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[LMP01] E. Laber, R. Milidiú and A. Pessoa. On binary searching with

non-uniform costs. In SODA, pages 855–864, 2001. 6

[CDK+04] R. Carmo, J. Donadelli, Y. Kohayakawa and E. Laber. Searching

in random partially ordered sets. Theor. Comput. Sci., 321(1):41–57,

2004. 6, 6

[KGL+07] S. Kutten, O. Gerstel, E. Laber, R. Matichin, D. Peleg, A. Pessoa

and C. Souza. Reducing human interactions in web directory

searches. ACM Transactions on Information Systems, (25), 2007. 1

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA



Bibliography 67

[CKK+03] J. Czyzowicz, E. Kranakis, D. Krizanc, A. Pelc and M. Martin.

Enhancing hyperlink structure for improving web performance.

Journal of Web Engineering, 1(2):93–127, March 2003. 1

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA



A
Hotlink Assignment Problem

A.1 Preliminary lemmas

Proposition 4 Consider a tree T rooted at node r and an assignment A for

T . Also consider nodes u, v ∈ T such that v is a proper descendant of u. Then

the path P from r to v in T +A has the form (r ; s → s′ ; v), where s is an

ancestor of u in T and s′ is a descendant of u in T . Moreover, if u /∈ P then

s and s′ are respectively a proper ancestor and a proper descendant of u in T

and (s, s′) ∈ A.

Lemma 15 (Local Change Lemma) Consider some tree T rooted at r

and a non-crossing assignment A for it. Let U be a subset of nodes of

T such that the trees {Tu(A)}u∈U are pairwise disjoint. For each u ∈ U ,

let Au be the hotlinks of A with both endpoints in Tu(A) and let A′
u be

another non-crossing assignment whose hotlinks have both endpoints in Tu(A).

Finally define A′ = A − (
⋃

u∈U Au) ∪ (
⋃

u∈U A′
u). Then the following holds: (i)

Tu(A
′) = Tu(A); (ii) if v does not belong to any {Tu(A)}u∈U or if v ∈ U ,

then d(r, v, T + A) = d(r, v, T + A′); (iii) if u ∈ U and v ∈ Tu(A), then

d(r, v, T + A′) = d(r, u, T + A) + d(u, v,Tu(A) + A′
u).

Proof : (i) Consider some u ∈ U . Also consider x, y ∈ T such that x is a

proper ancestor of u and y is a proper descendant of u. As u ∈ Tu(A), x and

y cannot belong both to the same subtree of T −Tu(A). In particular, both x

and y cannot belong to the same tree Tu′(A) with u′ ∈ U , and consequently

the hotlink (x, y) belongs to A if and only if it belongs to A′. The result then

follows by the definition of the trees Tu(A) and Tu(A
′).

(ii) Notice that the path in T + A from r to a node v /∈
⋃

u∈U Tu(A)

cannot contain a node x ∈
⋃

u∈U Tu(A), otherwise the path would be (r ;

u ; x ; v) for some u ∈ U , implying v ∈
⋃

u∈U Tu(A). Then, all nodes in

the path from r to v in T + A have the same hotlinks in A′ and in A. Then

Proposition 2 implies that the path from r to v is the same in T +A′ and T +A.

Notice that the path in T + A from r to a node u ∈ U cannot contain another

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA



Appendix A. Hotlink Assignment Problem 69

node u′ ∈ U different than u, otherwise this would imply that u ∈ Tu′(A) and

contradict the fact that the trees {Tu(A)}u∈U are pairwise disjoint. The result

then holds for u by the same arguments as before.

(iii) Consider a node u ∈ U and let v be a node in Tu(A). From (i)

we have that v ∈ Tu(A
′) and consequently d(r, v, T + A′) = d(r, u, T + A′) +

d(u, v, T + A′). From (ii) we have d(r, u, T + A′) = d(r, u, T + A). In addition,

Proposition 1 asserts that d(u, v, T + A′) = d(u, v,Tu(A) + A′
u) and the result

holds. �

Corollary 2 Consider some tree T rooted at r and a non-crossing assignment

A for it. Let U be a subsets of nodes of T such that the trees {Tu(A)}u∈U are

pairwise disjoint. For each u ∈ U let Au be the hotlinks of A with both endpoints

in Tu(A) and let A′
u another assignment whose hotlinks have both endpoints

in Tu(A). Finally define A′ = A − (
⋃

u∈U Au) ∪ (
⋃

u∈U A′
u). Then:

EP(T,A′) = EP(T,A) +
∑

u∈U

(EP(Tu(A), A′) − EP(Tu(A), A)) (1)

Proof : From Lemma 15, for all u ∈ U Tu(A
′) = Tu(A), and thus the trees

{Tu(A
′)} are pairwise disjoint. Therefore we can write the cost of A′ as:

EP(T,A′) =
∑

u∈U

EP(T,A′)Tu(A′) + EP(T,A′)T−
⋃

u∈U Tu(A′)

=
∑

u∈U

(d(r, u, T + A′)w(Tu(A
′)) + EP(Tu(A

′), A′)) + EP(T,A′)T−
⋃

u∈U Tu(A′)

=
∑

u∈U

(d(r, u, T + A)w(Tu(A)) + EP(Tu(A), A′
u)) + EP(T,A)T−

⋃

u∈U Tu(A)

where the third equality follows from properties of Lemma 15.

By similar derivation, we have that:

EP(T,A) =
∑

u∈U

(d(r, u, T + A)w(Tu(A)) + EP(Tu(A), Au)) + EP(T,A)T−
⋃

u∈U Tu(A)

Comparing the expressions for EP(T,A) and EP(T,A′) leads to the

result. �

Lemma 16 Consider a tree T rooted at node r and a k-hotlink assignment A

for T . There is a k-hotlink assignment A′ for T such that r does not have any

hotlink in A′ and that EP(T,A′) ≤ EP(T,A) + w(T ).

Proof : Without loss of generality, assume that A is non-crossing and that it

does not contain proper hotlinks.

The proof goes by induction on the number of nodes of T , with the trivial

base case when the tree is just a node. Suppose that the result holds for any
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tree T ′ with fewer nodes than T . Let δ(r) be the children of r in T , and for

each node i ∈ δ(r) let σi = {j ∈ Ti : (r, j) ∈ A}. Because there are only proper

hotlinks in A, each j ∈ σi must be a proper descendant of i, and it follows that

the trees Ti(A) and {Tj(A)}j∈σi
form a partition of nodes of Ti. For any node

i ∈ δ(r), the path to reach a node u in Ti(A) is (r → i ; u), and weighting

for all u ∈ Ti(A) we have EP(T,A)Ti(A) = w(Ti(A)) + EP(Ti(A), Ai), where

Ai = A|Ti(A). Also, for any node j ∈ σi, the path from r to u ∈ Tj(A)

is (r → j ; u). Thus EP(T,A)Tj(A) = w(Tj(A)) + EP(Tj(A), Aj), where

Aj = A|Tj(A). Because the weight of the root of T is zero, the total cost of

reaching nodes in T is then given by the sum of the cost of reaching nodes in

{Ti}i∈δ(r):

EP(T,A) =
∑

i∈δ(r)

EP(T,A)Ti
=

∑

i∈δ(r)

EP(T,A)Ti(A) +
∑

i∈δ(r)

∑

j∈σi

EP(T,A)Tj(A)

= w(T ) +
∑

i∈δ(r)

EP(Ti(A), Ai) +
∑

i∈δ(r)

∑

j∈σi

EP(Tj(A), Aj)

By the inductive hypothesis, for each i ∈ δ(r) we can find an assign-

ment A′
i for Ti(A) with no hotlinks in i which satisfies EP(Ti(A), A′

i) ≤

EP(Ti(A), Ai) + w(Ti(A)). Then we define the assignment A′ =
⋃

i∈δ(r)(A
′
i ∪

⋃

j∈σi
(Aj ∪ (i, j))). Notice that because A′

i does not have hotlinks in i, there

are at most |σi| hotlinks in i in A′, which is less than k. Also, from the

fact that Ti(A) and {Tj(A)}j∈σi
are disjoint it follows that there are at

most k hotlinks on every other nodes of T in A′. Again, the cost of reach-

ing nodes of Ti(A) for i ∈ δ(r) is w(Ti(A)) + EP(Ti(A), A′
j). Now the path

from r to a node u ∈ Tj(A) for j ∈ σi is (r → i → j ; u). Thus,

EP(T,A′)Tj(A) = 2w(Tj(A)) + EP(Tj(A), Aj). Consequently:

EP(T,A′) =
∑

i∈δ(r)

(w(Ti(A)) + EP(Ti(A), A′
i)) +

∑

i∈δ(r)

∑

j∈σi

(2w(Tj(A)) + EP(Tj(A), Aj))

≤
∑

i∈δ(r)

(2w(Ti(A)) + EP(Ti(A), Ai)) +
∑

i∈δ(r)

∑

j∈σi

(2w(Tj(A)) + EP(Tj(A), Aj))

= EP(T,A) + w(T )

�

Lemma 1 (Multiple Removal Lemma) Consider a tree T rooted at node r

and a weight function w. Let A be an assignment for T with at most g hotlinks

leaving r and at most one hotlink leaving every other node. Then, there is

an assignment A′ with at most one hotlink per node such that EP(T,A′) ≤

EP(T,A) + (g − 1)w(T ).
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Proof : The proof goes by induction on g. Suppose it holds for g′ < g. Let

v be the node further away from r (namely with greatest d(r, v, T )) such

that (r, v) ∈ A. Let A2 = A|(T − Tv). Notice A2 has g − 1 hotlinks in

r, because (r, v) does not belong to it. It is easy to see that EP(T,A) =

EP(T − Tv, A2) + w(Tv) + EP(Tv, Av), where Av = A|Tv. By induction find an

assignment A′
2 for T − Tv with at most one hotlink per node and such that

EP(T − Tv, A
′
2) ≤ EP(T − Tv, A2) + (g − 2) · w(T ). Now apply Lemma 16

to find an assignment A′′
2 with no hotlink in r such that EP(T − Tv, A

′′
2) ≤

EP(T − Tv, A
′
2) + w(T ) ≤ EP(T − Tv, A2) + (g − 1) · w(T ). Define A′ =

A′′
2 ∪ Av ∪ (r, v). Clearly A′ has at most one hotlink in r. Again we have that

EP(T,A′) = EP(T − Tv, A
′′
2) + w(Tv) + EP(Tv, Av), and the result follows. �

Lemma 2 Consider a tree T and a weight function w. Let T ′ be a subtree of T .

If v ∈ T is an ancestor of r(T ′), then
∑

u∈T ′ d(v, u, T +A)w(u) ≥ OPTg(T
′, w)

for any g-assignment A.

Proof : Let U = {u1 → . . . → u|U |} be the path from v to r′ in T . Define

the tree T+ = U ∪ T ′ and let A+ = A|T+. Notice that the definition of a

valid hotlink assignment implies that only arcs and hotlinks in T+ + A+ can

be used when going from v to nodes in T ′ in T + A. Therefore, EP(T,A)T ′ =

EP(T+, A+). We sequentially apply Lemma 16 to nodes ui, starting at node

u1, then at u2, and so forth. At the end, we have a g-assignment A′ for T ′ such

that EP(T+, A′) ≤ EP(T,A)T ′ + |U | ·w(T ′). But also notice that because there

are no hotlinks in the path from v to r′ in T+ +A+, the path from v to a node

u ∈ T ′ in T+ +A+ is (u1 → . . . u|U | ; u). Therefore, the cost of reaching nodes

of T+ (which is exactly the same cost of reaching nodes of T ′, as only nodes of

T ′ have non-zero weights) is EP(T+, A′) = |U |·w(T ′)+EP(T ′, A′). Because the

cost EP(T,A)T ′ equals the cost EP(T+, A+), we have EP(T,A)T ′ ≥ EP(T ′, A′),

which is also not less than OPTg(T
′) and the result follows. �

Lemma 3 Consider a tree U , a weight function w and a constant α. Then,

there is a partition of U into subtrees such that each, except possibly the one

containing r(U), has weight with respect to w greater than α. In addition, for

every tree U i in the partition, each of the subtrees rooted at the children of

r(U i) have weight not greater than α.

Proof : The proof goes by induction on w(U). If w(U) ≤ α then setting

U1 = U completes the proof. So assume that w(U) > α. In addition, assume

by induction that for every tree with weight less than w(U) the result holds.

Then we can traverse the tree U starting at r(U) and going toward its leaves

in the following way: if we are currently at node u, we go to the child v of u
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with greatest w(Uv). We stop the traversal when the subtrees of U rooted at

the children of the current node have weight not greater than α.

We argue that, throughout the whole traversal, if u is the current node

then w(Uu) > α. Due to our assumption that w(U) > α, this holds when

u = r(U). Now consider u 6= r; the claim must hold for u, otherwise because

the trees rooted at the siblings of u have weight no more than w(Uu), the

traversal would have stopped in the previous step.

If u is the current node at the end of the traversal, than either u is a leaf of

U or the subtrees of U rooted at the children of u have weight not greater than

α. In any case, because w(Uu) > α ≥ 0 we can use the inductive hypothesis on

U − Uu to find a partition {U1, . . . Uk} for U − Uu. It can be readily verified

that {U1, . . . , Uk, Uu} is a partition of U with the desired properties. �

A.2 Proofs of lemmas used in Theorem 1

Proposition 3 There cannot be two consecutive hotlinks in Q

Proof : By means of contradiction suppose there are two hotlinks (u1, u2)

and (u2, u3) in A∗, such that u1, u2 and u3 are consecutive nodes in Q.

Define G = Tu1(A
∗) and let AG be the hotlinks of A∗ with both endpoints

in G. Clearly G is a tree rooted at node u1. Moreover, because we have assumed

that A∗ is a non-crossing assignment and that no other hotlinks can point to

nodes u2 and u3, it follows that there are no hotlinks in A∗ departing from

a proper ancestor of u1 and pointing to proper descendants of u1 which are

ancestors of u3. Consequently u2 and u3 belong to Tu1(A
∗) = G and AG

contains the hotlinks (u1, u2) and (u2, u3).

Let u′
1 be the child of u1 that belongs to the path from u1 to u2 in T .

Because we have assumed that A∗ only contains proper hotlinks, u′
1 is a proper

ancestor of u2. Now we assume there is no hotlink in A∗ departing from u′
1. If

this is not the case, we can employ a combination of Lemma 16 and Corollary 2

to rebuild the assignment for Gu′
1
(A∗) finding an assignment A′∗ for T with no

hotlink departing from u′
1. It is easy to see that this operations only introduces

an additive factor of at most w(G − Gu2) in the subsequent bounds and that

this does not change the analysis.

Now define a new assignment A′
G for G in the following way: A′

G =

AG − (u1, u2)∪ (u′
1, u2)∪ (u1, u3). Let us analyze the user paths in G+AG and

in G + A′
G.

Consider a node u ∈ Gu3 . It is easy to see that the path from u1 to u in

G + AG is (u1 → u2 → u3 ; u). On the other hand the path from u1 to u in

G+A′
G is (u1 → u3 ; u). Because we have not added or removed hotlinks with
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both endpoints in Gu3 , Proposition 1 implies that the path (u3 ; u) is the same

in G+AG and G+A′
G. Therefore d(u1, u,G+A′

G) = d(u1, u,G+AG)− 1, and

weighting over all u ∈ Gu3 we have EP(G,A′
G)Gu3

= EP(G,AG)Gu3
− w(Gu3).

Now consider a node u ∈ Gu2 − Gu3 . Similarly, the path from u1 to u in

G+AG is (u1 → u2 ; u) and in G+A′
G is (u1 → u′

1 → u2 ; u). Again, because

we have not added or removed hotlinks to nodes in Gu2 the path (u2 ; u) is

the same in G + AG and G + A′
G. Therefore weighting over all u ∈ Gu2 − Gu3

we have EP(G,A′
G)Gu2−Gu3

= EP(G,AG)Gu2−Gu3
+ w(Gu2 − Gu3).

Now consider a node u ∈ G − Gu2 . Because we have not added or

removed hotlinks with both endpoints in G − Gu2 , the path form u1 to

u is the same in G + AG and G + A′
G. Consequently EP(G,A′

G)G−Gu2
=

EP(G,AG)G−Gu2
. Because the above analysis contemplates all nodes of G, we

have that EP(G,A′
G) = EP(G,AG) − w(Gu3) + w(Gu2 − Gu3).

By definition, in order for users to reach nodes of Th(A
∗) in T +A∗ they

have to traverse Q, and consequently u1. Therefore Th(A
∗) ⊆ Tu1(A

∗) = G.

Furthermore, such users also need to traverse node u3, and hence the nodes

of Th(A
∗) must be descendants of u3. This implies that Th(A

∗) ⊆ Gu3

and consequently w(Gu3) ≥ Th(A
∗). Using Hypothesis 1 it follows that

w(Gu3) ≥ w(T )(c − 1)/c and w(Gu2 − Gu3) ≤ w(T )/c. Using the above

relationship between EP(G,A′
G) and EP(G,AG) and the fact that c > 2, we

have that EP(G,A′
G) < EP(G,AG).

Now we can use Corollary 2 to replace the assignment AG by A′
G in A∗.

However, this leads to an improved assignment for T which contradicts the

optimality of A∗. �

Lemma 5 For any node q ∈ Q, the user path from r to q is the same in T +A1

and in T + A∗.

Proof : Consider a node q ∈ Q and let u be an ancestor of h. Suppose that

the hotlink (q, u) belongs to A∗ (which implies that u is a descendant of q). A

user going to node h in T +A∗ will necessarily traverse node q, so imagine this

user at q. Because q do not have any other hotlink in A∗, it follows from the

assumption that A∗ only contains proper hotlinks that this user will take the

hotlink (q, u) as his next step. Therefore, u must belong to Q and consequently

the hotlink (q, u) also belongs to A1. In addition, notice that q do not have

any other hotlink in A1. Then using Proposition 2, it follows that the path

from r to h is the same in T + A∗ and T + A1. Let this path be denoted by P .

Noticing that the path from r to any node q ∈ Q in both T + A∗ and T + A1

is a subpath of P , the result follows. �

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA



Appendix A. Hotlink Assignment Problem 74

Lemma 17 If there is a hotlink (v, u) ∈ A∗ such that v is a proper ancestor

of h and u is a proper descendant of h, then u ∈ S.

Proof : By means of contradiction, suppose that v does not belong to the

path Q. If that is the case, then Proposition 4 implies that there must be a

hotlink (h1, h2) ∈ A∗ in Q such that h1 is a proper ancestor of v and h2 a

proper descendant of v. Notice that as h2 ∈ Q, it must be a proper ancestor

of u. Thus, there is a crossing between (v, u) and (h1, h2), which contradicts

the assumption that A∗ is a non-crossing assignment. Therefore v ∈ Q and,

because u /∈ Q, it follows that v ∈ D and consequently u ∈ S. �

Lemma 18 For s ∈ S, all nodes of Ts belong to (
⋃

s′∈S Ts′).

Proof : Consider a node s ∈ S. The proof goes by induction on the distance

from r to s in T . The property trivially holds when s is a leaf of T . Now assume

that the property holds for all nodes in S which are proper descendants of s.

Consider a node x in Ts but not in Ts. As A∗ is a non-crossing assignment,

Definition 1-(ii) implies that x must belong to some tree Tu where (v, u) ∈ A∗,

v is a proper ancestor of s and u is a proper descendant of s. As s ∈ S, there

must be a hotlink (h1, s) in A∗ where h1 is an ancestor of h. In order for

A∗ to be non-crossing, v must then be an ancestor of h1 and consequently a

proper ancestor of h. From Lemma 17 u ∈ S and by the inductive hypothesis

all nodes of Tu belong to (
⋃

s′∈S Ts′), hence so does x. Then each node of Ts

either belongs to Ts or to (
⋃

s′∈S Ts′) and the inductive step is complete. �

Lemma 19 The trees Th and {Ts}s∈S define a partition of nodes of Th.

Proof : Combining Definition 1-(ii) and Lemma 17 it follows that Th =

Th − (
⋃

s∈S Ts). Therefore the nodes of Th are either in Th or (
⋃

s∈S Ts). From

Lemma 18 it follows that all nodes of (
⋃

s∈S Ts) belong to (
⋃

s∈S Ts), and

therefore the nodes of Th are either in Th or in (
⋃

s∈S Ts). Because Th and

{Ts}s∈S are subtrees of Th, all of their nodes belong to Th and it suffices to

show that these subtrees are pairwise disjoint in order to conclude the proof.

Again as Th = Th − (
⋃

s∈S Ts), we have that Th is disjoint to any tree

Ts with s ∈ S. As Ts ⊆ Ts, it follows that Th is disjoint to any tree Ts with

s ∈ S. Now consider two nodes s 6= s′ ∈ S. If s is neither an ancestor nor a

descendant of s′ then clearly Ts is disjoint to Ts′ . So without loss of generality

assume that s is a proper ancestor of s′. Due to the definition of S, there must

be a hotlink (u, s′) in A∗ with u being an ancestor of h, and consequently a

proper ancestor of s. It then follows by Definition 1-(ii) that Ts′ and Ts are

disjoint and so are Ts′ and Ts. Therefore all trees Th and {Ts}s∈S are pairwise

disjoint and the lemma follows. �
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Lemma 6 Consider a node s ∈ S. Then Ts is a subtree of a tree Hj
i .

Proof : By means of contradiction suppose that Ts is not a subtree of some

Hj
i . By definition of S, h /∈ Ts. Suppose that s ∈ Hj

i ; then because Ts is not a

subtree of Hj
i , it must contain a node u /∈ Hj

i . Notice that u cannot belong to

a tree Hj′

i with j′ 6= j, otherwise it would not belong to Ts. Because the trees

{Hi} contain all nodes of Th, then u must belong to some tree Hi′ with i′ 6= i.

Furthermore, as s /∈ Hi′ and u ∈ Ts it follows that r(Hi′) must be a proper

descendant of s. Therefore, there is a path (s ; r(Hi′) ; u) in T , and because

Ts is a subtree of T containing both s and u, it must also contain r(Hi′).

As the subtrees {Hj
i } and {r(Hi)} form a partition of Th, s must belong to

either one of these subtrees. In any of the cases where s ∈ {r(Hi)} or s ∈ {Hj
i },

the tree Ts contains a node r(Hi) 6= h. Therefore Hi ⊆ Ts, so w(Hi) ≤ w(Ts).

But from Lemma 18 w(Ts) ≤
∑

s′∈S w(Ts′). As the trees {Ts′}s′∈S and Th

are pairwise disjoint, Hypothesis 1 implies that
∑

s′∈S w(Ts′) ≤ w(T )/c ≤

w(T )/|D|. As w(T ) > 0, chaining previous observations we have that w(Hi) ≤

w(T )/|D| < 4w(T )/|D|, which contradicts the construction of the tree Hi. �

Lemma 20 H
j

i is a tree. Furthermore, either H
j

i does not contain any nodes

or it is rooted at node j.

Proof : If H
j

i contains at most one node, then the result trivially holds. So

consider two nodes u, v ∈ H
j

i such that u is a proper ancestor of v. By means

of contradiction, assume there is no path in H
j

i between u and v. Notice there

is a path from u to v in Hj
i , as the latter is a tree. Then there must be a

node s ∈ S which is a proper ancestor of v and a proper descendant of u. As

a consequence v ∈ Ts, and from Lemma 18 v ∈ Ts′ for some s′ ∈ S. Notice

however that s′ must belong to the tree Hj
i . By construction H

j

i ∩Ts′ = ∅ and

hence v cannot belong to H
j

i , which contradicts our choice of v.

For the second part of the lemma, suppose that j is not the root of H
j

i .

It follows by the definition of H
j

i that j must belong to S. Lemma 6 states

that each of the trees {Ts}s∈S is fully contained in one Hj
i . Because the trees

{Hj
i } are pairwise disjoint, this implies that for any node s ∈ S −Hj

i the tree

Ts is disjoint to Hj
i , and therefore we can write H

j

i as H
j

i = Hj
i − (

⋃

s∈S Ts).

However, as j ∈ S Lemma 18 implies that all nodes of Tj, and consequently of

Hj
i , belong to

⋃

s∈S Ts. Therefore H
j

i cannot contain any nodes and the result

follows. �

Lemma 8 Consider a tree Hi and a node u ∈ Hi. Then the user path in T +A2

from r to u contains the node di.
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Proof : By means of contradiction, consider a node u ∈ Hi for which the above

property does not hold. Because A2 is a non-crossing assignment, Definition 1-

(i) implies that u /∈ Tdi
(A2) and consequently Definition 1-(ii) implies there is a

hotlink (x, y) in A2 such that: x and y are respectively a proper ancestor and a

proper descendant of di and y is an ancestor of u. From the construction of the

assignment A2 we have that, for some j < i, x must be the node dj ∈ D and y

the node r(Hj). Because Hi and Hj are disjoint trees, r(Hj) being an ancestor

of u implies that r(Hj) is an ancestor of r(Hi). However, this contradicts the

ordering on the trees {Hi′} assumed at their definition, thus completing the

proof. �

Lemma 21 Consider a tree Hj
i . Then Tj(A

′) = Hj
i

Proof : Because Hj
i is a tree, it must be the subtree of T induced by its nodes.

As Tj(A
′) is also the subtree of T induced by its nodes, it suffices to show that

both Tj(A
′) and Hj

i contain the same nodes.

(⊇) Using Lemma 8, it is easy to see that the path from r to a node

u ∈ Hj
i in T + A2 is (r ; di → r(Hi) → j ; u). But due to the discussion

presented during the construction of the assignment A′, the path from r to u

is the same in T + A2 and T + A′. Therefore all nodes of Hj
i belong to Tj(A

′).

(⊆) Consider a node u ∈ Tj(A
′). Again, as the path from r to u is the

same in T + A′ and T + A2, it follows that u ∈ Tj(A
2). Clearly u also belongs

to Th. By means of contradiction assume that u /∈ Hj
i . Because u needs to be a

descendant of j in order to be in Tj(A
2), it is easy to see that u cannot belong

to Hj′

i for j 6= j′. As the trees {Hi} define a partition of Th, u must be in some

tree Hi′ different than Hi. Moreover, because j /∈ Hi′ , u ∈ Hi′ and u ∈ Th, we

have that r(Hi′) must be a proper descendant of j. Again using Lemma 8, the

path in T + A2 from r to u is (r ; di′ → r(Hi′) ; u). But as di′ is a proper

ancestor and r(Hi′) is a proper descendant of j, then j cannot belong to this

path from r to u. This contradicts our choice of u and completes the proof. �

A.3 Proof of Lemma 4

Lemma 22 Consider a tree T , an non-crossing assignment A and a node

u ∈ T . Let U = Tu(A). Then for any v ∈ U , Uv(A) = Tv(A).

Proof : In order to prove the result it suffices to show that both Uv(A) and

Tv(A) contain the same nodes, as both trees are defined as the subgraph of T

induces by their nodes.

The first observation is that Proposition 1 guarantees that the path from

u to a node v ∈ U is the same in U + A and T + A.
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We start proving that Uv(A) ⊆ Tv(A). Consider a node y ∈ Uv(A). By

definition, the path from u to y in U +A (and consequently in T +A) contains

v. But by definition of U , the path in T + A from r to y must contain u, and

therefore the path from r to y in T + A is (r ; u ; v ; y) and y ∈ Tv(A).

Now we prove that Uv(A) ⊇ Tv(A). Consider a node y ∈ Tv(A).

By definition, the path from r to y in T + A contains v. But because

v ∈ U = Tu(A), the path in T + A from r to v contains u and therefore

the path from r to y in T + A is (r ; u ; v ; y). Clearly u belongs to U

and because the path (u ; y) is the same in T + A and U + A, y also belongs

Uv(A). �

Lemma 23 Consider an instance (T,w) of the 1-HAP with T rooted at r

and w an integer valued weight function. Let A∗ be a non-crossing optimal

assignment for this instance. In addition, consider the constant c given by

Theorem 2. Then for every node v ∈ T such that d(r, v, T + A∗) ≥ k · c, for an

integer k, the following inequality holds: w(Tv(A
∗)) ≤

(

c−1
c

)k
w(T ).

Proof : First we remark that the previous discussions guarantee that such an

optimal assignment that is non-crossing always exits.

The proof goes by induction on k. Assume that for every 0 ≤ k′ < k the

following holds: for every node v ∈ T such that k′·c ≤ d(r, v, T+A∗) < (k′+1)c,

we have w(Tv(A
∗)) ≤

(

c−1
c

)k′

w(T ). Notice this clearly holds for the trivial base

case k′ = 0.

Now consider a node v such that k · c ≤ d(r, v, T + A∗) < (k + 1)c. Let

u be the node that belongs to the user path from r to v in T + A∗ such that

d(u, v, T + A∗) = c (such node exists because k > 0). Clearly the distance

from r to u in T + A∗ satisfies the inductive hypothesis and we have that

w(Tu(A
∗)) ≤

(

c−1
c

)k−1
w(T )

Let U = Tu(A
∗) and define A′ as the hotlinks of A∗ with both endpoints

in U . As v belongs to Tu(A
∗) = U , Proposition 1 guarantees that d(u, v, U +

A′) = d(u, v, T + A∗) = c. In addition, because A′ is a subset of A∗, it is also

clearly a non-crossing assignment. Hence, the optimality of A∗ and Corollary

2 imply that A′ is an optimal assignment for U . In addition, recall that UA′

v

has the same nodes as Uv(A
′) and consequently the same weight. Then we can

apply Theorem 2 to U and have that:

w(Uv(A
′)) ≤ w(U)

(

c − 1

c

)

≤ w(T )

(

c − 1

c

)k

(2)

where the last inequality follows from the previous bound on w(Tu(A
∗)) =

w(U).
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Because A′ is the subset of A∗ with both endpoints in U we have that

Uv(A
′) = Uv(A

∗), which from Lemma 22 equals to Tv(A
∗). Employing this

last observation on inequality (2) completes the proof. �

Using the previous lemma we can conclude the proof of Lemma 4. Let

A∗ be a non-crossing optimal assignment for T . For some constant G we define

U = {u ∈ T : d(r, u, T + A∗) = G · log w(T )}. Because w is integer valued, for

a sufficiently large value of G (more specifically G ≥ 1/ log(c/(c− 1))) Lemma

23 guarantees that for every u ∈ U we have w(Tu(A
∗)) = 0.

It was proved in [PLS04b] that for any tree T ′ with n′ nodes, there is an

assignment A such that height(T ′ + A) is upper bounded by O(log n′). Then

for each u ∈ U , we can find an assignment A′
u such that height(Tu(A

∗)+A′
u) ≤

O(log n). For each u ∈ U let Au be the hotlinks of A∗ with both endpoints in

Tu(A
∗). We then replace the assignments Au for the now assignments A′

u, that

is, we define A′ = A∗ − (
⋃

u∈U Au) ∪ (
⋃

u∈U A′
u).

Because for every node u ∈ U we have w(Tu(A
∗)) = 0, Corollary 2

implies that A′ is also an optimal assignment for T . Now we analyze the

height of T + A′. Let (r ; v) be the longest path in T + A′ (starting at

node r). If v /∈
⋃

u∈U Tu(A
∗), then the path in T + A∗ from r to v does

not contain any node in U and consequently d(r, v, T + A∗) must be less than

G log w(T ). Because Lemma 15 guarantees that d(r, v, T +A′) = d(r, v, T +A∗),

we have that d(r, v, T + A′) (and consequently height(T + A′)) is less than

G · log w(T ). Now suppose that v ∈ Tu(A
∗), for some u ∈ U . By Lemma

15, d(r, v, T + A′) = d(r, u, T + A∗) + d(u, v,Tu(A
∗) + A′

u). Recall that

d(r, u, T + A∗) = G log w(T ) and that the construction of A′
u implies that

d(u, v,Tu(A
∗) + A′

u) ≤ K log n for some constant K. Therefore, we have that

d(r, v, T+A′) (and consequently height(T+A′)) is at most G log w(T )+K log n.

In any case, we have proved that there is an optimal assignment A′ for

(T,w) such that height(TA′
) = height(T + A′) is O(log w(T ) + log n), thus

proving the result.

A.4 Constant factor approximation for the k-

Hotlink Assignment Problem

(a) Solving k-HAP with internal weights

Approximate no-leaf assignment

In this section we present an algorithm for the k-HAP that given an

instance (T,w) finds an assignment with cost at most 2H(w)
log(k+1)

+ 2w(T ) such
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that no hotlink points to leaves of T (we call such assignment as a no-leaf

assignment). This is later employed to devise an approximation for k-HAP

with positive weights on internal nodes of T . Although the presentation uses

the notation introduced in this work, the algorithm itself is a straightforward

modification of the algorithm presented in [DL06]: when the original algorithm

choses to add a hotlink pointing to a leaf u of T , the modified version adds

a hotlink pointing to the parent of u. Hence, an adaptation of the argument

employed in [DL06] can be used to prove the guarantee of our algorithm.

Nonetheless, for sake of completeness we present a self-contained proof in the

sequel.

Consider an instance (T,w) of the k-HAP, where T is a tree rooted at

node r. The algorithm works recursively. It first finds a balanced partition

{U1, . . . , Up} of T given by Lemma 3 and then adds hotlinks from r to the

roots the trees {U i}. Then, it recursively computes an assignment for each of

the trees in the partition of T . The algorithm avoids adding hotlinks which

point to leaves of T by computing the balanced partition with respect to an

auxiliary weight function w′, which essentially guarantees that the tree {U i}

are not leaves of T . The algorithm is as follows:

(1) If w(T ) = 0 or if T is a single leaf, then return the empty assignment.

(2) Define w′ such that: if u is a leaf of T then w′(u) = 0; if u is an internal

node of T then w′(u) equals w(u) plus the weights of the children of u

which are leaves of T .

(3) Let {U1, . . . , Up} be a partition of T with respect to the weights w′ given

by Lemma 3 with α = w(T )/(k + 1) (w.l.o.g we assume that r(Up) = r).

(4) Recursively find an assignment Ai for each of the instances (U i, w) with

1 ≤ i < p.

(5) If C is the set of children of r in Up, find recursively an assignment Ap
i

for each of instances (Up
i , w) with i ∈ C.

(6) Return A =
⋃p−1

i=1 ((r, r(U i)) ∪ Ai) ∪
⋃

i∈C Ap
i .

In order to analyze the algorithm, we assume that w(T ) > 0 and that T

is not a single leaf, as otherwise it has a trivial behavior. It is easy to see that

w(T ) = w′(T ). By construction w′(U i) > w(T )/(k+1) for i ≤ p−1, and hence

w(T ) = w′(T ) > (p−1)w(T )/(k+1). It then follows that p−1 cannot be greater

than k. As a consequence, the assignment returned by the algorithm has at

most k hotlinks departing from r. Due to the recursive nature of the algorithm,

it follows by induction on the subtrees of T that the assignment returned by

the algorithm contains at most k hotlinks departing from each node of T . In
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addition, because for each leaf u of T we have w′(u) = 0 ≤ w(T )/(k + 1), it

follows that no tree U i with i 6= p can be a single leaf of T . This implies that

the assignment returned by the algorithm does not contain any hotlinks from

r which points to leaves of T . Again by induction, it can be easily seen that the

assignment returned by the algorithm does not contain any hotlink pointing

to leaves of T . Therefore, it returns a valid no-leaf k-assignment for T .

For the analysis of the approximation guarantee of the algorithm we need

to introduce some additional notation. If during the execution of the algorithm

over the instance (T,w) there is a recursive call to a subtree T ′ ⊆ T rooted

at node i, then we denote the tree T ′ by Ti(A), or Ti for short. It is easy to

see that for each node u of T there is exactly one recursive to a tree rooted at

u. (In addition, it can be proved that this notation is also consistent with our

previous definition of Ti(A).)

For any subtree T ′ ⊆ T , define ALGO(T ′) as the expected path of T ′+A′

under w, where A′ is the assignment returned by the execution of the algorithm

over T ′. In addition we define ch(T ) as the children of r(T ) in T + A, namely

the union of the children of r(T ) in Up and the endpoints of hotlinks from r(T )

in A, which are the nodes {r(U i)}p−1
i=1 . In general, consider a tree Ti with its

partition {U ′1, . . . , U ′p′} found in Step (3) of the execution of the algorithm

over Ti. Then the set ch(Ti) is defined as the children of r(U ′p) in U ′p plus

the nodes {r(U ′j)}p−1
j=1.

Due to the recursive nature of the algorithm, it is easy to see that:

ALGO(T ) = w(T ) +
∑

i∈C

ALGO(Ti) +

p−1
∑

i=1

ALGO(U i) = w(T ) +
∑

i∈ch(T )

ALGO(Ti)

For any leaf i of T we have ALGO(Ti) = 0. So if L is the set leaves of

T , the previous inequality reduces to w(T ) +
∑

i∈ch(T )−L ALGO(Ti). Again, it

follows from the recursive nature of the algorithm that:

ALGO(T ) = w(T ) +
∑

i∈ch(T )−L



w(Ti) +
∑

j∈ch(Ti)

ALGO(Tj)





≤ 2w(T ) +
∑

i∈ch(T )−L

∑

j∈ch(Ti)

ALGO(Tj)

Define S as the set of nodes of T reached in exactly two hops in T + A,

namely S = {j ∈ T : (r → i → j) ∈ T + A}. Noticing that all nodes in
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{ch(Ti)}i∈ch(T )−L also belong to S, the last inequality reduces to:

ALGO(T ) ≤ 2w(T ) +
∑

i∈S

ALGO(Ti) (3)

We argue that for any i ∈ S which is an internal node of T , w(Ti) ≤

w(T )/(k+1). This result relies on the following observation about the auxiliary

weight function w′ that can be readily verified: for every subtree T ′ of T such

that r(T ′) is not a leaf of T , w(T ′) ≤ w′(T ′).

So consider a node j ∈ S which is an internal node of T , and let

(r → i → j) be the path from r to j in T + A. Clearly this implies that i

is also an internal node of T . Suppose that i is not an endpoint of a hotlink in

A; this implies that i is a child of r in T . Moreover, i belongs to Up, otherwise

it would be the root of a tree Ux with x 6= p and consequently be pointed by a

hotlink from r. Therefore Ti = Up
i and by the definition of Up

i it follows that

w(Ti) ≤ w′(Ti) = w′(Up
i ) ≤ w(T )/(k +1). Notice that j cannot belong to any

tree Ux with x 6= p, otherwise i would not be in the path from r to j in T +A.

Therefore j ∈ Up and, because j must be a descendant of i, j ∈ Up
i . Then it

is not difficult to see that the execution of the algorithm over Up
i = Ti must

be the one that calls the execution of the algorithm over Tj, and therefore

Tj ⊆ Ti. As a consequence, we have that w(Tj) ≤ w(T )/(k+1) and the claim

holds for this case.

Now suppose that i is the endpoint of a hotlink in A, that is, a hotlink

from r. It follows that i = r(Ux) for some x 6= p. In addition, j cannot belong

to a tree U z different than Ux, otherwise the path form r to j in T + A would

not be (r → i → j). Using the same reasoning as in the previous case, this

implies that Tj ⊆ Ux and consequently Tj ⊆ Ux
j . As j is not a leaf of T , we

have that w(Tj) ≤ w(Ux
j ) ≤ w′(Ux

j ) ≤ w(T )/(k + 1) and the claim follows.

Therefore, defining S′ as the set of nodes in S which are not leaves of T

and noticing again that for any leaf i of T we have ALGO(Ti) = 0, inequality

(3) reduces to

ALGO(T ) ≤
∑

i∈S′

ALGO(Ti) + 2w(T ) (4)

where w(Ti) ≤ w(T )/(k + 1) for every i ∈ S′.

For each subtree T ′ ⊆ T we define w|T ′ as the weights w restricted to the

nodes of T ′, or alternatively (w|T ′)(j) = w(j) for all j ∈ T ′ and (w|T ′)(j) = 0

for all j /∈ T ′. In order to simplify the notation, we can see every weight

function as a multiset of nonnegative numbers.

Now we proceed by induction. Suppose that for any proper subtree T ′ of
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T ALGO(T ′) ≤ 2H(w|T ′)
log(k+1)

+ 2w(T ′). This expression clearly holds if T ′ is only a

leaf.

The following lemma is a slightly generalization of the one proved in

[KKS01a]:

Lemma 24 Let w be a weight multiset and {w1, . . . , wa} disjoint submultisets

of w. Let W =
∑

j w(j) and W i =
∑

j wi(j). Then:

H(w) ≥
a

∑

i=1

H(wi) +
a

∑

i=1

W i log
W

W i

Proof :

H(w) =
∑

j

w(j) log
W

w(j)
≥

a
∑

i=1

∑

j

wi(j) log
W

wi(j)

=
a

∑

i=1

∑

j

wi(j) log

(

W i

wi(j)
·

W

W i

)

=
a

∑

i=1

∑

j

wi(j) log
W i

wi(j)
+

a
∑

i=1

W i log
W

W i

=
a

∑

i=1

H(wi) +
a

∑

i=1

W i log
W

W i

�

Defining a = 2/ log(k + 1) and employing the inductive hypothesis to

inequality (4) we have:

ALGO(T ) ≤ a
∑

i∈S′

H(w|Ti) + 2
∑

i∈S′

w(Ti) + 2w(T )

≤ aH(w) − a
∑

i∈S′

w(Ti) log
w(T )

w(Ti)
+ 2

∑

i∈S′

w(Ti) + 2w(T )

≤ aH(w) − a
∑

i∈S′

w(Ti) log(k + 1) + 2
∑

i∈S′

w(Ti) + 2w(T ) = aH(w) + 2w(T )

where the second inequality follows from Lemma 24 and the third inequality

follows from the fact that w(Ti) ≤ w(T )/(k + 1) for all i ∈ S′. This completes

the inductive step and proves that the cost of the assignment returned by the

algorithm can be upper bounded by 2H(w)
log(k+1)

+ 2w(T ).

Algorithm for k-HAP with internal weights

Let T be a tree rooted at node r and w a weight function which might

be positive for internal nodes of T . Define w(r) = 0 and w(u) = w(u) for
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every u ∈ T different than r. Clearly EP(T + A,w) = EP(T + A,w) for all

assignments A. In addition, we note that the optimal solution for (T,w) costs

at least w(T ).

Now we create an auxiliary tree T ′ from T by adding one leaf lu to each

node u of T and define w′(lu) = w(u) and w′(u) = 0 for all u ∈ T . Clearly each

assignment for T is a no-leaf assignment for T ′ and vice-versa. So consider a

no-leaf assignment A′ for T ′. Then the expected user path in T ′ + A′ is:

EP(T ′, A′, w′) =
∑

lu∈T ′

d(r, lu, T
′ + A′)w′(lu) =

∑

lu∈T ′

(d(r, u, T ′ + A′) + 1)w′(lu)

=
∑

u∈T

d(r, u, T ′ + A′)w(u) + w(T ) =
∑

u∈T

d(r, u, T + A′)w(u) + w(T )

= EP(T,A′, w) + w(T )

where the forth inequality follows from Proposition 1.

Using this relationship between EP(T ′, A′, w′) and EP(T,A′, w), it is easy

to see that if A∗ is an optimal no-leaf assignment for T ′ then it is also an optimal

assignment for T . Moreover, if A′ is an α-approximate no-leaf assignment for

T ′ then it is a 2α-approximate assignment for T :

EP(T,A′, w) ≤ EP(T ′, A′, w′) ≤ αEP(T ′, A∗, w′)

= α(EP(T,A∗, w) + w(T )) ≤ α2EP(T,A∗, w)

where the last inequality holds because the optimal solution for (T,w) costs

at least w(T ). Combining with the fact that EP(T,A,w) = EP(T,A,w) for

all assignments A, it follows that A′ is a 2α-approximation for the original

instance (T,w).

Therefore, we can use the algorithm presented in the previous section

to find a 4H(w)
log(k+1)

+ 4w(T ) approximation for the k-HAP with arbitrary non-

negative weights.

(b) Proof of Lemma 10

Consider a node u ∈ T q. Let (cq, x) be a hotlink or an arc in T + A∗

such that x ∈ T q. By means of contradiction, assume that cq does not belong

to the path P = (r ; u) in T + A∗. Then Proposition 4 implies that

P = (r ; s → s′ ; u) where s and s′ are respectively a proper ancestor

and a proper descendant of cq and (s, s′) is a hotlink in A∗. Notice that s

belongs to Q. Now we have two cases: if s′ is a descendant of x, then s′ ∈ T q

and the fact that s is a proper ancestor of cq contradicts the definition of the

latter. On the other hand, if s′ is a proper ancestor of x we have a crossing in
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A∗ between (s, s′) and (cq, x), which contradicts the assumption that A∗ is a

non-crossing assignment. This concludes the proof of the lemma.
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B
Binary Searching in Trees

B.1 Searching in path-like trees

In this section, we argue that the problem of searching in path-like trees

can be reduced to the well-known problem of searching in ordered lists with

different access probabilities. The latter problem is defined as follows. As input

we have a sequence L = {l1, . . . , ln} of (real) numbers in increasing order and a

probability distribution P = {p1, . . . , pn; q0, . . . , qn}. One number, which may

not belong to L, is marked; pi is the probability that li is the marked number

and qi is the probability that the marked number is in the interval Ii = (li, li+1)

(using the convention that l0 = −∞ and ln+1 = ∞). One may query an element

li of L and receive the information whether the marked node is greater than

li, less than li or is li itself.

As in the case of searching in trees, every search strategy for this problem

can be represented by means of a binary search tree D [PS93]. Such binary

tree contains n internal nodes, each corresponding to a different element of

L, and n + 1 leaves, each corresponding to an interval Ii. In addition, each

internal node u of D satisfies the search property, namely if u corresponds

to the number li then: (i) all nodes of the right subtree of u correspond to

either a query for a number lj with j > i or to an interval Ij with j ≥ i; (ii)

all nodes of the left subtree of u correspond to either a query for a number

lj or to an interval Ij, both with j < i. If d(li) is the distance from r(D) to

the node of D which corresponds to li and d(Ii) is the distance from r(D)

to the node of D which corresponds to Ii, then the cost of D is given by

cost(D,P ) =
∑n

i=1 d(li)pi +
∑n

i=0 d(Ii)qi.

Then the problem of searching in ordered lists with different access

probabilities (SOL) can be stated as follows: given an instance (L, P ), the

objective is to find a decision tree for (L, P ) with lowest cost.

Now we start presenting the relation between searching in ordered lists

and searching in path-like trees. Consider an instance (T,w) of the latter

problem, where T = {t1, . . . , tn} is a path rooted at t1. We create the
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following SOL instance: L consists of the first n − 1 natural numbers and

P = {p1, . . . , pn−1; q0, . . . , qn−1} = {0, . . . , 0; w(t1), . . . , w(tn)}. The idea is that

(T,w) is associated with (L, P ) via the function φ, where for each arc (ti, ti+1)

of T we have φ((ti, ti+1)) = i and for each node ti of T we have φ(ti) = Ii−1.

Consider a decision tree D for (T,w). Using the association given by φ

we can create the following decision tree D′ for (L, P ): D′ is exactly the tree

D but with different ‘correspondences’; if a node u of D corresponds to an

arc (i, j) (or node ti) of T , then the node u of D′ corresponds to the number

φ((i, j)) (or to the interval φ(ti)). In order to prove that D′ is indeed a decision

tree for (L, P ) it suffices to show that its nodes satisfy the search property.

Consider an internal node u of D′ which corresponds to a number

φ(ti) = i. In addition, consider an internal node v of the right subtree of u

in D′ which corresponds to a number φ(tj) = j. Due to the construction of D′,

the node u of D corresponds to (ti) and the node v of D corresponds to (tj).

In addition, v belongs to the right subtree of u in D and hence tj ∈ Tti , or

alternatively, j > i. Now consider a leaf v of the right subtree of u in D′ which

corresponds to the interval φ((tj, tj+1)). Using the same arguments, it is easy

to see that (tj, tj+1) is an arc of Tti , that is, j ≥ i. It then follows from the

fact that li = i for all 1 ≤ i ≤ n − 1 that u in D′ satisfies condition (i) of the

search property. An analogous result can be easily proved for the left subtree

of u, which implies that D′ is a decision tree for (L, P ).

Moreover, the construction of the probability distribution P ensures that

the cost of D′ is the same as the cost of D.

The reverse association also holds: for each decision tree D for (L, P ), we

can find a decision tree D′ for (T,w) such that both have the same cost. This

result follows by by applying the same reasoning as done previously.

Due to these associations, it is not difficult to see that an approximate

algorithm for the SOL problem gives an approximation for searching in path-

like trees. In effect, it follows that if D∗ is an optimal decision tree for (L, P )

then the associated decision tree D∗′ is also optimal for (T,w). Therefore,

if an algorithm for SOL finds a decision tree D such that cost(D,P ) ≤

α·cost(D∗, P ), it follows that the associated decision tree D′ for (T,w) has cost

cost(D′, w) = cost(D,P ) ≤ α · cost(D∗, P ) = α · cost(D∗′, w) = αOPT(T,w).

B.2 Proofs of lemmas

Given any tree T ′ and two nodes u, v ∈ T ′, a lowest common ancestor of

u and v is a node x ∈ T ′ such that: (i) x is an ancestor of both u and v (ii)

there is no proper descendant of x which is an ancestor of both u and v. The

following proposition is easily verified:
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Proposition 5 Consider a tree T ′ and two nodes of it u and v such that u

is neither an ancestor of v nor a descendant of it. Then the lowest common

ancestor x of u and v is a proper ancestor of both of them. Furthermore, if u′

(v′) is the child of x which is an ancestor of u (v), then u′ 6= v′.

Lemma 12 Consider a tree T and a decision tree D for T . For each subtree

T ′ of T , there is a unique node u ∈ D which is the representative of T ′ in D.

Proof : Consider a subtree T ′ of T . We define u(T ′) as the node of D closest to

r(D) which corresponds to an arc or to a node of T ′. More formally, u(T ′) = uα

such that α = argmin{d(r(D), uα′ , D) : α′ is a node or an arc of T ′}. We claim

that u(T ′) is a representative of T ′, and to prove this it suffices to argue that

u(T ′) is an ancestor of all nodes of D that corresponds to nodes or arcs of T ′.

By means of contradiction, let β be a node or an arc of T ′ such that uβ

is not a descendant of u(T ′) = uα. The node uβ cannot be a proper ancestor

of uα, or that would contradict the choice of uα. Thus, from Proposition 5 uα

and uβ are on subtrees rooted at different children of their lowest common

ancestor, say u(i,j). Without loss of generality, assume that uβ is belongs to

the right subtree of u(i,j) and that uα belongs to the left subtree of u(i,j). By

definition, β is an arc/node of Tj and α is an arc/node of T − Tj. Thus, the

root of T ′ must be a proper ancestor of j so that both α and β belong to T ′.

But this implies that (i, j) ∈ T ′. Because u(i,j) is a proper ancestor of uα, it is

closer to the root of D and contradicts the choice of uα. Therefore, u(T ′) must

be an ancestor of all nodes of D that corresponds to arcs/nodes of T ′.

Notice that u(T ′) is the unique representative of T ′, otherwise a differ-

ent representative would have to be a proper ancestor of u(T ′) and would

contradict the fact u(T ′) is a representative. �

Lemma 13 Consider a tree T , a weight function w and a decision tree D for

T . Then for every subtree T ′ of T ,
∑

v∈T ′ d(u(T ′), uv, D)w(v) ≥ OPT(T ′, w).

Proof : Consider a subtree T ′ of T . The idea is to construct a decision tree D′

for T ′ by removing all nodes of D which do not correspond to elements of T ′,

as illustrated in Figure 7.1. For that we define the recursive function rec(uα)

which receives a node uα of D and outputs a tree in the following way: if α

is a node of T ′, return uα; if α is an arc of T ′, compute the trees rec(r) and

rec(l) for the right and left child of uα (respectively r and l) and return the

tree formed by uα with rec(r) appended as its right child and rec(l) appended

as its left child; if α is not a node or an arc of T ′ then return rec(r) if α is

an ancestor of the root of T ′ or return rec(l) otherwise. The tree D′ is then

defined as D′ = rec(u(T ′)).
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Claim 1: D′ contains a node corresponding to each arc/node of T ′.

Consider an arc (i, j) of T . Notice that if (i, j) /∈ T ′, only nodes in the right

subtree of u(i,j) can correspond to elements of T ′ (in case j is an ancestor of

r(T ′)) or only nodes in the left subtree of u(i,j) can correspond to elements of

T ′ (in case j is not an ancestor of r(T ′)). Using this observation, it follows by

induction on the subtrees of D that the nodes of rec(u(T ′)) are exactly the

nodes of Du(T ′) which correspond to arcs/nodes of T ′. The claim then follows

from Lemma 12.

Claim 2: If α is a node (arc) of T ′, then uα is a leaf (internal node) of

D′. If α is a node of T ′, then uα is a leaf of D and, due to the construction

of D′ and using Claim 1, uα is also a leaf of D′. If α = (i, j) ∈ T ′, we notice

that Du(i,j)
contains the leaf uj 6= u(i,j). It follows from the fact that for each

u ∈ D′, D′
u ⊆ Du and from Claim 1 that D′

(i,j) contains the node uj 6= u(i,j)

and hence u(i,j) is an internal node of D′.

Because for each u ∈ D′, D′
u contains exactly the nodes of Du which

correspond to arcs/nodes of T ′, along with the fact that each internal node

of D satisfies the search property, each internal node of D′ also satisfies the

search property. Together with the previous claims, we have that D′ is a valid

decision tree for T ′.

Finally, it is easy to see (and to prove by induction) that for

any two nodes x and y which belong to both D and D′, we have

d(x, y,D′) ≤ d(x, y,D). Recalling that u(T ′) is the root of D′, we have that

cost(D′, w) ≤
∑

v∈T ′ d(u(T ′), uv, D)w(v). As D′ is a valid decision tree for T ′,

we have that OPT(T ′, w) ≤ cost(D′, w) and the result follows. �

Lemma 14
∑

qi∈Q d(r∗, u(T qi
), D∗)w(T qi

) ≥ H({w(T qi
)})/ log 3 − w(T )

Proof : Construct the tree D′ by adding new leaves to D∗ as follows: for each

node qi ∈ Q, add a leaf li to u(T qi
) (the relative position of siblings can be

ignored in this analysis). Now define the probability distribution w′ for D′ such

that w′(li) = w(T qi
)/w(T ), and all other nodes of D′ have zero probability.

Clearly the distance from r(D′) to li in D′ equals to d(r∗, u(T qi
), D∗)+1.

Because only the nodes {li} have nonzero probability, the cost of D′ is:

cost(D′, w′) =
∑

li

d(r(D′), li, D
′)w′(li) =

∑

qi

(

d(r∗, u(T qi
), D∗) + 1

) w(T qi
)

w(T )

Because the trees {T qi
} are pairwise disjoint, for qi 6= qj we have

that u(T qi
) 6= u(T qj

). Therefore at most one new leaf {li} is added to each

node {u(T qi
)} and D′ is at most a ternary tree. We can then use Shannon

Coding Theorem [Gallager68] to bound the cost of D′ as cost(D′, w′) ≥
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H({w′(li)})/ log 3. Substituting this bound in the previous displayed inequality

and noticing that H({w(T qi
)}) = H({w′(li)}) · w(T ), we have:

H({w(T qi
)})

log 3
≤

∑

qi

(

d(r∗, u(T qi
), D∗) + 1

)

w(T qi
)

The result follows by reorganizing the previous inequality and noticing

that w(T ) =
∑

qi
w(T qi

), as the trees {T qi
} define a partition of nodes of T . �
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