Referências Bibliográficas

[1] ADAM, K.. Optimal monetary policy with imperfect common knowledge. Journal of Monetary Economics (Forthcoming), 54(2):267-301, March 2007. 1
[2] ANGELETOS, G.-M.; PAVAN, A.. Transparency of information and coordination in economies with investment complementarities. American Economic Review, 94(2):91-98, May 2004. 1
[3] BERNANKE, B.. Fedspeak. In: FBR SPEECH, JANUARY 3, 2004, 2004.
[4] BLANCHARD, O. J.; KIYOTAKI, N.. Monopolistic competition and the effects of aggregate demand. American Economic Review, 77(4):647-66, September 1987. 2
[5] CRAWFORD, V. P.; SOBEL, J.. Strategic information transmission. Econometrica, 50(6):1431-51, November 1982. 1, 3.3, 1, 4, 4
[6] DINCER, N. N.; EICHENGREEN, B.. Central bank transparency: Where, why, and with what effects? Working Paper 13003, National Bureau of Economic Research, March 2007. 1
[7] FERGUSON, R. W.. Recent changes in household finances and home lending. In: FBR SPEECH,NOVEMBER 18,2005, 2005.
[8] GREENSPAN, A.. Tranparency in monetary policy. In: FBR SPEECH, OCTOBER 11, 2001, 2001.
[9] HELLWIG, C.. Heterogeneous information and the benefits of public information disclosures (october 2005). UCLA Economics Online Papers 283, UCLA Department of Economics, Feb. 2005. 1
[10] ISSING, O.. Monetary policy implications of heterogeneity in a currency area. In: DINNER SPEECH, FRANKFURT 13 AND 14 DECEMBER 2004, 2004.
[11] KRISHNA, V.; MORGAN, J.. The art of conversation: eliciting information from experts through multi-stage communication. Journal of Economic Theory, 117(2):147-179, August 2004. 1
[12] KYDLAND, F. E.; PRESCOTT, E. C.. Rules rather than discretion: The inconsistency of optimal plans. Journal of Political Economy, 85(3):473-91, June 1977. 2
[13] LORENZONI, G.. News shocks and optimal monetary policy. NBER Working Papers 12898, National Bureau of Economic Research, Inc, 2007. 1
[14] MORRIS, S.; SHIN, H. S.. Rethinking Multiple Equilibria in Macroeconomic Modeling, volumen 15, chapter 3, p. 139-161. NBER Macroeconomics Annual, 2000. 1
[15] MORRIS, S.; SHIN, H. S.. Social value of public information. American Economic Review, 92(5):1521-1534, December 2002. 1
[16] MORRIS, S.; SHIN, H. S.. Global games: Theory and aplications. In: Dewatripont, M.; Hansen, L. ; Turnovsky, S., editors, ADVANCES IN ECONOMICS AND ECONOMETRICS, p. 56-114. Cambridge University Press, 2003. 1
[17] PIGA, G.. Dependent and accountable: Evidence from the modern theory of central banking. Journal of Economic Surveys, 14(5):563-595, December 2000. 2
[18] ROMER, C. D.; ROMER, D. H.. Federal reserve information and the behavior of interest rates. Amercian Economic Review, 90(3):429-457, June 2000. 1
[19] STEIN, J. C.. Cheap talk and the fed: A theory of imprecise policy announcements. American Economic Review, 79(1):32-42, March 1989. 1
[20] SVENSSON, L. E.. Social value of public information: Morris and shin (2002) is actually pro transparency, not con. NBER Working Papers 11537, National Bureau of Economic Research, Inc, Aug. 2005. 1
[21] WOODFORD, M.. Imperfect common knowledge and the effects of monetary policy. NBER Working Papers 8673, National Bureau of Economic Research, Inc, Dec. 2001. 1

A

Primeiro Apêndice

After observing a message s_{n}, the firms can infer that the state lies in [$\left.\theta_{n}, \theta_{n+1}\right]$ so that

$$
\begin{aligned}
E\left[\theta \mid s_{n}, x_{i}\right] & =\operatorname{Pr}(I=1) E\left(\theta \mid s_{n}, x_{i}, I=1\right)+\operatorname{Pr}(I=0) E\left(\theta \mid s_{n}, x_{i}, I=0\right) \\
& =q x_{i}+(1-q) y_{n}
\end{aligned}
$$

where $y_{n} \equiv E\left(\theta \mid s_{n}\right)=\frac{\theta_{n}+\theta_{n-1}}{2}$.

Now, if receiver $j \neq i$ follows a strategy of the form

$$
\begin{equation*}
p_{j}=k x_{j}+(1-k) y_{n}, \tag{A-1}
\end{equation*}
$$

the average price level will be:

$$
\begin{aligned}
\bar{p} \mid s_{n}, \theta & =\int_{j} p_{j} d j=\int_{x} f(x \mid \theta) P_{j}\left(x, s_{n}\right) \\
& =q k \theta+(1-q k) y_{n}
\end{aligned}
$$

so that

$$
E\left[\bar{p} \mid s_{n}, x_{j}\right]=q k E\left[\theta \mid s_{n}, x_{j}\right]+(1-q k) y_{n} .
$$

Plugging the above in firm $i^{\prime} s$ best response one gets:

$$
\begin{aligned}
p_{i} & =(1-r) E\left(\theta \mid s_{n}, x_{i}\right)+r\left[k q E\left(\theta \mid s_{n}, x_{i}\right)+(1-k q) y_{n}\right] \\
& =q(1-r(1-k q)) x_{i}+(1-q(1-r(1-k q))) y_{n} .
\end{aligned}
$$

which takes exactly the same form as A-1 for

$$
k=q(1-r(1-q k)) \quad \Rightarrow k=\underbrace{\left(\frac{q(1-r)}{1-r q^{2}}\right)}_{<1}<q .
$$

This discussion proves proposition 4

