4.22.

Figura 4.21: FDPC das variáveis aletórias r_{eb} , r_{es} , r_{ses} e r_{bbe} para latitude 0°, longitude 310° (Estrutura orbital A e modulação QPSK) e $(E_b/N_0)_{cs_{[dB]}} = 39$ dB (curva sólida : chuva, curva tracejada : chuva e interferência)

Figura 4.22: FDPC das variáveis aletórias r_{eb} , r_{es} , r_{ses} e r_{bbe} para latitude 0°, longitude 310° (Estrutura orbital A e modulação QAM-128) e $(E_b/N_0)_{cs_{[dB]}} = 49$ dB (curva sólida : chuva, curva tracejada : chuva e interferência)

As Figuras numeradas de 4.23 a 4.26 apresentam os limitantes para os parâmetros de desempenho de erro em função de $(E_b/N_0)_{cs_{[dB]}}$.

Figura 4.23: Taxa de bloco errado para latitude 0° e longitude 310°

Figura 4.24: Taxa de segundo errado para latitude 0° e longitude 310° e Estrutura orbital A

Figura 4.25: Taxa de segundo severamente errado para latitude 0° e longitude 310° e Estrutura orbital A

Figura 4.26: Taxa de bloco errado de fundo para latitude 0° e longitude 310° e Estrutura orbital A

Interferência Externa: três sistemas HEO com Estrutura Orbital B

A função densidade de probabilidade $(p_y(\gamma))$ e a função distribuição de probabilidade cumulativa $(C_y(\gamma))$ da degradação y para este caso estão ilustradas na Figura 4.27. O azimute escolhido tem valor igual a 155°.

Figura 4.27: Função Densidade de Probabilidade $(p_y(\gamma))$ e Função Distribuição Cumulativa $(p_y(\gamma))$ de y para latitude de 0° e longitude de 310° (Estrutura orbital B)

O intevalo $I_z(\Gamma)$ da FDPC do fator de degradação z para este caso é igual a

$$I_z = [24, 9, 44, 5] \,\mathrm{dB}$$
 (4-17)

A FDPC da variável aleatória zé ilustrada na Figura 4.28.

Figura 4.28: Função Distribuição Cumulativa de z para latitude 0° e longitude 310° (Estrutura orbital B)

As Figuras 4.29 e 4.30 ilustram as FDPCs das variáveis r_{eb} , r_{es} , r_{ses} e r_{bbe} para $(E_b/N_0)_{cs_{[dB]}} = 39 \text{ dB}$ e $(E_b/N_0)_{cs_{[dB]}} = 49 \text{ dB}$, respectivamente.

Figura 4.29: FDPC das variáveis aletórias r_{eb} , r_{es} , r_{ses} e r_{bbe} para latitude 0°, longitude 310° (Estrutura orbital B e modulação QPSK) e $(E_b/N_0)_{cs_{[dB]}} = 39$ dB (curva sólida : chuva, curva tracejada : chuva e interferência)

Figura 4.30: FDPC das variáveis aletórias r_{eb} , r_{es} , r_{ses} e r_{bbe} para latitude 0°, longitude 310° (Estrutura orbital B e modulação QAM-128) e $(E_b/N_0)_{cs_{[dB]}} = 49$ dB (curva sólida : chuva, curva tracejada : chuva e interferência)

As Figuras numeradas de 4.31 a 4.34 apresentam as curvas dos limitantes inferiores e superiores em função de $(E_b/N_0)_{cs_{[dB]}}$.

Figura 4.31: Taxa de bloco errado para latitude 0° e longitude 310° e Estrutura orbital B

Figura 4.32: Taxa de segundo errado para latitude 0° e longitude 310° e Estrutura orbital B

Figura 4.33: Taxa de segundo severamente errado para latitude 0° e longitude 310° e Estrutura orbital B

Figura 4.34: Taxa de bloco errado de fundo para latitude 0° e longitude 310° e Estrutura orbital B

4.3

Caso 3: Receptor localizado na latitude $20^{\circ}N$

Para latitude 20°N, a longitude escolhida foi 77°. Para estas coordenadas, foram calculados os valores da taxa chuva $R_{0,01}$ e da atenuação $A_{0,01}$ excedidos por 0,01% do período referente a um ano. Estes valores são iguais a

$$R_{0,01} = 60 \ mm/h \tag{4-18}$$

$$A_{0,01} = 23,93 \,\mathrm{dB} \tag{4-19}$$

Com base nestes dados, são determinados os valores de atenuação A_P (em dB) excedidos durante a percentagem de tempo P por

$$A_P = 1,675P^{-(0,855+0,139\log_{10}(P))} , 10^{-3} \le P \le 1$$
(4-20)

O intervalo $I_{\boldsymbol{x}}$ para este caso é igual a

$$I_x = [1, 7, 34, 5] \,\mathrm{dB}$$
 (4-21)

A Figura 4.35 apresenta a Função Distribuição de Probabilidade Cumulativa de x $(C_x(X))$ para este Caso.

Figura 4.35: Função Distribuição Cumulativa de x para latitude de $20^\circ N$ e longitude de 77°

Interferência Externa: três sistemas HEO com Estrutura Orbital A

Para este caso específico, a função densidade de probabilidade $(p_y(\gamma))$ e a função distribuição de probabilidade cumulativa $(C_y(\gamma))$ da degradação y são as ilustradas na Figura 4.45(b). O azimute escolhido tem valor igual a 34°.

Figura 4.36: Função Densidade de Probabilidade $(p_y(\gamma))$ e Função Distribuição Cumulativa $(p_y(\gamma))$ de y para latitude de 20°N e longitude de 77° (Estrutura orbital A)

O intervalo I_z no qual a FDPC de z é conhecida tem valor igual a

$$I_z = [25, 2, 34, 8] \,\mathrm{dB}$$
 (4-22)

A FDPC da variável aleatória zé ilustrada na Figura 4.37

Figura 4.37: Função Distribuição Cumulativa de z para latitude 20°N e longitude 77° (Estrutura orbital A)

As FDPCs das variáveis r_{eb} , r_{es} , r_{ses} e r_{bbe} correspondentes a $(E_b/N_0)_{cs_{[dB]}} =$ 39 dB e $(E_b/N_0)_{cs_{[dB]}} =$ 49 dB para os dois cenários e para as duas modulações considerados estão apresentadas nas Figuras 4.38 e 4.39.

Figura 4.38: FDPC das variáveis aletórias r_{eb} , r_{es} , r_{ses} e r_{bbe} para latitude 20°N, longitude 77° (Estrutura orbital A e modulação QPSK) e $(E_b/N_0)_{cs_{[dB]}} = 39$ dB (curva sólida : chuva, curva tracejada : chuva e interferência)

Figura 4.39: FDPC das variáveis aletórias r_{eb} , r_{es} , r_{ses} e r_{bbe} para latitude 20°N, longitude 77° (Estrutura orbital A e modulação QAM-128) e $(E_b/N_0)_{cs_{[dB]}} = 49$ dB (curva sólida : chuva, curva tracejada : chuva e interferência)

As Figuras numeradas de 4.40 a 4.43 apresentam os limitantes para os parâmetros de desempenho de erro em função de $(E_b/N_0)_{cs_{[dB]}}$.

Figura 4.40: Taxa de bloco errado para latitude 20°
 Ne longitude 77° e Estrutura orbital A

Figura 4.41: Taxa de segundo errado para latitude 20°N e longitude 77° e Estrutura orbital A

Figura 4.42: Taxa de segundo severamente errado para latitude 20°Ne longitude 77° e Estrutura orbital A

Figura 4.43: Taxa de bloco errado de fundo para latitude 20°N e longitude 77° e Estrutura orbital A

Interferência Externa: três sistemas HEO com Estrutura Orbital B

A Figura 4.44 ilustra a função densidade de probabilidade $(p_y(\gamma))$ e a função distribuição de probabilidade cumulativa $(C_y(\gamma))$ da degradação y para este caso. O azimute escolhido tem valor igual a 41°.

Figura 4.44: Função Densidade de Probabilidade $(p_y(\gamma))$ e Função Distribuição Cumulativa $(p_y(\gamma))$ de y para latitude de 20°N e longitude de 77° (Estrutura orbital B)

O intevalo $I_z(\Gamma)$ da FDPC do fator de degradação z para este caso é igual a

$$I_z = [24, 8, 34, 6] \,\mathrm{dB}$$
 (4-23)

A FDPC da variável aleatória zé ilustrada na Figura 4.45.

Figura 4.45: Função Distribuição Cumulativa de z para na latitude de $20^\circ N$ e longitude de 77° (Estrutura orbital B)

As Figuras 4.46 e 4.47 ilustram as FDPCs das variáveis r_{eb} , r_{es} , r_{ses} e r_{bbe} para $(E_b/N_0)_{cs_{[dB]}} = 39 \text{ dB}$ e $(E_b/N_0)_{cs_{[dB]}} = 49 \text{ dB}$, respectivamente.

Figura 4.46: FDPC das variáveis aletórias r_{eb} , r_{es} , r_{ses} e r_{bbe} para latitude 20°N, longitude 77° (Estrutura orbital B e modulação QPSK) e $(E_b/N_0)_{cs_{[dB]}} = 39$ dB (curva sólida : chuva, curva tracejada : chuva e interferência)

Figura 4.47: FDPC das variáveis aletórias r_{eb} , r_{es} , r_{ses} e r_{bbe} para latitude 20°N, longitude 77° (Estrutura orbital B e modulação QAM-128) e $(E_b/N_0)_{cs_{[dB]}} = 49$ dB (curva sólida : chuva, curva tracejada : chuva e interferência)

As Figuras numeradas de 4.48 a 4.51 apresentam as curvas dos limitantes em função de $(E_b/N_0)_{cs_{[dB]}}$.

Figura 4.48: Taxa de bloco errado para latitude 20°
 Ne longitude 77° e Estrutura orbital B

Figura 4.49: Taxa de segundo errado para latitude 20°N e longitude 77° e Estrutura orbital B

Figura 4.50: Taxa de segundo severamente errado para latitude 20°N e longitude 77° e Estrutura orbital B

Figura 4.51: Taxa de bloco errado de fundo para latitude 20°N e longitude 77° e Estrutura orbital B