

Frederico Martins Alves da Silva

Modelos de Dimensão Reduzida para Análise das Oscilações Não-Lineares e Estabilidade de Cascas Cilíndricas

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientadores: Paulo Batista Gonçalves Zenón José Guzmán Nuñez Del Prado

Rio de Janeiro Março de 2008

Frederico Martins Alves da Silva

Modelos de Dimensão Reduzida para Análise das Oscilações Não-Lineares e Estabilidade de Cascas Cilíndricas

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Paulo Batista Gonçalves Presidente/Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Zenón José Guzmán Nuñez Del Prado Co-Orientador Escola de Engenharia Civil – UFG

> Prof. Carlos Eduardo Nigro Mazzilli USP – SP

Prof. Ronaldo Carvalho Battista COPPE – UFRJ

Prof. João Luís Pascal Roehl PUC-Rio

> Prof. Raul Rosas e Silva PUC-Rio

Prof. José Eugênio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 24 de março de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Frederico Martins Alves da Silva

Graduou-se em Engenharia Civil pela Universidade Católica de Goiás (UCG) em janeiro de 2002. Ingressou no mestrado em Engenharia Civil da Universidade Federal de Goiás (UFG) em março de 2002, atuando na área de Instabilidade e Dinâmica das Estruturas. Em 2004, continuando na mesma linha de pesquisa do mestrado, iniciou o curso de doutorado na PUC-Rio.

Ficha Catalográfica

Silva, Frederico Martins Alves da

Modelos de dimensão reduzida para análise das oscilações não-lineares e estabilidade de cascas cilíndricas / Frederico Martins Alves da Silva ; orientadores: Paulo Batista Gonçalves, Zenón José Guzmán Nuñez Del Prado. – 2008.

182 f. : il. (col.) ; 30 cm

Tese (Doutorado em Engenharia Civil)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

 Engenharia civil – Teses. 2. Cascas cilíndricas. 3. Modelos de dimensão reduzida. 4. Método de Karhunen-Loève. 5. Interação fluido-estrutura. 6. Oscilações nãolineares. 7. Fator de integridade. 8. Estabilidade dinâmica.
 I. Gonçalves, Paulo Batista. II. Prado, Zenón José Guzmán Nuñez Del. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título. PUC-Rio - Certificação Digital Nº 0410740/CA

À Renata, à Elizabeth e aos familiares com amor e carinho.

Agradecimentos

"O valor das coisas não está no tempo que elas duram, mas na intensidade com que acontecem. Por isso existem momentos inesquecíveis, coisas inexplicáveis e pessoas incomparáveis." (Fernando Pessoa).

À Deus pela Sua infinita bondade claramente manifestada nos professores que tive ao longo de toda vida, acadêmicos ou não, sempre encontrei pessoas que tinham algo de bom a ensinar.

Aos meus familiares. Peço licença para citá-los: Elizabeth, Bráulio, Margaret, Jorge, Cirlei, Braulin, Elizângela, Cristiane, Cecília, Guto, Yana, Lídia, Nathália, Ana Cristina, João, Otília, Milton, André Luiz, Fernanda, Alessandra, Roberto, Maria Cecília e, nesse mistério que compõe a vida, ao mais novo membro da família, que para ciência ainda não é possível sabermos se será uma menina ou menino, mas desde já deixo registrado o meu amor. Cada um de vocês e a cada dia fazem parte do meu eterno aprendizado. Sem falar do meu eterno amor, Renata, que me faz uma pessoa melhor a cada instante desse caminho chamado felicidade.

Ao Prof. Paulo B. Gonçalves, que com toda sua paciência, dedicação, amizade e solicitude, ensinou-me muito mais do que os livros lidos e a pesquisa desenvolvida. Sim importantes! Mas mostrou-me que semear tais virtudes é o único caminho para tornar-se *educador*.

Ao dileto amigo Zenón J. G. N. Del Prado. Sei que seu papel na concretização dessa etapa é tão importante quanto de quem a trilhou. Sei também, que tudo o que já passamos em torno *das cascas*, o que fica é a nossa amizade e companheirismo. Você é com certeza um daqueles irmãos que ao longo da vida aparecem e, sem que se perceba, tornam-se inesquecíveis.

À Prof. Sylvia Regina Mesquita de Almeida e ao Prof. Ademir Aparecido do Prado, ambos da UFG. Seus ensinamentos no mestrado diminuíram os obstáculos desta jornada.

Aos amigos de república que me aturaram e que suportaram as minhas manias: Pasquetti, José Roberto, Diego, Walter, Magnus e Roberto. Aos amigos da sala 609 que propiciaram ao longo desses anos uma formação extracurricular em nossos calorosos debates. Bastava que alguma notícia fosse publicada e lá estávamos analisando-a, como se detivéssemos todo o conhecimento do mudo para tal. *"Não concordo com uma única palavra do que dizeis, mas defenderei até a morte o vosso direito de dizê-la."* (Voltaire). A esses amigos: Müller, Diego, Igor, Pecin e João meu fraterno abraço.

Ao Prof. Carlos A. Almeida e a Prof. Angela F. Perricone pelo exemplo do magistério.

Aos Profs. M. Amabili, G. Rega e S. Lenci pela prestatividade concedida na análise dos resultados desta tese.

Aos demais professores do departamento de Engenharia Civil.

A Capes e ao CNPq pelo apoio financeiro, sem os quais este trabalho não poderia ser realizado.

Resumo

Silva, Frederico Martins Alves da; Gonçalves, Paulo Batista; Prado, Zenón José Guzmán Nuñez Del. **Modelos de dimensão reduzida para análise das oscilações não-lineares e estabilidade de cascas cilíndrica.** Rio de Janeiro, 2008. 182p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Nesta tese, as vibrações não-lineares e a estabilidade de uma casca cilíndrica contendo um fluido são estudadas com base em modelos de dimensão reduzida, isto é, modelos com um número reduzido de graus de liberdade. A partir dos funcionais de energia potencial e cinética de uma casca cilíndrica, deduzem-se suas equações de movimento. O campo de deformações da casca cilíndrica segue a teoria não-linear de Donnell para cascas abatidas. O fluido é considerado interno à casca irrotacional, não-viscoso e incompressível, sendo descrito a partir de um potencial de velocidade que leva em consideração a interação entre o fluido e a estrutura. Para resolver o sistema de equações de equilíbrio da casca, desenvolve-se um procedimento analítico que permite obter os campos de deslocamento axial e circunferencial em função dos deslocamentos laterais, além de atender as condições de contorno do problema. Desta forma, reduz-se o sistema de equações de equilíbrio a uma única equação diferencial parcial que é resolvida com o método de Galerkin. A determinação dos deslocamentos laterais é feita a partir de técnicas de perturbação que ordena os modos não-lineares de acordo com sua importância na solução da casca cilíndrica. Comprova-se essa ordenação através do método de Karhunen-Loève que fornece, também, uma expansão ótima para os deslocamentos laterais. Além dessas técnicas, apresenta-se uma redução polinomial que relacionam as amplitudes dos modos não-lineares com a amplitude do modo linear, criando uma expansão modal com 1 GDL. Apresentam-se respostas no tempo, fronteiras de instabilidade e diagramas de bifurcação para uma casca cilíndrica submetida a dois tipos de carregamentos harmônicos, pressão lateral e carga axial. A seguir, são propostos alguns critérios para a análise da a integridade do sistema dinâmico tanto para um sistema com 1 GDL quanto para um sistema multidimensional através da evolução e erosão das bacias de atração. Por fim, estuda-se o comportamento de cascas cilíndricas parcialmente cheias, mostrando a influência da altura do fluido nas fronteiras de instabilidade e curvas de ressonância da casca cilíndrica.

Palavras-chave

cascas cilíndricas; modelos de dimensão reduzida; método de Karhunen-Loève; interação fluido-estrutura; oscilações não-lineares; fator de integridade; estabilidade dinâmica.

Abstract

Silva, Frederico Martins Alves da; Gonçalves, Paulo Batista (Advisor); Prado, Zenón José Guzmán Nuñez Del (Co-advisor). **Low dimensional models for nonlinear vibration analysis and stability of cylindrical shells.** Rio de Janeiro, 2008. 182p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The nonlinear vibrations and stability of a fluid-filled cylindrical shell is investigated using reduced order models. First, the nonlinear equations of motion of the cylindrical shell are deduced based on the expressions for the potential and kinetic energy, which are obtained using Donnell shallow shell theory. The internal fluid is considered to be irrotational, non-viscous and incompressible. It is described by a velocity potential that takes into account the fluid-shell interaction. A procedure is proposed to obtain analytically the axial and circumferential displacements of the shell, satisfying the in-plane equations of motion and the associated boundary conditions. So, the problem is reduced to one partial differential equation of motion which is solved by the Galerkin method. The transversal displacement field is obtained by perturbation techniques. This enables one to identify the relevance of each term in the nonlinear expansion of the vibration modes. Then, the Karhunen-Loève method is employed to investigate de relative importance of each mode obtained by the perturbation analysis on the nonlinear response and to deduce optimal interpolation function to be used in the Galerkin procedure. A SDOF model is also obtained by relating the modal amplitudes of the nonlinear modes to the vibration amplitude of the linear mode. Time responses, instability boundaries and bifurcation diagrams are obtained for cylindrical shells subjected to harmonic lateral and axial loads. Different procedures for the analysis of the shell integrity are proposed based on the evolution and erosion of the basins of attraction in state-space. Finally, the influence of the fluid height on the stability boundaries and resonance curves is studied.

Keywords

cylindrical shells, reduced order models, Karhunen-Loève method, fluidstructure interaction, nonlinear oscillations, integrity factor, dynamic stability

Sumário

1 INTRODUÇÃO	23
1.1. Motivação	31
1.2. OBJETIVOS	31
1.3. Organização do trabalho	32
2 MODELAGEM DA CASCA CILÍNDRICA	34
2.1. CAMPO DE DEFORMAÇÕES	34
2.2. ESFORÇOS DE MEMBRANA E DE FLEXÃO	36
2.3. FUNCIONAIS DE ENERGIA DA CASCA CILÍNDRICA	37
2.4. SISTEMA DE EQUAÇÕES NÃO-LINEARES	39
2.5. SISTEMA DE EQUAÇÕES NÃO-LINEARES ADIMENSIONAIS	42
3 MODELAGEM DO FLUIDO INTERNO	44
3.1. EQUAÇÕES BÁSICAS DO FLUIDO	44
3.2. DETERMINAÇÃO DO POTENCIAL DE VELOCIDADE DO FLUIDO	46
3.3. Considerações sobre a vibração da superfície livre do fluido	
(SLOSHING)	50
4 MODELOS REDUZIDOS PARA A CASCA CILÍNDRICA	52
4.1. Solução geral do campo de deslocamento da casca pelo método da	
PERTURBAÇÃO	53
4.2. DETERMINAÇÃO DO CAMPO DE DESLOCAMENTOS $U \in V$	55
4.3. Redução do problema pelo método de Karhunen-Loève	58
4.4. Obtenção dos modelos reduzidos para cascas cilíndricas	61
4.4.1. Análise estática não-linear	62
4.4.2. Análise dinâmica não-linear	68
4.5. MODELO REDUZIDO VERSUS MÉTODO DOS ELEMENTOS FINITOS	75
5 ANÁLISE DAS VIBRAÇÕES NÃO-LINEARES	82
5.1. Casca cilíndrica, simplesmente apoiada, submetida a uma pressão	
LATERAL HARMÔNICA	82
5.1.1. Influência do pré-carregamento axial, Γ_0 .	86
5.1.2. Modelo reduzido versus Método dos elementos finitos	89
5.2. CASCA CILÍNDRICA, SIMPLESMENTE APOIADA, SUBMETIDA A UMA CARGA AXIAL	
HARMÔNICA	92
6 INTEGRIDADE DE SISTEMAS NÃO-LINEARES	111
6.1. INTEGRIDADE DO SISTEMA DINÂMICO COM UM GRAU DE LIBERDADE	112
6.1.1. Vibração livre não-amortecida	112

6.1.2. Vibração livre amortecida	114
6.1.3. Vibração forçada amortecida	119
6.2. INTEGRIDADE DE UM SISTEMA DINÂMICO MULTIDIMENSIONAL	130
6.3. CASCA CILÍNDRICA COMPLETAMENTE CHEIA	146
6.3.1. Modelo com um grau de liberdade	146
6.3.2. Modelo multidimensional	152
7 CASCA CILÍNDRICA PARCIALMENTE CHEIA	159
8 CONCLUSÕES E SUGESTÕES	168
8.1. CONCLUSÕES	168
8.2. SUGESTÕES	170
9 REFERÊNCIAS BIBLIOGRÁFICAS	171
APÊNDICE A	178

Lista de Figuras

Figura 1.1 - Torre de resfriamento de Niederaussem - Alemanha (Busch et al.,	
2002)	3
Figura 2.1 – Geometria e campo de deslocamentos da casca cilíndrica	5
Figura 2.2 - Convenção de sinais e resultante dos esforços (a) de membrana e (b)	
de flexão	3
Figura 2.3 – Representação do carregamento aplicado à casca	7
Figura 3.1 - Representação esquemática do fluido interno à casca cilíndrica47	7
Figura 4.1 - Caminho pós-critico da casca cilíndrica, considerando diferentes	
expansões para os deslocamentos radiais62	2
Figura 4.2 - Caminho pós-critico da casca cilíndrica. Comparação entre a	
formulação por função de tensão e a formulação com u e v em função de w63	3
Figura 4.3 – Quatro primeiros POMs com os seus respectivos POVs para a resposta	
não-linear pós-crítica65	5
Figura 4.4 – Comparação entre a solução pós-crítica da casca a partir da expansão	
(4.21) com a reconstrução da resposta usando os quatros primeiros POMs66	3
Figura 4.5 – Comparação do caminho pós-crítico utilizando a expansão modal (4.21)	
e o modelo com apenas um grau de liberdade (4.34)	3
Figura 4.6 - Relação freqüência-amplitude para a casca cilíndrica, considerando	
diferentes expansões para os deslocamentos radiais69	9
Figura 4.7 – Quatro primeiros POMs e seus respectivos POVs para a vibração livre	
não-linear da casca cilíndrica70)
Figura 4.8 - Relação freqüência-amplitude para a casca cilíndrica usando a	
expansão modal obtida pelo método da perturbação e pela expansão de Karhunen-	
Loève71	1
Figura 4.9 - Convergência da relação freqüência-amplitude usando um modelo de	
dimensão reduzida com o aumento do número de POMs72	2
Figura 4.10 - Variação de cada amplitude modal ao longo de um período de	
vibração livre. $\Omega = 0.98$	3
Figura 4.11 - Comparação da relação freqüência-amplitude utilizando a expansão	
modal (4.21) e o modelo com apenas um grau de liberdade (4.38)75	5
Figura 4.12 - Campo de deslocamentos (a) radiais e (b) axiais da casca cilíndrica	
para o modo $m = 1$ e $n = 5$. Resultado obtido através do Abaqus	7
Figura 4.13 - Variação do deslocamento radial no ponto (0,2; 0) em função do	
tempo obtido a partir do Abaqus78	3
Figura 4.14 - Comparação entre os resultados do Abaqus e o modelo analítico da	
relação freqüência-amplitude79	9
Figura 4.15 – Quatro primeiros POMs e seus respectivos POVs para a vibração livre	
não-linear e levemente amortecida da casca cilíndrica obtida a partir do Abaqus80)

rigura 5.1 – Maximo desiocamento fateral versus nequencia de excitação para uma
casca vazia
Figura 5.2 – Máximo deslocamento lateral versus freqüência de excitação para uma
casca completamente cheia85
Figura 5.3 – Máximo deslocamento lateral versus freqüência de excitação para uma
casca vazia e $\Gamma_2 = 0,5087$
Figura 5.4 – Máximo deslocamento lateral versus freqüência de excitação para uma
casca completamente cheia e $\Gamma_2 = 0,50.$
Figura 5.5 - Comparação entre os modelos de 1 GDL, 6 GDL e os resultados do
Abaqus para o deslocamento lateral do ponto de coordenada (x, θ) = (L/2; 0) de
uma casca cilíndrica vazia. Γ_2 = 1,091
Figura 5.6 – Bacia de atração para a casca cilíndrica vazia. (Γ_2 = 1,00). Modelo com
1 GDL. 🔳 - solução de pequena amplitude. 📃 - solução de grande amplitude,
Figura 5.7 - Caminho pós-crítico da casca cilíndrica variando a expansão modal
para os deslocamentos laterais92
Figura 5.8 - Fronteiras de instabilidade paramétrica e de escape para uma casca
cilíndrica vazia e outra completamente cheia. Carregamento brusco. Γ_0 = 0,40.
$(\Gamma_0 > \Gamma_{MIN-6 \text{ GDL}} = 0,20)$
Figura 5.9 - Fronteiras de instabilidade paramétrica e de escape para uma casca
cilíndrica vazia e outra completamente cheia. Carregamento brusco. Γ_0 = 0,60.
$(\Gamma_0 > \Gamma_{MIN-6 \text{ GDL}} = 0,20)$
Figura 5.10 – Fronteiras de instabilidade paramétrica e de escape para uma casca
cilíndrica vazia e outra completamente cheia. Carregamento brusco. Γ_0 = 0,80.
$(\Gamma_0 > \Gamma_{\text{MIN}-6 \text{ GDL}} = 0,20)$
Figura 5.11 – Respostas no tempo e planos de fase para uma casca cilíndrica vazia.
Modelo reduzido de 6 GDL. Γ_0 = 0,40 e Ω = 1,60. • - pontos fixos do mapa de
Poincaré da resposta permanente
Figura 5.12 - Respostas no tempo e planos de fase para uma casca cilíndrica
completamente cheia. Modelo reduzido de 6 GDL. $\Gamma_0 = 0,40$ e $\Omega = 0,92$. • - pontos
fixos do mapa de Poincaré da resposta permanente
Figura 5.13 – Fronteiras de instabilidade paramétrica e de escape para uma casca
cilíndrica vazia e outra completamente cheia. Carregamento gradual. Γ_0 = 0,40.
$(\Gamma_0 > \Gamma_{MIN-6 \text{ GDL}} = 0,20)$
Figura 5.14 – Fronteiras de escape permanente para uma casca cilíndrica vazia e
outra completamente cheia. Comparação entre um carregamento gradual e um
carregamento brusco. $\Gamma_0 = 0,40$. ($\Gamma_0 > \Gamma_{MIN-6 \text{ GDL}} = 0,20$)
Figura 5.15 – Fractalidade das fronteiras de escape permanente de uma casca
cilíndrica vazia e Γ_0 = 0,40. Carregamento brusco

Figura 5.16 - Fractalidade das fronteiras de escape permanente de uma casca
cilíndrica completamente cheia e Γ_0 = 0,40. Carregamento brusco
Figura 5.17 – Diagramas de bifurcação para uma casca cilíndrica vazia. Γ_0 = 0,40.
Região principal de instabilidade paramétrica
Figura 5.18 - Diagramas de bifurcação para uma casca cilíndrica completamente
cheia. $\Gamma_0 = 0,40$. Região principal de instabilidade paramétrica105
Figura 5.19 – Diagrama de bifurcação, para uma casca cilíndrica vazia, obtido pelo
método da Força Bruta. ($\Gamma_0 = 0,40$)
Figura 5.20 – Diagramas de bifurcação para uma casca cilíndrica vazia. Modelo com
6 GDL. $\Gamma_0 = 0,40$. Região secundária de instabilidade paramétrica108
Figura 5.21 - Planos de fase da região secundária de instabilidade paramétrica da
casca cilíndrica vazia. Modelo com 6 GDL. ($\Gamma_0 = 0,40$)
Figura 5.22 - Formas como os multiplicadores de Floquet podem sair do círculo de
raio unitário109
Figura 6.1 – Caminho pós-crítico da casca cilíndrica. Modelo com 1 GDL112
Figura 6.2 - Órbitas heteroclínicas e homoclínicas da casca cilíndrica, modelo com
1 GDL. (Γ ₀ = 0,40)113
Figura 6.3 - Plano de fase com diferentes condições iniciais de um sistema
conservativo e de um amortecido. ($\Gamma_0=0,40$)115
Figura 6.4 - Bacia de atração estática para um sistema levemente amortecido.
Modelo com 1 GDL. ($\Gamma_0 = 0,40$)
Figura 6.5 - Instantes iniciais da resposta no tempo para diversas perturbações
iniciais
Figura 6.6 – (a-c) Variação da energia potencial em função de Γ_0 e (d) variação da
profundidade dos vales potenciais com o parâmetro $\Gamma_0.\ldots\ldots$ 117
Figura 6.7 - Órbitas heteroclínicas e homoclínicas da casca cilíndrica, modelo com
1 GDL. $\Gamma_0 = 0,60$
Figura 6.8 - Variação da área da bacia pré-flambagem com o parâmetro de pré-
carregamento estático119
Figura 6.9 – Diagrama de bifurcação para uma casca cilíndrica vazia. (Γ_0 = 0, 40,
Ω = 1,80). Modelo com 1 GDL
Figura 6.10 – Planos de fase para uma casca cilíndrica vazia. (Γ_0 = 0, 40, Ω = 1,80)121
Figura 6.11 - Bacia de atração permanente para uma casca cilíndrica vazia e fator
de integridade. (Γ_0 = 0, 40, Ω = 1,80). Modelo com 1 GDL
Figura 6.12 - Variação do fator de integridade bacia de atração da casca cilíndrica
vazia. (Γ_0 = 0,40, Ω = 1,80). Modelo com 1 GDL
Figura 6.13 – Relação entre o plano de fase e a coordenada ζ_{11} do ponto de sela
para casca vazia. (Γ_0 = 0,40, Ω = 1,80). Modelo com 1 GDL.
$\zeta_{11}(0) = \dot{\zeta}_{11}(0) = 1 \times 10^{-4}$. Carga brusca. ($\Gamma_{1CR-BRUSCO} = 1,01$; $\Gamma_{1CR-GRADUAL} = 1,10$)124

Figura 6.14 - Superfície de energia total de um sistema conservativo com o plano
de fase, Figura 6.13e, de uma casca cilíndrica vazia submetida a um carregamento
axial harmônico125
Figura 6.15 - Bacia de atração permanente para uma casca cilíndrica vazia na
região de interesse delimitada pelos pontos de sela. (Γ_0 = 0,40, Ω = 1,80). Modelo
com 1 GDL. Carregamento brusco
Figura 6.16 – Bacia de atração transiente para uma casca cilíndrica vazia na região
de interesse delimitada pelos pontos de sela. Modelo com 1 GDL128
Figura 6.17 - Erosão da área de interesse da bacia de atração para casca vazia.
Modelo com 1 GDL. ($\Gamma_0 = 0,40, \ \Omega = 1,80$)
Figura 6.18 – Variação do fator de integridade com ângulo de fase. (Γ_0 = 0,40, Γ_1 =
0,80, Ω = 1,80). Modelo com 1 GDL
Figura 6.19 – (a-c) Projeção do caminho pós-critico e (d) energia potencial total Π
relativa aos pontos de sela. Modelo com 3 POMs131
Figura 6.20 – (a) Representação, em \mathfrak{R}^3 , da energia potencial total relativa aos
pontos de sela e (b) sua intersecção com um plano que passa por ambas as selas e
pela origem133
Figura 6.21 – Projeções tridimensionais da superfície de energia. ($\Gamma_0 = 0,40$)134
Figura 6.22 - Projeções da órbita que emerge do ponto de sela na direção do
autovetor. ($\Gamma_0 = 0,40$)
Figura 6.23 – Secções transversais da energia potencial total, II, (Figura 6.22a)135
Figura 6.24 – Diagrama de bifurcação para uma casca cilíndrica vazia. (Γ_0 = 0,40,
Ω = 1,80). Modelo com 3 POMs
Figura 6.25 – Bacia de atração permanente para uma casca cilíndrica vazia e fator
de integridade. (Γ_0 = 0,40, Ω = 1,80). Modelo com 3 POMs
Figura 6.26 – Fluxograma para a determinação do fator de integridade. Modelo com
3 POMs
Figura 6.27 - Variação do fator de integridade bacia de atração da casca cilíndrica
vazia. (Γ_0 = 0,40, Ω = 1,80). Comparação entre os modelos reduzidos com 1 GDL e
com 3 POM139
Figura 6.28 – Projeção da resposta permanente no plano $\overline{A}_1 \times \overline{A}_2$. ($\Gamma_0 = 0,40, \Omega =$
1,80). Modelo com 3 POMs. Carga brusca. ($\Gamma_{1CR-BRUSCO} = 1,06$; $\Gamma_{1CR-GRADUAL} = 1,13$).
$A_i(0) = \dot{A}_i(0) = 1 \times 10^{-4}$
Figura 6.29 - Projeções da resposta permanente da casca em 15 planos distintos.
$(\Gamma_0 = 0,40, \Gamma_1 = 1,05, \Omega = 1,80).$ 141
Figura 6.30 - Bacia de atração permanente para uma casca cilíndrica vazia na
região do interesse do vale pré-flambagem. (Γ_0 = 0,40, Ω = 1,80). Modelo com 3
POMs

Figura 6.31 – Bacia de atração transiente para uma casca cilíndrica vazia na região de interesse do vale pré-flambagem. ($\Gamma_0 = 0,40, \Omega = 1,80$). Modelo com 3 POMs. 144 Figura 6.32 – Variação do fator de integridade misto da bacia de atração de uma Figura 6.33 – Variação do fator de integridade de uma casca cilíndrica vazia com ângulo de fase. ($\Gamma_0 = 0,40$, $\Gamma_1 = 0,80$, $\Omega = 1,80$). Comparação entre os modelos reduzidos com 1 GDL e com 3 POM.145 Figura 6.34 – Diagrama de bifurcação para uma casca cilíndrica completamente cheia. ($\Gamma_0 = 0,40, \Omega = 0,90$). Modelo com 1 GDL......146 Figura 6.35 – Bacia de atração permanente para uma casca cilíndrica completamente cheia na região de interesse versus fator de integridade. ($\Gamma_0 = 0,40$, Figura 6.36 – Variação do fator de integridade bacia de atração da casca cilíndrica Figura 6.37 – Relação entre o plano de fase e a coordenada ζ_{11} do ponto de sela para a casca completamente cheia. ($\Gamma_0 = 0,40, \Omega = 0,90$). $\zeta_{11} = \dot{\zeta}_{11} = 1 \times 10^{-4}$. Figura 6.38 – Bacia de atração transiente para uma casca cilíndrica completamente Figura 6.39 – Erosão da área da região de interesse da bacia de atração. ($\Gamma_0 = 0,40$, Figura 6.40 – Variação do fator de integridade de uma casca cilíndrica completamente cheia com o ângulo de fase. ($\Gamma_0 = 0,40$, $\Gamma_1 = 0,60$, $\Omega = 0,90$). Modelo Figura 6.41 – Diagrama de bifurcação para uma casca cilíndrica completamente Figura 6.42 – Variação do fator de integridade da bacia de atração da casca Figura 6.43 – Projeção da resposta permanente no plano $\overline{A}_1(\tau) \times \overline{A}_2(\tau)$ para a casca completamente cheia. ($\Gamma_0 = 0.40$, $\Omega = 0.90$). Modelo com 3 POMs. Figura 6.44 – Projeções da resposta permanente da casca completamente cheia. $(\Gamma_0 = 0,40, \ \Gamma_1 = 0,83, \ \Omega = 0,90).$ Figura 6.45 – Bacia de atração permanente para uma casca cilíndrica completamente cheia na região do vale pré-flambagem. ($\Gamma_0 = 0,40, \Omega = 0,90$). Figura 6.46 – Bacia de atração transiente para uma casca cilíndrica completamente cheia na região do vale pré-flambagem. ($\Gamma_0 = 0,40, \Omega = 0,90$). Modelo com 3 POMs...157

Figura 6.47 - Variação do fator de integridade misto da bacia de atração para uma
casca cilíndrica completamente cheia com Γ_1 . (Γ_0 = 0,40, Ω = 0,90). Modelo com 3
POMs
Figura 6.48 - Variação do fator de integridade misto de uma casca cilíndrica
completamente cheia com ângulo de fase. (Γ_0 = 0,40, Γ_1 = 0,60, Ω = 0,90). Modelo
com 3 POMs
Figura 7.1 - Relação freqüência-amplitude para a casca cilíndrica variando a altura
do fluido interno e as considerações sobre o fundo do tanque
Figura 7.2 – Curvas de ressonância - variação do módulo da amplitude modal ζ_{11}
com a freqüência de excitação para valores crescentes de pressão lateral, Γ_2 , e
fundo flexível (ϵ = 0,001)
Figura 7.3 – Curvas de ressonância - variação do módulo da amplitude modal ζ_{11}
com a freqüência de excitação para valores crescentes de pressão lateral, Γ_2 , e
fundo rígido ($\varepsilon = 0,001$)
Figura 7.4 - Variação das fronteiras de instabilidade da casca cilíndrica, apoiada
sobre um fundo flexível, com a altura do fluido interno. Carga brusca. ($\Gamma_0 = 0,40$)163
Figura 7.5 - Variação das fronteiras de instabilidade da casca cilíndrica, apoiada
sobre um fundo rígido, com a altura do fluido interno. Carga brusca. ($\Gamma_0 = 0,40$)164
Figura 7.6 - Resposta no tempo e plano de fase para diversos níveis de fluido
interno. Fundo flexível. ($\Gamma_0 = 0,40, \Gamma_1 = 0,60, \Omega = 1,05$)
Figura 7.7 – Diagrama de bifurcação em função freqüência da excitação. ($\Gamma_0 = 0,40$
e Γ_1 = 0,60). Modelo com 6 GDL
Figura 7.8 – Diagrama de bifurcação em função do nível fluido interno. ($\Gamma_0 = 0,40$;
$ Γ_1 = 0,60; Ω = 1,05 $). Modelo com 6 GDL

Lista de Tabelas

Tabela 4.1 - Participação dos modos usados na expansão modal dos quatro	
primeiros POMs no caminho pós-critico da casca.	66
Tabela 4.2 - Participação dos modos usados na expansão modal dos quatro	
primeiros POMs na relação freqüência-amplitude da casca.	71
Tabela 4.3 - Freqüências naturais, em Hz, para uma casca cilíndrica simplesmente	
apoiada.	76
Tabela 4.4 - Participação dos modos usados na expansão modal dos quatro	
primeiros POMs obtidos a partir do método do elementos finitos.	81
Tabela 5.1 – Máximo deslocamento lateral registrado nas Figuras 5.1 e 5.2.	86
Tabela 5.2 - Freqüência natural da casca cilíndrica variando o pré-carregamento	
estático, Γ_0 , para uma casca cilíndrica vazia e outra completamente cheia.	88
Tabela 5.3 - Multiplicador de Floquet crítico para o diagrama de bifurcação da	
Figura 5.17l. ($\Gamma_0 = 0.40 \text{ e } \Omega = 1.80$).	109
Tabela 5.4 - Multiplicador de Floquet crítico para o diagrama de bifurcação da	
Figura 5.20d. ($\Gamma_0 = 0,40 \text{ e } \Omega = 0,80$).	110
Tabela 6.1 - Pontos de equilíbrio e seus respectivos autovalores. Modelo reduzido	
com 1 GDL. $\Gamma_0 = 0,40.$	113
Tabela 6.2 – Autovalores reais da sela e seus respectivos autovetores. ($\Gamma_0 = 0,40$)	114
Tabela 6.3 - Pontos de equilíbrio e seus respectivos autovalores. Modelo reduzido	
com 1 GDL. ($\Gamma_0 = 0,60$).	118
Tabela 6.4 - Pontos de equilíbrio e seus respectivos autovalores. Modelo reduzido	
com 3 POMs. ($\Gamma_0 = 0,40$).	132
Tabela 6.5 – Autovalores reais da sela e seus respectivos autovetores. ($\Gamma_0 = 0,40$)	133
Tabela 7.1 - Freqüência natural mínima da casca cilíndrica (rad/s) para diversas	
alturas de fluido interno e do tipo de fundo.	159

Lista de Símbolos

Símbolos latinos

A _k (t),	amplitude do modo k relativa ao POM k.
$A_{\overline{m}}(t)$,	amplitude do modo \overline{m} da expansão modal do fluido
D,	rigidez de flexão
E,	módulo de elasticidade do material
f	função de tensão
F _L ,	pressão lateral harmônica
h,	espessura da casca cilíndrica
Н,	altura do fluido interno
Κ,	rigidez de membrana
L,	comprimento da casca cilíndrica
R,	raio da casca cilíndrica
n,	número de ondas circunferenciais
N_x ,	esforço axial
N_x^F ,	esforço axial fundamental
N_x^l ,	esforço axial incremental
N_{θ} ,	esforço circunferencial
N_{θ}^{F} ,	esforço circunferencial fundamental
N^{I}_{θ} ,	esforço circunferencial incremental
$N_{x\theta}$,	esforço cisalhante
$N_{x\theta}^F$,	esforço cisalhante fundamental
$N^{I}_{x\theta}$,	esforço cisalhante incremental
m,	número de semi-ondas longitudinais
M_{X} ,	momento axial
M^F_X ,	momento axial fundamental
M^{I}_{X} ,	momento axial incremental
M_{Θ} ,	momento circunferencial
M^F_{Θ} ,	momento circunferencial fundamental
M^{I}_{Θ} ,	momento circunferencial incremental

$M_{x \Theta}$,	momento torsor
$M_{x\theta}^{F}$,	momento torsor fundamental
$M^{I}_{x\theta}$,	momento torsor incremental
p,	pressão lateral
Ρ,	carga axial
P ₀ ,	pré-carregamento axial estático
P ₁ ,	amplitude do carregamento dinâmico axial
P _H ,	pressão hidrodinâmica
R _E ,	trabalho das forças de dissipação
t,	tempo
Τ,	energia cinética
u,	deslocamento na direção longitudinal
U,	deslocamento adimensional na direção longitudinal (= u/h)
Ū,	amplitude modal da expansão para os deslocamentos axiais
U _I ,	energia interna de deformação
U _M ,	energia de membrana
U _F ,	energia de flexão
ν,	deslocamento na direção circunferencial
V,	deslocamento adimensional na direção circunferencial (= v/h)
\overline{V} ,	amplitude modal da expansão para os deslocamentos
	circunferenciais
V _E ,	potencial das forças externas
Х,	coordenada na direção longitudinal
w,	deslocamento na direção lateral
W,	deslocamento adimensional na direção lateral (= w/h)
\overline{W} ,	amplitude modal da expansão para os deslocamentos lateral
Ζ,	coordenada na direção lateral

Símbolos gregos

β_1 ,	amortecimento viscoso
β_2 ,	amortecimento viscoelástico
η_1 ,	coeficiente de amortecimento viscoso
η_2 ,	coeficiente de amortecimento viscoelástico

 δ , parâmetro adimensional linear da espessura (= h/R)

arDelta ,	parâmetro adimensional quadrático da espessura (= h²/12R²)
<i>l</i> ,	parâmetro adimensional do comprimento (= L/R)
ξ,	coordenada adimensional na direção axial (= x/R)
ϕ ,	potencial de velocidade do fluido
χ_{x} ,	mudança de curvatura axial
χ^F_x ,	mudança de curvatura axial fundamental
χ_x^l ,	mudança de curvatura axial incremental
$\overline{\chi}_{X}$,	mudança de curvatura axial de um ponto qualquer da casca
$\chi_ heta$,	mudança de curvatura circunferencial
$\chi^{\sf F}_{ heta}$,	mudança de curvatura circunferencial fundamental
$\chi^{I}_{ heta}$,	mudança de curvatura circunferencial incremental
$\overline{\chi}_{ heta}$,	mudança de curvatura circunferencial de um ponto qualquer da casca
$\chi_{x heta}$,	mudança de curvatura angular
$\chi^{F}_{x heta}$,	mudança de curvatura angular fundamental
$\chi^{l}_{x heta}$,	mudança de curvatura angular incremental
$\overline{\chi}_{x heta}$,	mudança de curvatura angular de um ponto qualquer da casca
\mathcal{E}_{χ} ,	deformação específica axial
ε_x^F ,	deformação específica axial fundamental
ε_{x}^{\prime} ,	deformação específica axial incremental
$\overline{\mathcal{E}}_{\chi}$,	deformação específica axial de um ponto qualquer da casca
$\mathcal{E}_{ heta}$,	deformação específica circunferencial
$arepsilon_{ heta}^{ extsf{F}}$,	deformação específica circunferencial fundamental
$arepsilon_{ heta}^{l}$,	deformação específica circunferencial incremental
$\overline{arepsilon}_{ heta}$,	deformação específica circunferencial de um ponto qualquer da casca
ε_{kn} ,	raízes da equação de restrição dos efeitos de sloshing
$\gamma_{x heta}$,	deformação específica angular
$\gamma^{F}_{X heta}$,	deformação específica angular fundamental
$\gamma'_{X\theta}$,	deformação específica angular incremental

$\overline{\gamma}_{X heta}$,	deformação específica angular de um ponto qualquer da casca
ν,	coeficiente de Poisson
$ ho_{S}$,	densidade do material da casca cilíndrica
$ ho_{\sf F}$,	densidade do fluido
$\overline{\sigma}_{\chi}$,	tensão axial
$\overline{\sigma}_{ heta}$,	tensão circunferencial
$\overline{ au}_{ extsf{x} heta}$,	tensão cisalhante
Ī,	Lagrangiano
Γ_0 ,	parâmetro adimensional do pré-carregamento axial estático
Γ_1 ,	parâmetro adimensional da amplitude de excitação do
	carregamento axial dinâmico
Γ_2 ,	parâmetro adimensional da amplitude de excitação da pressão
	lateral harmônica
τ,	parâmetro adimensional do tempo
ω_0 ,	freqüência natural da casca vazia
ω_E ,	freqüência de excitação da carga axial
ω_L ,	freqüência de excitação da pressão lateral
arOmega ,	parâmetro adimensional da freqüência de excitação
ζ _{ij} ,	amplitude modal da expansão para os deslocamentos laterais
,	adimensional
λ_k ,	valores ortogonais próprios

Matrizes e vetores

$\bar{f}_k(\mathbf{x}, \mathbf{\theta})$,	modos ortogonais	próprios
--	------------------	----------

- $\overline{\sigma}$, vetor de tensões atuantes
- $\overline{\pmb{\epsilon}}$, vetor de deformações específicas
- U, vetor de deslocamentos
- $\mathbf{V}(\mathbf{x},t)$, vetor de distribuição de velocidades do fluido no espaço
- **p**(**x**, *t*), vetor de distribuição de pressão do fluido no espaço
- $\mathbf{\rho}(\mathbf{x},t)$, vetor de distribuição de densidade do fluido no espaço
- $\mathbf{w}(\mathbf{x}, \mathbf{\theta}, t)$, campo vetorial que descreve o campo deslocamento laterais
- C, matriz constitutiva do material

- $\mathbf{E}[\mathbf{w}(\mathbf{x}, \mathbf{\theta}, t)]$, matriz da média invariante no tempo do campo vetorial
- $\overline{\mathbf{V}}\,,$ matriz da variação do campo vetorial com relação ao campo médio
- **R**, matriz de correlação espacial
- $\overline{\mathbf{W}}$, matriz de amostragem

Funções matemáticas

div,	divergente
grad,	gradiente
rot,	rotacional
l _n ,	função modificada de Bessel de primeira classe e ordem n
J _n ,	função de Bessel de primeira classe e ordem n
L()	operador diferencial linear
D ₁ ()	operador diferencial não-linear que gera termos quadráticos
D ₂ ()	operador diferencial não-linear que gera termos cúbicos