
5
Constant Factor Approximation for the
k-Hotlink Assignment Problem

In this section we present the first algorithm for the k-Hotlink Assignment

Problem that attains a constant factor approximation. This algorithm is

motivated by the observation that the entropy of the weight function w

provides a good lower bound on the cost of optimal k-assignments for trees of

‘low’ degree (maximum degree ≈ k), and that there is an algorithm that works

well for these bounded degree trees [DL06]. Based on these facts, our algorithm

greedily decomposes T into subtrees of low degree and then determines a good

assignment for these subtrees using a modified version of the algorithm from

[DL06]. In our analysis, we obtain a lower bound on the optimal solution and an

upper bound on the returned solution in terms of the costs of the assignment for

the subtrees. Thus, the approximation guarantee of the algorithm is basically

a constant times the guarantee of the approximation used to compute the

assignment for the subtrees.

Consider a tree T rooted at node r and a weight function w. For every

node u ∈ T , we define the cumulative weight of u as the weight of its

descendants, namely w(Tu). A heavy k-tree Q of T is defined recursively as

follows: r belong to Q; for every node u in Q, the k non-leaf children of u with

greatest cumulative weight also belong to Q (if there are less than k non-leaf

children then all of them belong to Q).

For q ∈ Q, if j is a child of q that does not belong to Q, then we define

T j
q as the subtree Tj. Also define T q as the union of T j

q over all meaningful j’s

(Figure 5.1.a). In order to simplify the notation during the analysis, we often

omit the range of variables indexing the trees T j
q ’s.

The algorithm proceeds as follows:

(i) Find a heavy k-tree Q of T and for each q ∈ Q define w′(q) =

w(T q)/w(T).

(ii) Calculate a non-crossing k-assignment AQ for the instance (Q,w′) based

on the modification of the algorithm proposed in [DL06].

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 5. Constant Factor Approximation for the k-Hotlink Assignment

Problem 38

1

T
b
3

3

5

T
a
1

T
c
3

T 3 T
d
5

(a)

T 1

T 5

1

3

5T 1

T 3

T 5

(b)

Figure 5.1: (a) Structures T j
q and T q, with the nodes of the heavy 1-tree in

gray. (b) Node 1 captures T 3, so c3 = 1. Also nodes 1 and 5 capture their own
forests T 1 and T 5.

(iii) Calculate recursively a k-assignment Aj
q for each instance (T j

q , w).

(iv) Output the assignment A = AQ ∪
⋃

q,j Aj
q.

We remark that w′ may be positive for some internal nodes of Q, so the

algorithm from [DL06] cannot be employed directly in Step (ii). However, in

Section A.4(a) of the appendix we present a modification of this algorithm

that can be used instead. Finally, it should be clear from the definition of the

algorithm that it outputs a non-crossing k-assignment for T .

5.1 Upper Bound

In this section we devise an upper bound for the expected path of the

enhanced tree returned by the presented algorithm.

Now notice that the trees {T j
q } define a partition of T − Q and that Q

does not contain any leaf of T . Therefore, the trees {T j
q } contain all leaves

of T and by hypothesis all nodes of T with nonzero weights. Thus it suffices

to analyze the paths in T + A from r to nodes of the trees {T j
q } in order to

provide a bound for the cost of A.

Consider a tree T j
q and a node u of it. Informally, as there are no hotlinks

in A going straight inside this subtree, a user walking from r to u in T + A

has to go to node q by using hotlinks assigned to the heavy k-tree Q, then go

to node j and finally continue his path to u. That is, the path from r to u in

T + A has the form (r ; q → j ; u)1. Weighting over all nodes in the trees

1A more formal argument is that because there are no hotlinks in A from proper ancestors
of j to descendants of j and because A is a non-crossing assignment, Definition 1-(ii) implies
that T j

q ⊆ Tq(A) and T j
q ⊆ Tj(A).

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 5. Constant Factor Approximation for the k-Hotlink Assignment

Problem 39

{T j
q } we have:

EP(T,A) =
∑

q∈Q

∑

j

∑

u∈T j
q

((d(r, q, T + A) + 1 + d(j, u, T + A)) w(u)

= w(T) +
∑

q∈Q

d(r, q, T + A)w(T q) +
∑

q∈Q

∑

j

∑

u∈T j
q

d(j, u, T + A)w(u)

= w(T) + w(T)
∑

q∈Q

d(r, q,Q + AQ)w′(q) +
∑

q∈Q

∑

j

EP(T j
q , Aj

q)

where the last equality follow from Proposition 1.

Notice that the summation
∑

q∈Q d(r, q,Q + AQ)w′(q) that appears in

the right-hand side of the above equality is exactly the cost of the assignment

for (Q,w′) constructed at Step (ii) of the algorithm. For any multiset W

we define the entropy of W as H(W) = −
∑

w∈W w log w
∑

w′∈W w′ . Using the

modified version of the algorithm from [DL06], the summation
∑

q∈Q d(r, q,Q+

AQ)w′(q) can be bounded by 4H({w′(q)})/ log(k + 1) + 4w(T). Therefore,

substituting this bound on inequality (1) and noticing that w(T)·H({w′(q)}) =

H({w(T q)}), we have our upper bound:

EP(T,A) ≤ 5w(T) +
4H({w(T q)})

log(k + 1)
+

∑

q∈Q

∑

j

EP(T j
q , Aj

q) (1)

5.2 Entropy Lower Bound

In this section we devise a lower bound on the cost of an optimal

assignment for (T,w) in terms of the entropy of the multiset {w(T q)}.

Consider a non-crossing optimal k-assignment A∗ for T . We say that

a node q ∈ Q captures a forest T u if it satisfies the following conditions

simultaneously: (i) q has either a hotlink or an arc pointing to a node in

T u; (ii) no proper ancestor of q in Q satisfies (i). Then, we use cu to denote

the node of Q that captures the forest T u (Figure 5.1.b).

A crucial observation is that every user path in T + A∗ from r to nodes

in T q must contain cq – otherwise users would have to use a hotlink to ‘jump’

over cq and there would be a crossing between this hotlink and the one from cq

pointing to T q, which contradicts the fact that A∗ is non-crossing. The following

lemma, which is proved in the appendix, states this important property.

Lemma 9 Consider some node q in Q and let u be a node in T q. Then, the

user path from r to u in T + A∗ contains the node cq.

Therefore, for each node u ∈ T j
q we can decompose the user path (r ; u)

into (r ; cq) and (cq ; u), hence d(r, u, T +A∗) = d(r, cq, T +A∗)+d(cq, u, T +

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 5. Constant Factor Approximation for the k-Hotlink Assignment

Problem 40

A∗). Weighting this distance over all nodes u in T j
q , we have:

EP(T,A)T j
q

= d(r, cq, T + A∗)w(T j
q) +

∑

u∈T j
q

d(cq, u, T + A∗)w(u)

Using Lemma 2 with T ′ = T j
q and v = cq to lower bound the last term of

the expression, we have that EP(T,A∗)T j
q
≥ d(r, cq, T +A∗)w(T j

q)+OPTk(T
j
q).

It follows again by the fact that the trees {T j
q } contain all nodes of T with

nonzero weight that OPTk(T) =
∑

q∈Q

∑

j EP(T,A∗)T j
q

and hence:

OPTk(T) ≥
∑

q∈Q

∑

j

d(r, cq, T + A∗)w(T j
q) +

∑

q∈Q

∑

j

OPTk(T
j
q)

=
∑

q∈Q

d(r, cq, T + A∗)w(T q) +
∑

q∈Q

∑

j

OPTk(T
j
q) (2)

Before proceeding with the lower bounding of OPTk(T) we need to

rearrange the previous inequality. The first observation is that a node q ∈ Q

can capture at most k + 1 different forests {T u}, because all of its arcs point

to the same T u. Therefore, a node q can appear at most k + 1 times as the

second parameter of the distance function on the left-hand side of inequality

(2). Let wi
q be the weight w(T q′) on the ith term that q appears (we zero some

of these weights accordingly if q appears in less than k +1 of the terms). Then

we can write (2) as:

OPTk(T) ≥
∑

q∈Q

[

d(r, q, T + A∗) ·
∑

i

wi
q

]

+
∑

q∈Q

∑

j

OPTk(T
j
q) (3)

The idea now is to see the first summation of the previous inequality

as the cost of reaching nodes in Q when they are endowed with weights

{
∑

i w
i
q}q∈Q. Because Q has low degree, we can employ Shannon’s Coding

Theorem [Gallager68] as done in [BKK+00] to obtain a good lower bound for

this term.

Lemma 10
∑

q∈Q

[

d(r, q, T + A∗) ·
∑

i w
i
q

]

≥ H({w(T q)})

2 log(k+1)
− w(T)

Proof : Before being able to use Shannon’s Coding Theorem as in [BKK+00],

we need to normalize the weights {wq
i } and then ‘propagate’ them to (new)

leaves of Q.

Notice that
∑

q∈Q

∑

i w
i
q =

∑

q∈Q w(T q) = w(T). Thus we define the

normalized weights as w′i
q = wi

q/w(T).

Now we construct a tree Q′ by adding k + 1 leaves {q1, . . . , qk+1} to

each node q ∈ Q. Also, we define the following weight function w′: for each

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 5. Constant Factor Approximation for the k-Hotlink Assignment

Problem 41

new leaf qi, let w′(qi) = w′i
q and let w′(q) = 0 for every other node q of Q′.

This construction guarantees that only the leaves of Q′, which are {qi}, have

nonzero weight with respect to w′.

Notice that A∗ do not have hotlinks pointing to nodes {qi}. Then it is

easy to see that the path from r to qi in Q′ + A∗ is exactly the path from r to

q in Q + A∗ plus one hop from q to qi. Therefore:

EP(Q′, A∗, w′) =
∑

q∈Q

k+1
∑

i=1

(d(r, q, T + A∗) + 1)w′(qi)

=
∑

q∈Q

[

d(r, q, T + A∗) ·
k+1
∑

i=1

w′(qi)

]

+
∑

q∈Q

k+1
∑

i=1

w′(qi)

=
1

w(T)

∑

q∈Q

[

d(r, q, T + A∗) ·
k+1
∑

i=1

wi
q

]

+ 1 (4)

The next step is to bound the cost EP(Q′, A∗, w′). Recall that the user

paths of Q′ + A∗ define a tree Q′A∗
(see Figure 1.1). We argue that this tree

has degree at most 3k + 1. Because Q has degree at most k, even with the

addition of the new leaves the tree Q′ has degree at most 2k + 1. Moreover,

each node of Q′ has at most k hotlinks in A∗, and consequently each node of

Q′ has at most 3k + 1 arcs or hotlinks in Q′ + A∗. This in turn implies that

Q′A∗
has degree at most 3k + 1.

Let E denote the expected path (with respect to w′) from the root of

Q′A∗
to its leaves. Clearly a leaf in Q′ must also be a leaf in Q′A∗

. Therefore, w′

is a probability function on the leaves of Q′A∗
and we can employ Shannon’s

Coding Theorem to lower bound E by H({w′(q)})/ log(3k + 1). In addition,

as internal nodes of Q′A∗
are also internal nodes of Q′ and therefore have zero

weight with respect to w′, it follows that E is also the expected path from the

root of Q′A∗
to all of its nodes. Finally, it is easy to see that this expected

path to all nodes of Q′A∗
is exactly EP(Q′, A∗, w′). Combining the previous

observations, we have that:

EP(Q′, A∗, w′) = E ≥
H({w′(q)})

log(3k + 1)
(5)

Because k ≥ 1, it follows that k2 ≥ k ⇒ k2 + 2k + 1 ≥ 3k + 1 ⇒

(k + 1)2 ≥ 3k + 1. Therefore, log(3k + 1)) ≤ 2 log(k + 1). Employing this

bound on inequality (5) and noticing that {w′(q)} = {w′i
q } = {wi

q/w(T)} =

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 5. Constant Factor Approximation for the k-Hotlink Assignment

Problem 42

{w(T q)/w(T)}, we have:

EP(Q′, A∗, w′) ≥
H({w′(q)})

2 log(k + 1)
=

H({w(T q)/w(T)})

2 log(k + 1)
=

H({w(T q)})

w(T) · 2 log(k + 1)
(6)

where the last equality holds due to the definition of H(.).

The result then follows by chaining inequalities (4) and (6) and multi-

plying the resulting inequality by w(T). �

Applying Lemma 10 to inequality (3) leads to the completion of the lower

bound for the cost of an optimal k-assignment for T :

OPTk(T) ≥
H({w(T q)})

2 log(k + 1)
− w(T) +

∑

q∈Q

∑

j

OPTk(T
j
q) (7)

5.3 Alternative Lower Lound

When the value of the entropy H({w(T q)}) is large enough, it dominates

the term w(T) in inequality (7) and we have a sufficiently strong lower bound.

However, when this entropy assumes a small value we need to adopt a different

strategy to devise an effective bound.

First, we need to refine the definition of capturing forests of T . A node

q ∈ Q captures a tree T j
u with respect to T + A∗ if it satisfies the following

conditions simultaneously: (i) q has either a hotlink in A∗ or an arc in T

pointing to a node in T j
u ; (ii) no proper ancestor of q in Q satisfies (i). Then,

we use cj
u to denote the node of Q that captures the tree T j

u with respect to

T + A∗. The following lemma can be proved exactly as Lemma 9:

Lemma 11 Consider some node q in Q and let u be a node in a tree T j
q .

Then, the user path from r to u in T + A∗ contains the node cj
q.

For each q in the heavy k-tree Q, we define HLq as roots of the trees {T j
q }

that have a node adopted by r, that is HLq = {j : (r, u) ∈ A∗ for some u ∈

T j
q }.

Consider a tree T j
r such that j /∈ HLr. As there are no hotlinks from r to

nodes in T j
r , the user path in T + A∗ from r to a node u ∈ T j

r is (r → j ; u).

This implies that d(r, u, T + A∗) = 1 + d(j, u, T + A∗). Weighting this equality

over all u ∈ T j
r and employing Lemma 2 with T ′ = T j

r and v = j, we have

that:

EP(T,A∗)T j
r

=
∑

u∈T j
r

(1 + d(j, u, T + A∗))w(u) ≥ w(T j
r) + OPTk(T

j
r)

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 5. Constant Factor Approximation for the k-Hotlink Assignment

Problem 43

Now for q 6= r, consider a tree T j
q such that j /∈ HLq. By the definition

of HLq and the hypothesis on q, there cannot be a hotlink or an arc in T +A∗

from r to a node in T j
q . Therefore, the node cj

q that captures T j
q must be

different than r. Since Lemma 11 states that the path from r to a node u ∈ T j
q

is (r ; cj
q ; u), the previous observation implies that d(r, u, T + A∗) ≥

1 + d(cj
q, u, T + A∗). Again, weighting this inequality over all u ∈ T j

q and then

applying Lemma 2, we have that EP(T,A∗)T j
q
≥ w(T j

q) + OPTk(T
j
q).

Finally, for any q ∈ Q and for any node j ∈ HLq, we can use Lemma 2

with T ′ = T j
q and v = r to obtain the lower bound EP(T,A∗)T j

q
≥ OPTk(T

j
q).

Recalling that all leaves of T belong to the trees {T j
q }, we can combine

the previous lower bounds to attain the following bound for EP(T,A∗):

EP(T,A∗) ≥
∑

q∈Q

∑

j /∈HLq

w(T j
q) +

∑

q∈Q

∑

j

OPTk(T
j
q) (8)

Now we argue that the first term of the right-hand side is at least a

significant fraction of the total weight w(T), more specifically w(T)/2. The

reasoning used is roughly the following: we can associate (uniquely) to each

node j ∈ HLq a sibling j′ of j which belongs to the heavy k-tree Q. Therefore,

we can associate to each tree T j
q with j ∈ HLq a different tree Tj′ such that

w(Tj′) ≥ w(T j
q). This in turn will imply that the sum of the weight of the trees

{T j
q }q,j∈HLq

is at most w(T)/2. Because the trees {T j
q } contain all nodes of T

with nonzero weight, this implies that the weight of the trees {T j
q }q,j /∈HLq

is at

least w(T)/2.

In order accomplish the crucial association among nodes in HLq and

their siblings, we define the set NHLq in the following way: a node u belongs

to NHLq if u is a child of q in Q and if no node of Tu is pointed by a hotlink

from r in A∗. Furthermore, we focus on the nodes q ∈ Q for which HLq is not

empty, hence we define C = {q ∈ Q : HLq 6= ∅}. The argument is then divided

in the following claims:

Claim 1. For any node q ∈ Q,
∑

u∈NHLq
w(Tu) ≥

∑

j∈HLq
w(T j

q).

Claim 2. For any node q ∈ Q, consider a tree T j
q such that j ∈ HLq. Then

for any u in
⋃

q∈Q NHLq the trees Tu and T j
q are disjoint.

Claim 3. For any two distinct nodes u and u′ in
⋃

q∈C NHLq, the trees Tu

and Tu′ are disjoint.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 5. Constant Factor Approximation for the k-Hotlink Assignment

Problem 44

Proof of Claim 1. Consider a node q ∈ Q. If HLq is empty then the

claim follows trivially, hence assume that HLq is nonempty. This implies

that some tree T j
q exists and consequently that exactly k children of q in T

belong to Q. Let {q1, . . . , qk} be these children of q that belong to Q. Because

j ∈ HLq implies that j /∈ Q, it follows that the trees {Tqi
}k

i=1 and the trees

{T j
q }j∈HLq

= {Tj}j∈HLq
are pairwise disjoint. Therefore, at least |HLq| of the

hotlinks of r in A∗ point to nodes in the trees {T j
q }j∈HLq

and consequently

at most k − |HLq| hotlinks of r in A∗ point to nodes in the tress {Tqi
}k

i=1.

Moreover, at least |HLq| of the trees {Tqi
}k

i=1 do not have a node pointed by

a hotlink from r. This implies that at least |HLq| of the nodes {q1, . . . , qk}

belong to NHLq, namely |NHLq| ≥ |HLq|. For each u ∈ NHLq and j ∈ HLq,

the fact that u belongs to the heavy k-tree Q and that j /∈ Q implies that

w(Tu) ≥ w(Tj) = w(T j
q). As a consequence of the last two sentences, we have:

∑

u∈NHLq

w(Tu) ≥
∑

j∈HLq

w(T j
q)

and the claim follows.

Proof of Claim 2. Consider a tree T j
q with j ∈ HLq and a node u ∈

⋃

q∈Q NHLq. Because both u and the root of T belong to the tree Q, it follows

that all ancestors of u in T must also belong to Q. As j /∈ Q, j cannot be an

ancestor of u. By means of contradiction suppose that j is a descendant of u.

As T j
q ∈ HL, there is a node x in T j

q = Tj which is pointed by a hotlink from

r in A∗. However, the hypothesis implies that x is also descendant of u and

contradicts the fact that u ∈
⋃

q∈Q NHLq. Because j is neither an ancestor

nor a descendant of u, together with the fact that both Tu and T j
q = Tj are

maximal subtrees of T , we have that these trees must be disjoint.

Proof of Claim 3. The argument is similar to the one used in the previous

claim. First, fix a node q ∈ C; as any two nodes u 6= u′ in NHLq are children

of q in T , it follows that the trees Tu and Tu′ are disjoint. Therefore, consider

two different nodes q and q′ in C and let u be a node in NHLq and u′ a

node in NHLq′ . By means of contradiction suppose that u is an ancestor of

u′. The fact that q 6= q′ implies that u 6= u′ as well, which in turn implies

that u is a proper ancestor of u′. Consequently, u is an ancestor of the father

of u′, that is, q′ ∈ Tu. Because q′ belongs to C there must be a node x in Tq′

(more specifically in some tree T j
q′) that is pointed by a hotlink from r in A∗.

Therefore x ∈ Tq′ ⊆ Tu, which contradicts the fact that u belongs to NHLq.

A symmetric argument proves that u′ also cannot be an ancestor of u. Again,

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 5. Constant Factor Approximation for the k-Hotlink Assignment

Problem 45

as Tu and Tu′ are maximal subtrees, this implies that Tu and Tu′ are disjoint.

Adding the inequality of Claim 1 for all q ∈ C, we have:

∑

q∈C

∑

u∈NHLq

w(Tu) ≥
∑

q∈C

∑

j∈HLq

w(T j
q) (9)

From Claims 2 and 3 we know that the trees that appear in the previous

inequality are pairwise disjoint. Therefore, the sum of their weights cannot

exceed the weight of the tree T :

∑

q∈C

∑

u∈NHLq

w(Tu) +
∑

q∈C

∑

j∈HLq

w(T j
q) ≤ w(T)

This fact combined with inequality (9) gives:

∑

q∈Q

∑

j∈HLq

w(T j
q) =

∑

q∈C

∑

j∈HLq

w(T j
q) ≤

w(T)

2

Recalling that the trees {T j
q } contain all nodes of T with nonzero weights,

we can express the last inequality as
∑

q∈Q

∑

j /∈HLq
w(T j

q) ≥ w(T)/2. Applying

this bound on inequality (8) we complete the lower bound:

OPTk(T) ≥
w(T)

2
+

∑

q∈Q

∑

j

OPTk(T
j
q) (10)

5.4 Approximation Guarantee

We finally compare the lower bounds for the cost of an optimal assign-

ment and the upper bound on the cost of the assignment returned by the

algorithm to obtain its approximation guarantee.

The proof goes by induction on the number of nodes of the input tree.

Assume that for any tree T ′ with fewer nodes than T the algorithm outputs

an α-approximate hotlink assignment for (T ′, w), for some constant α that we

make explicit later. For the base case of the induction, it should be clear that

if T ′ is an empty tree or a single leaf the hypothesis holds.

We argue that the result also holds for T . As each tree T j
q is properly

contained in T , we can employ the inductive hypothesis in the upper bound

given by (1):

EP(T,A) ≤ 5w(T) +
4H({w(T q)})

log(k + 1)
+

∑

q∈Q

∑

j

αOPTk(T
j
q) (11)

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 5. Constant Factor Approximation for the k-Hotlink Assignment

Problem 46

There are two cases that should be considered separately depending

whether the value of H({w(T q)})/ log(k + 1) dominates w(T) or not. In order

to simplify the notation, we henceforth use H as a shorthand for H({w(T q)}).

High entropy case: H/ log(k + 1) > 3w(T). From this hypothesis on the

entropy, it follows that −w(T) > −H/3 log(k+1). Substituting this inequality

in the lower bound of inequality (7), we have:

OPTk(T) >
H

6 log(k + 1)
+

∑

q∈Q

∑

j

OPTk(T
j
q) (12)

Also from the entropy hypothesis w(T) < H/3 log(k+1), and substituting

in the upper bound (11) we have:

EP(T,A) <
17H

3 log(k + 1)
+

∑

q∈Q

∑

j

αOPTk(T
j
q) (13)

By choosing α ≥ 34, inequalities (12) and (13) guarantee that

EP(T,A) ≤ α · OPTk(T), thus concluding the inductive step for this case.

Low entropy case: H/ log(k + 1) ≤ 3w(T). Combining this entropy hypoth-

esis with the upper bound given by inequality (11), we have:

EP(T,A) ≤ 17w(T) +
∑

q∈Q

∑

j

αOPTk(T
j
q) (14)

Again by choosing α ≥ 34, inequalities (10) and (14) guarantee that

EP(T,A) ≤ αOPTk(T). This completes the proof of the approximation

guarantee of the algorithm.

Theorem 5 The presented algorithm provides a constant factor approxima-

tion for the k-Hotlink Assignment Problem.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

