
Part I

k-Hotlink Assignment Problem

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA



1
Introduction

The huge growth of WWW has brought many new and interesting

challenges to computer scientists. The investigation of several algorithmic

problems related to search, classification and organization of information that

could not be well motivated before WWW age are, nowadays, central to its

good behavior. Among these problems, one that has attracted the attention of

some people in the TCS community is the problem of optimizing user access

in Web Sites. This problem can be addressed in different ways, which includes

increasing the bandwidth of the site, maintaining copies of content in different

servers and enhancing the site’s navigational structure. Here we are interested

in the latter approach.

On one hand, the navigational structure of a Web Site (its pages and its

links) is designed in a way to be meaningful and helpful to users. On the other

hand, it is not likely that the structure takes into account the fact that some

information are much more sought than others. In fact, it may happen that a

very ‘popular’ information is located much farther from the home page than

a ‘non popular’ one. Then, a reasonable approach to optimize the access in a

Web Site is enhancing its navigational structure through the addition of a set

of shortcuts (hotlinks). This keeps the original structure untouched and allows

reducing the expected length of the path from the home page to the desired

information. In the implementation of this approach, the number of added

shortcuts per page shall be small, otherwise pages may become polluted and

disturb the navigation process. This scenario leads to the following algorithmic

problem.

Problem Definition. Let G = (V,E) be a DAG with n nodes and a unique

root r, and let w : V → Q+ be a weight function. The graph G models the site

and w(v), for each v ∈ V , the popularity of a page v. A k-hotlink assignment

(k-assignment for short) A for G is a set of directed arcs that satisfies the

following properties: (i) both endpoints of arcs in A belong to V ; (ii) for each

node u ∈ V there can be at most k hotlinks of A leaving u.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA



Chapter 1. Introduction 11

The cost of an assignment A is given by EP(G,A,w) =
∑

u∈V d(r, u,G+

A)w(u), where d(r, u,G + A) is the length (in number of arcs) of the path

traversed by a typical user (this will be detailed soon) from r to u in the

enhanced graph G + A = (V,E ∪ A). An optimal assignment A∗ is one that

minimizes EP(G,A,w) over all possible assignments A. Given a DAG G, with

an unique source r, and a weight function w : V → Q+, the k−Hotlink

Assignment Problem (k−HAP for short) consists of finding an optimal k-

hotlink assignment for (G,w).

In this paper, we focus in the case where G is a directed tree T and the

desired information is always on the leaves of T , that is, w(u) = 0 for every

node u that is not a leaf of T (the case with positive weights on internal nodes

can be modeled via artificial leaves). As for the definition of distance d(·), the

cost spent by a typical user to find his (her) target information is directly

related to how he (she) navigates in the site. Two models of navigation have

been considered in the literature: the clairvoyant user model and the greedy

user model. The former is somehow unrealistic since it assumes that an user

has a map of the entire site so that he (she) always knows how to follow a

shortest path from the root to the target information. The latter assumes that

the user always follows the link (original link or hotlink) that leads him (her)

closest in the original tree T to his (her) target information (Figure 1.1).

(a) (b)
h1

h2

(c)

Figure 1.1: (a) Original tree. (b) Enhanced tree, with greedy paths in bold.
Hotlinks h1 and h2 are crossing. (c) Tree induced by user paths.

Like most of the papers in this subject, here we assume the greedy user

model. Henceforth, for every enhanced tree T + A and for every pair of nodes

u, v ∈ T , the path or the user path from u to v in T + A both refer to the path

that users under the greedy model follow when going from u to v in T + A.

The greedy assumption, together with the fact that T is a directed tree,

implies that only hotlinks from a node to its descendants can be followed by

users. Thus, we can assume w.l.o.g. that every hotlink point from a node to

one of its descendants in T .

Related Work. The idea of hotlinks was first suggested by Perkowitz and

Etzioni [PE97]. In [CKK+03], Czyzowicz et al. present experimental results

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA



Chapter 1. Introduction 12

showing the validity of the hotlink approach. In addition, they describe a

software tool to automatically assign hotlinks to web sites. Experimental

results also appear in [PLS04, Jacobs08]. Turning our attention to theoretical

results, in [BKK+00] Bose et. al. prove that the hotlink assignment problem

is NP-Complete for DAG’s in the clairvoyant user model. In addition, they

use Shannon’s coding theorem to prove that given a tree T and a normalized

weight function w, then EP(T,A,w) ≥ H(w)/(log(∆+1)), for every 1-hotlink

assignment A for T , where ∆ is the maximum degree of the input tree and

H(w) = −
∑

u∈T w(u) log w(u) is the entropy induced by w.

In [KKS01a], Kranakis et. al. present a quadratic time algorithm that

produces a 1-hotlink assignment A such that EP(T,A,w) ≤ H(w)∆
log ∆

(for

large ∆). In [DL05] and [DL06], Douieb and Langerman present algorithms

that construct 1-assignments whose associated costs are O(H(w)). This upper

bound together with the above entropy lower bound guarantee that these

methods provide a O(log n) approximation for the 1-HAP. In [DL06], it is

also presented a way to construct a k-assignment with cost O(H(w)/ log k).

The first algorithm with constant approximation ratio for the 1-HAP is due

to Jacobs [Jacobs07] – it runs in O(n4) and achieves 2-approximation. In this

same paper, Jacobs mentions that it is not clear how to extend his method to

guarantee a constant approximation for the k-HAP.

Exact algorithms for the 1-HAP were independently discovered by Ger-

stel at. al. [GKM+03] and Pessoa et. al. [PLS04] (see also [KGL+07] for a

journal version merging both papers). The algorithm of [GKM+03] is expo-

nential in the height of the input tree. Now notice that the paths that users

take to reach the desired information induce a tree on T +A (see Figure 1.1.c).

We denote such tree by TA. The algorithm of [PLS04], which can be viewed

as an optimized version of the one proposed in [GKM+03], has the following

property: for each integer D, it calculates in O(n3D) the best 1-assignment

among the 1-assignments A such that the height of TA is at most D.

Variants and applications of the hotlink assignment problem have also

been considered [BKL+03, MP04, PLS04b]. In [BKL+03], Bose et. al. discuss

the use of hotlink assignments in asymmetric communication protocols [AM01]

to achieve better performance bounds. The gain of a hotlink assignment A is

defined as the difference between the cost of the empty assignment and that

of assignment A. Matichin and Peleg proposed a polynomial time algorithm

that guarantees a constant approximation with respect to the maximum gain

for DAG’s [MP04]. In [Jacobs07], Jacobs proposes a PTAS for approximating

the maximum gain in trees. It shall be observed, however, that a constant

approximation with respect to the gain may represent a linear approximation

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA



Chapter 1. Introduction 13

gap with respect to the expected path length considered here. In addition, we

feel that the approximation in terms of the gain does not necessarily reflect

the quality of the assignment. As an example, a 0.9 approximation for the

gain (which is supposed to be a good approximation) may correspond to an

assignment of cost n/10 when the empty assignment (expected path length of

the input tree) has cost n and the optimal assignment has cost 1.

Statement of the Results. Our first contribution is the first FPTAS for

the 1-HAP. In order to obtain this result, we first prove that for any tree T

with n nodes and for any weight function w, there is an optimal assignment

A∗ for (T,w) such that the height of TA∗
is at most O(log w(T ) + log n). Once

this result is proved, a pseudo-polynomial time algorithm for the 1-HAP can

be obtained by executing the algorithm of [PLS04], mentioned in the previous

section, with D = c(log w(T ) + log n) for a suitable constant c. Then, we scale

the weights w in a fairly standard way to obtain the FPTAS. The difficult part

in obtaining our FPTAS is proving the bound on the height of TA∗
– it requires

the combination of different kinds of tree decompositions with a non trivial

transformation in the optimal tree. These results are presented in Section 4.

Our second contribution is the first constant approximation algorithm for

the k-HAP. This algorithm recursively decomposes the tree into heavy subtrees

of maximum degree k and it can be implemented in O(n log n) time. It is worth

mentioning that our algorithm coincides with the one proposed by Douieb and

Langerman [DL05] for the particular case where k = 1. Thus, our analysis

here shows that their algorithm provides a constant approximation for the 1-

HAP (this was not known before). Although other algorithms with constant

approximation do exist for the 1-HAP, the one by Douieb and Langerman has

the following advantages: it can be implemented in linear time and it can be

dynamized to handle insertions and deletion in logarithmic time. The key idea

to obtain our result is a novel lower bound on the cost of the optimal assignment

which is much stronger than the entropy-based one given in [BKK+00] –

roughly speaking, our lower bound is given by a sum of entropy-like functions

associated with the trees obtained due to our decomposition. This material is

presented in Section 5.

We shall notice that the complexity of both the 1-HAP and k-HAP

remains open. In addition, it is worth mentioning that the complexity of

these problems contrasts with their ‘worst case’ versions that are polynomially

solvable [PLS04b]. In fact, the ‘average case’ versions, studied here, are

examples of problems related to searching and coding whose complexities are

unknown. Another interesting example is the Huffman coding problem with

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA



Chapter 1. Introduction 14

unequal cost letters [Karp61, GKY02]. Finally, we remark that the problem

of binary searching in trees presented in the next part of this work also shares

this characteristic.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA




