

João Vicente Martins de Magalhães

Bombeio de Gravel-Pack em Poços Horizontais Equipados com Telas de Furação Não-Uniforme

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para a obtenção do título de mestre em Petróleo e Energia.

Orientador: Prof. Paulo Roberto de Souza Mendes

Rio de Janeiro Março de 2008

João Vicente Martins de Magalhães

Bombeio de Gravel-Pack em Poços Horizontais Equipados com Telas de Furação Não-Uniforme

Dissertação apresentada como requisito parcial para a obtenção do grau de mestre pelo programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Paulo Roberto de Souza Mendes

Orientador

Departamento de Engenharia Mecânica - PUC-Rio

André Leibsohn Martins

Co-orientador CENPES/PETROBRAS

Paulo Dore Fernandes

CENPES/PETROBRAS

Prof. Márcio da Silveira Carvalho

Departamento de Engenharia Mecânica - PUC-Rio

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 07 de março de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial deste trabalho sem a autorização do autor, do orientador e da universidade.

João Vicente Martins de Magalhães

Graduou-se em Engenharia Química pela Universidade Federal Fluminense (UFF) em 2001. Cursou a especialização em Engenharia de Petróleo no CCE/PUC-Rio em 2003. Ingressou na Petrobras em 2001, como estagiário no setor de Tecnologia em Engenharia de Poço no Centro de Pesquisas da Petrobras (Cenpes). Em 2002 foi contratado, no mesmo setor, para iniciar 0 desenvolvimento do simulador computacional de deslocamento do Gravel-Pack poços horizontais para (SimGPH). Desde então, desenvolve o software e realiza diversas análises relacionadas à hidráulica de deslocamento do Gravel-Pack. Participou do curso de formação de Engenheiros de Petróleo da Petrobras (CEP) em 2006, realizado na Universidade Petrobras.

Ficha Catalográfica

Magalhães, João Vicente Martins de

Bombeio de Gravel-Pack em poços horizontais equipados com telas de furação não-uniforme / João Vicente Martins de Magalhães ; orientador: Paulo Roberto de Souza Mendes. – 2008.

108f. : il.(col.) ; 30 cm

Dissertação (Mestrado em Engenharia Mecânica)– Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Petróleo e energia. 3. Gravel-Pack. 4. Furação não-uniforme. 5. Simulação computacional. 6. Escoamento diversivo. I. Mendes, Paulo Roberto de Souza. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD:621

Dedico esta obra à minha esposa Geisa e aos meus filhos João Pedro e Davi, Luzes dos meus olhos e calor do meu coração

Agradecimentos

Primeiramente, um agradecimento especial ao meu amigo, co-orientador e tutor André Leibsohn Martins, principal incentivador deste, e de vários outros trabalhos dentro da Petrobras. Pela amizade, carinho e atenção que propiciaram o meu crescimento profissional nestes últimos anos.

Ao professor Paulo Roberto pelas orientações e a PUC-Rio pelos auxílios concedidos, sem os quais este trabalho não poderia ser realizado.

À Rosely e demais funcionários e professores de Departamento de Engenharia Mecânica da PUC-Rio.

Aos meus amigos do CENPES, Bananinha, Didi, Hellen, Roni, Alex, Marcus V., Rodriguinho, Xudson, Peter Spider e Mr. Folsta.

Em especial ao Rafinha pelo apoio e incentivo.

Aos professores da banca examinadora, em especial ao Paulo Dore, percussor deste trabalho.

Aos meus Pais, exemplo de amor incondicional, perseverança e dedicação para com os filhos.

À minha esposa Geisa, sem a qual não seria nem metade do que sou, nem 1/3 do que pretendo ser e nem amaria um milésimo do que, agora sei, sou capaz de amar.

Resumo

Magalhães, João Vicente Martins; Mendes, Paulo Roberto de Souza. Bombeio de Gravel-Pack em poços horizontais equipados com telas de furação não-uniforme. Rio de Janeiro, 2008. 108p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Na exploração e produção de petróleo em águas profundas e ultraprofundas, um dos problemas mais freqüentes é a contenção da fragmentação do reservatório durante a produção do óleo, quando o mesmo é proveniente de arenitos inconsolidados, facilmente encontrados na Bacia de Campos e demais fronteiras Offshore ao longo da costa Brasileira. O ingresso do material particulado do reservatório na coluna produtora irá criar problemas de erosão e deposição nas tubulações e demais equipamentos de superfície. Para evitar estes problemas, atualmente está sendo empregada de forma intensiva a técnica de contenção de areia chamada de Gravel Packing em poço aberto (OHGP -Open Hole Gravel Packing). Dadas as condições críticas encontradas quando se perfura em águas profundas e ultra-profundas, tais como baixo gradiente de fratura das formações, aliado à necessidade de se perfurar poços com trechos horizontais cada vez mais extensos, é imperativo que se faça o deslocamento do Gravel-pack com precisão operacional suficiente para garantir o sucesso da tarefa. Como a tecnologia para a perfuração e completação de poços horizontais extensos (trechos acima de 600m) foi desenvolvida a poucos anos atrás, somente recentemente, foi notado que tais trechos horizontais acarretam em um problema para o escoamento, ou seja, nestes poços não se tem um perfil homogêneo de produção, levando a uma drenagem não uniforme do reservatório e a uma baixa eficiência de recuperação. Isto sem contar a chegada antecipada da água injetada e a formação de cones de água e gás. Portanto, dispositivos para a equalização do escoamento da produção estão sendo desenvolvidos, através de projetos de pesquisa em diversos lugares. Telas de *Gravel-pack* dotadas de uma furação não-uniforme no seu tubo base consiste em uma destas novas tecnologias. O foco desta dissertação será apresentar o desenvolvimento do modelo matemático aplicado para o cálculo da vazão nos furos e para a checagem da melhor disposição dos mesmos, nos tubos base das telas de *Gravel-pack*. Tal furação deverá ter a capacidade de uniformizar o fluxo do óleo produzido ao longo do trecho de poço aberto horizontal, provendo uma melhor drenagem do reservatório, garantindo o deslocamento do *Gravel-pack* sem que a sobrepressão gerada, durante a operação, devido a baixa concentração de furos do tubo base (junto ao calcanhar do poço), frature a formação produtora e, ao mesmo tempo, garantindo o deslocamento através de ondas alfa e beta sem que, a concentração excessiva de furos (junto ao dedão do poço), leve ao embuchamento prematuro. Os resultados obtidos são validados através de um trabalho experimental de simulações físicas em escala próxima à real.

Palavras-chave

Engenharia Mecânica; Petróleo e Energia; Gravel-Pack; Furação Não-uniforme; Simulação Computacional; Escoamento Diversivo.

Abstract

Magalhães, João Vicente Martins; Mendes, Paulo Roberto de Souza. Gravel-Pack Pump in Horizontal Wells Equipped With Unevenly Hole Pattern Screens. Rio de Janeiro, 2008. 108p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

One of the most common problems in deep and ultradeep water explorations are the sand control during production time, even in unconsolidated sandstones reservoirs, easily found in Campos Basin and others Offshore frontiers along the Brazilian coast. The reservoir particles entrance in the production pipe may create erosion inside the column and deposition problems in the surface and subsurface equipments. In order to avoid all of these problems Open Hole Gravel-Packing (OHGP) is the most applied sand control technique in such scenarios. Due to the critical conditions found in deep and ultradeep waters such as low fracture gradient, ally long horizontal section requirements, is imperative that the Gravel-Packing operation be done with accuracy. Since the long horizontal wells technology it was developed few years ago, only recently has been noted that such wells brings other flow problem, that is: the wells delivery a non-uniform production profile, that leads to a non-uniform reservoir drainage as well as a low recovery efficiency. This phenomenon is also related to the early breakthrough of water and to water and gas conning problems. Therefore, flow equalization devices are being developed, through research projects, for several teams. Gravel-Pack screens with an unevenly holes pattern perforated in the base-pipe consist in one of these new solutions. The main focus of this work consist in present the mathematical model development applied to the flow rate calculus in the holes and the checking of the best hole pattern in the base-pipe. Such pattern should have the capacity to promote the production profile equality, providing the best reservoir drainage, guaranteeing the total Gravel-Package without the overpressure created, during the operation, due to the few concentration of base-pipe holes (close to the heel), may cause the formation fracture and, at same time, guaranteeing the displacement through alfa/beta waves without, the excessive holes concentration (close to the toe), lead to premature screen-out. The computational results obtained are validated through an experimental work by physical simulations.

Keywords:

Gravel-Pack; Gravel-Packing; Non-uniform Base-pipe Perforations; Numerical Simulations; Mathematical Modelling; Unevenly Flow.

Sumário

1. Introdução	20
2. Revisão bibliográfica	29
2.1. Modelando a operação de bombeio do Gravel-Pack	29
2.1.1. Breve descrição da operação de Gravel-Packing	29
2.1.2. Desenvolvimento do modelo mecanicista preliminar	33
2.1.2.1. Cálculo da altura da onda Alfa	33
2.1.2.2. Cálculo das perdas de carga durante a operação de gravel-	
packing	37
2.1.3. Calibração do modelo preliminar	44
2.2. O problema do fluxo não-uniforme no poço horizontal	45
2.2.1. Estudos da perda de carga em poços horizontais e seus efeitos	
na distribuição da vazão de produção	50
2.2.2. Métodos alternativos para minimizar/neutralizar os efeitos de	
fricção e promover um perfil de produção mais homogêneo ao longo	
do poço	59
3. Objetivo	67
	70
4. Mietodologia	70
5. Materiais	72
5.1. Desenvolvimento do aplicativo	72
5.2. Recursos experimentais	73
6. Modelagem e implementação	77
6.1. O modelo de escoamento pelos furos dos tubos-base das telas de)
Gravel-pack	77

6.1.1. Cálculo da distribuição de vazões ao longo do poço	79
6.2. Implementação do modelo	81
7. Resultados e discussão	84
7.1. Ensaios experimentais	84
7.2. Simulação numérica	95
7.3. Estudo comparativo entre os ensaios experimentais e as	
simulações numéricas	99
8. Conclusões	103
Sugestões para trabalhos futuros	104
10. Referências	105

Lista de Quadros

Quadro 7.1 - Distribuição de furos nos tubos-base	85
Quadro 7.2 - Matriz de teste	85
Quadro 7.3 - Volume e massa coletados após os testes	94
Quadro 7.4 - Divisão das vazões antes da onda beta para uma vazão de entrada	
de 3 bpm's	96
Quadro 7.5 - Divisão das vazões quando a onda beta passa pelo décimo tubo-base	97
Quadro 7.6 - Divisão das vazões quando a onda beta passa pelo nono tubo-base	97
Quadro 7.7 - Divisão das vazões quando a onda beta passa pelo oitavo tubo-base	97
Quadro 7.8 - Divisão das vazões quando a onda beta passa pelo sétimo tubo-base	98
Quadro 7.9 - Divisão das vazões quando a onda beta passa pelo sexto tubo-base	98
Quadro 7.10 - Divisão das vazões quando a onda beta passa pelo quinto tubo-base	98
Quadro 7.11 - Divisão das vazões quando a onda beta passa pelo quarto tubo-base	98
Quadro 7.12 - Divisão das vazões quando a onda beta passa pelo terceiro tubo-base	98
Quadro 7.13 - Divisão das vazões quando a onda beta passa pelo segundo tubo-base	98

Lista de Figuras

Figura 1.1 - Seção transversal do poço durante a propagação da onda alfa	22
Figura 1.2 - Fluxo de produção não-uniforme ao longo do trecho horizontal	24
Figura 1.3 - Efeito da permeabilidade do reservatório na vazão de produção [7]	25
Figura 1.4 - Contribuição não uniforme da vazão de produção ao longo do poço [7]	26
Figura 2.1 - Etapa de Injeção	30
Figura 2.2 - Etapa de propagação da onda alfa	31
Figura 2.3 - Etapa de propagação da onda beta	32
Figura 2.4 - Carta de bombeio	33
Figura 2.5 - Modelo de duas camadas	34
Figura 2.6 - Pontos relevantes para o cálculo das pressões	38
Figura 2.7 - Simulador físico usado para calibração do modelo	44
Figura 2.8 - Comparativo entre alturas calculadas computacionalmente e	
experimentais	45
Figura 2.9 - Esquema de um poço horizontal [15]	46
Figura 2.10 - Production Logging Test – região A, calcanhar do poço – região B,	
dedão do poço	47
Figura 2.11 - Fingerings formados devido à elevada razão de mobilidades	48
Figura 2.12 - Vazão adimensional versus distância adimensional para um fluxo	
turbulento [3]	52

Figura 2.13 - Distribuição de pressão ao longo do poço (exemplo de campo [4])	56
Figura 2.14 - Distribuição de fluxo ao longo do poço (exemplo de campo [4])	56
Figura 2.15 - Determinação do comprimento ótimo do trecho horizontal, levando em	
conta efeitos de fricção no poço	57
Figura 2.16 - Efeitos do escoamento bifásico na produtividade do poço	58
Figura 2.17 - Comparativo entre o modelo 1D, o modelo 3D e a solução de	
condutividade infinita	59
Figura 2.18 - Esquema do poço e as perfurações	60
Figura 2.19 - Resultados obtidos para a otimização do fluxo	61
Figura 2.20 - Perfis típicos de pressão e influxo para completação convencional (esq.)	
e com s <i>tinger</i> (dir.)	62
Figura 2.21 - Esquema de funcionamento dos dispositivos de controle de influxo	63
Figura 2.22 - Resultados das simulações para os quatro casos estudados (A -	
completação convencional; B - completação com stinger; C - redução de densidade	
de perfurações; D – dispositivos para controle de influxo instalados no liner)	63
Figura 2.23 - Perfil de densidade de perfurações de modo a promover a equalização	
do fluxo	65
Figura 3.1 - Esquema do tubo base com furação diversiva e como esta furação age	
para promover a equalização da produção ao longo do trecho horizontal (linha 2)	68
Figura 4.1 - Metodologia empregada para o estudo da equalização do perfil de	
produção	71
Figura 5.1 - Ambiente de desenvolvimento de software DELPHI 7™ utilizado	72
Figura 5.2 - Conjunto de telas utilizadas nos testes	75
Figura 5.3 - Unidade de bombeio e gravel infuser.	75
Figura 5.4 - <i>Flowmeter</i> do tipo turbina	75
Figura 5.5 - Válvula de segurança	76
Figura 5.6 - Cabeça de injeção	76
Figura 5.7 - Tanque para armazenagem do fluido carreador	76
Figura 6.1 - Esquema de escoamento	78
Figura 6.2 - Perfil de pressões comparativo entre um tubo base de furação regular	
e um com furação não uniforme	83
Figura 7.1 - Esquema do simulador físico com o posicionamento dos transdutores	85
Figura 7.2 - Registro do teste 2A	86
Figura 7.3 - Registro do teste 2B	87
Figura 7.4 - Registro do teste 2C	87
Figura 7.5 - Registro do teste 2D	88
Figura 7.6 - Imagens da qualidade do empacotamento capturadas ao fim do teste 2A	89
Figura 7.7 - Imagens da qualidade do empacotamento capturadas ao fim do teste 2B	90
Figura 7.8 - Qualidade do empacotamento referente ao teste 2C	91
Figura 7.9 - Qualidade do empacotamento referente ao teste 2D	92

Figura 7.10 - Caixa coletora de sólidos	93
Figura 7.11 - Volume coletado no teste 2A	93
Figura 7.12 - Volume coletado no teste 2B	94
Figura 7.13 - Volume coletado no teste 2C	94
Figura 7.14 - Volume coletado no teste 2D	94
Figura 7.15 - Balanço das vazões ao longo do simulador físico	96
Figura 7.16 - Evolução das vazões no anular tela- <i>washpipe</i>	99
Figura 7.17 - Resultado comparativo para o teste 2A	100
Figura 7.18 - Resultado comparativo para o teste 2B na vazão de 5 bpm	100
Figura 7.19 - Resultado comparativo para o teste 2B na vazão de 3 bpm	100
Figura 7.20 - Resultado comparativo para o teste 2C	101
Figura 7.21 - Resultado comparativo para o teste 2D na vazão de 5 bpm	101
Figura 7.22 - Resultado comparativo para o teste 2D na vazão de 3 bpm	101

Lista de Equações

Equação 1.1 - Equação do fator de recuperação de um campo	27
Equação 2.1 - Conservação de massa na fase sólida	36
Equação 2.2 - Conservação de massa na fase líquida	36
Equação 2.3 - Conservação do momento linear na camada superior	36
Equação 2.4 - Conservação do momento linear na camada inferior	36
Equação 2.5 - Perfil de concentração na camada superior	36
Equação 2.6 - Equação do perfil de concentração integrada	37
Equação 2.7 - Parcela referente à integral da equação 2.6	37
Equação 2.8 - Cálculo da pressão no fundo do poço	38
Equação 2.9 - Cálculo da pressão junto a sapata do último revestimento	38
Equação 2.10 - Cálculo da pressão de bombeio	38
Equação 2.11 - Cálculo da posição da frente de injeção do gravel	40
Equação 2.12 - Perda de carga no poço aberto durante a fase de injeção	40
Equação 2.13 - Perda de carga no interior da coluna durante a fase de injeção	40
Equação 2.14 - Pressão hidrostática no interior da coluna	41
Equação 2.15 - Cálculo da posição da frente de injeção durante a onda alfa	41
Equação 2.16 - Perda de carga no poço aberto durante a onda alfa	41
Equação 2.17 - Perda de carga na coluna durante a onda alfa	42
Equação 2.18 - Pressão hidrostática na coluna durante a onda alfa	42
Equação 2.19 - Posição da frente de injeção durante a onda beta	42
Equação 2.20 - Perda de carga no poço aberto durante a onda beta	42
Equação 2.21 - Perda de carga na coluna durante a onda beta	42
Equação 2.22 - Pressão hidrostática na coluna durante a onda beta	43

Equação 2.23 - Cálculo do diâmetro hidráulico da interface	43
Equação 2.24 - Cálculo do diâmetro hidráulico do anular poço-tela	43
Equação 2.25 - Cálculo da massa específica da mistura fluido-gravel	43
Equação 2.26 - Razão de mobilidades água-óleo	48
Equação 2.27 - Equação para o cálculo da vazão de produção segundo modelo de	
Dikken[3]	51
Equação 2.28 - Equação de acoplamento poço-reservatório segundo Dikken[3]	51
Equação 2.29 - Relação entre o gradiente de pressão no poço e a vazão	52
Equação 2.30 - Pressão adimensional segundo modelo de Ozkan[4]	53
Equação 2.31 - Tempo adimensional segundo modelo de Ozkan[4]	54
Equação 2.32 - Vazão adimensional segundo modelo de Ozkan[4]	54
Equação 2.33 - Integral de todas as vazões que entram no poço	54
Equação 2.34 - Condutividade do escoamento no poço segundo Ozkan[4]	54
Equação 2.35 - Fator de atrito no regime laminar	54
Equação 2.36 - Fator de atrito no regime turbulento	55
Equação 2.37 - Perda de carga adimensional calculada para o poço	55
Equação 2.38 - Relação entre o número de Reynolds e o fator de atrito	55
Equação 2.39 - Equação para o cálculo da perda de carga no poço segundo o	
modelo de Asheim e Oudeman[44]	64
Equação 2.40 - Equação geral de Darcy-Weissbach para o cálculo da perda de	
carga no poço	64
Equação 2.41 - Equação para o cálculo da perda de carga e cálculo do fator de atrito	
pelo modelo de Blasuis	66
Equação 2.42 - Cálculo da perda de carga através das perfurações	66
Equação 2.43 - Cálculo da densidade de perfurações segundo modelo de	
Fernandes[45] em função da localização (x)	66
Equação 6.1 - Perda de carga no anular	78
Equação 6.2 - Perda de carga nos furos	79
Equação 6.3 - Balanço de vazões	79
Equação 6.4 - Perda de carga no anular poço-tela e furos (trecho 1)	79
Equação 6.5 - Perda de carga no anular tela-washpipe e furos (trecho 2)	79
Equação 6.6 - Perda de carga no anular poço-tela	80
Equação 6.7 - Perda de carga nos furos em função da vazão de passagem	80
Equação 6.8 - Perda de carga no anular tela-washpipe	80
Equação 6.9 - C ₁ -Constante que engloba termos relativos ao cálculo da perda de	
carga no anular poço-tela	80
Equação 6.10 - C ₂ -Constante que engloba termos relativos ao cálculo da perda de	
carga nos furos	80
Equação 6.11 - C ₃ -Constante que engloba termos relativos ao cálculo da perda de	

Equação 6.12 - Equação geral	80
Equação 6.13 - Termo acumulador de perda de carga no trecho 1	80
Equação 6.14 - Termo acumulador de perda de carga no trecho 2	81

Lista de Símbolos

- A Área, pé²
- C Concentração, lb/gal
- D Diâmetro, pol
- D_h Diâmetro hidráulico, pol
- Diametro interno, pol
- D_{poço} Diâmetro do poço, pol
- f Fator de atrito de Fanning
- *F* Força estática, lb.pé/s²
- *g* Aceleração da gravidade, pé/s²
- h Profundidade vertical, pé
- L Profundidade medida, pé
- LA Lâmina d'água, pé
- P Pressão, psi
- *P*_b Pressão de Bombeio, psi.
- ΔP Perda de carga, psi.
- Q Vazão, bpm
- Q_b Vazão de bombeio, bpm
- Re Número de Reynolds
- S Perímetro, pol
- t Tempo, s
- U Velocidade média, pé/s
- x Coordenada longitudinal no espaço anular, pé
- y Coordenada vertical no espaço anular, pé

Letras Gregas

- α Estágio da onda Alfa
- β Estágio da onda Beta
- ε Coeficiente de difusão
- ϕ Porosidade
- γ Variável de integração
- η Coeficiente de escorregamento
- φ Ângulo de fricção interno, radianos
- ρ Massa específica, lb/gal
- τ Tensão cisalhante, lb.pé/s²
- θ Ângulo de inclinação do poço (em relação à vertical), radianos
- ω Velocidade de queda das partículas sólidas, pés/s

Índices

- an Espaço anular entre o poço aberto e a tela
- col Coluna
- ext Externo
- f Fluido
- fp Fundo do poço
- H Hidráulico
- i Interface
- inj Etapa de injeção
- int Interno
- kc Kill e Choke
- L Leito
- max Máximo
- mist Mistura
- pa Poço aberto
- ret Retorno
- rev Revestimento
- S Camada superior
- sap Sapata
- tot Total
- wp Wash Pipe

Abreviaturas e Siglas

- BSW *Basic Sediments and Water* relação entre o volume de água e sedimentos produzidos pelo volume total de produção em condições de superfície.
- DHSV *Down Hole Safety Valve* válvula de segurança para o bloqueio do poço em caso de desconexão da sonda.
- GN Gás natural.
- II Índice de injetividade- relação entre cada unidade de vazão de injeção obtida por cada unidade de pressão imposta ao poço.
- IP Índice de produtividade relação entre cada unidade de vazão de produção obtida por cada unidade de pressão imposta entre o reservatório e o poço.
- LGN Líquido de gás natural parte do gás, em condições de reservatório, que se encontra condensado em condições de superfície.
- PPA *Pounds per absolut gallons* Libra de sólidos adicionados por galão de mistura já pronta (considerando o volume dos sólidos adicionados)
- RGO Razão Gás/Óleo relação entre o volume de gás e óleo produzidos em condições de superfície
- SPE Society of Petroleum Engineers
- STB Standard Barrels (barris standard volume em barris na condição de temperatura e pressão padrão 25°C; 1atm.

O desenvolvimento da capacidade geral de pensamento e livre-arbítrio sempre deveria ser colocado em primeiro lugar, e não a aquisição de conhecimento especializado. Se uma pessoa domina o fundamental no seu campo de estudo e aprendeu a pensar e a trabalhar livremente, ela certamente encontrará o seu caminho e será mais capaz de adaptar-se ao progresso e às mudanças.

Albert Einstein.