3 Análise de pórticos planos de concreto armado

3.1. Introdução

A sistemática convencional de projeto baseia-se em processos de análises sucessivas, envolvendo um grande número de variáveis e um grande número de verificações. Com base nos resultados de uma primeira análise, o projetista modifica as configurações de projeto caso os critérios de projeto tenham sido violados, objetivando encontrar uma estrutura que atenda aos referidos critérios. Muito dificilmente a escolha adotada representa a melhor configuração possível, ou a mais econômica, apenas representa uma escolha viável. O processo de otimização de estruturas pode ser entendido como a finalização ideal de um processo de análises sucessivas, que continuaria até que se encontrasse a estrutura mais econômica no espaço das soluções viáveis. Na busca por esse objetivo, podem-se utilizar técnicas de otimização numérica.

Assim, a busca por um projeto ótimo necessita da análise da estrutura. Neste trabalho será utilizada para a análise de pórticos planos de concreto armado a mesma metodologia empregada por Melo (2000b) que executa a análise nãolinear geométrica e do material tendo por opção a utilização de dois tipos de elementos finitos distintos.

3.2. Análise não-linear de pórticos planos

3.2.1. Considerações iniciais

No trabalho é adotada uma formulação não-linear para análise estática de pórticos planos de concreto armado. Os elementos finitos são elementos de estado plano de tensões de eixo reto e seção transversal constante e retangular.

Para a discretização da estrutura foram implementados por Melo (2000b) dois modelos de elementos finitos que têm por diferença principal a aproximação utilizada para a representação da componente do deslocamento axial. No primeiro modelo, os deslocamentos axial e transversal são aproximados por polinômios linear e cúbico, respectivamente. Já no segundo elemento a aproximação da componente axial foi composta por um polinômio quadrático, e a componente transversal por um cúbico. É utilizado o método iterativo de Newton-Raphson para a resolução do sistema de equações não-lineares.

A não-linearidade geométrica é tratada considerando a hipótese de rotações moderadas. No caso dos materiais, são assumidas as relações tensão-deformação não-lineares.

No trabalho não são considerados os efeitos dinâmicos, considerando somente um caso de carga onde o processo de carregamento é suposto estático. As cargas aplicadas são consideradas atuando somente nos pontos nodais do modelo discretizado. Caso elas estejam atuando ao longo dos elementos, elas são substituídas por cargas nodais equivalentes.

3.2.2. Características dos materiais

Para o dimensionamento de seções de concreto armado, a NBR 6118 (ABNT, 2004) recomenda o diagrama parábola-retângulo para descrever a relação tensão x deformação no concreto na região comprimida e despreza-se a contribuição do concreto para a resistência à tração. As tensões negativas são consideradas de compressão como mostra a Figura 3.1, de onde se têm,

$$\sigma_{c} = -\sigma_{cd} \qquad \text{se } \varepsilon_{cu} \leq \varepsilon_{c} \leq -\varepsilon_{c2}$$

$$\sigma_{c} = \sigma_{cd} \left[2 \frac{\varepsilon_{c}}{\varepsilon_{c2}} + \left(\frac{\varepsilon_{c}}{\varepsilon_{c2}} \right)^{2} \right] \qquad \text{se } -\varepsilon_{c2} \leq \varepsilon_{c} \leq 0$$

$$\sigma_{c} = 0 \qquad \text{se } \varepsilon_{c} \geq 0$$

$$(3.1)$$

sendo,

$$\varepsilon_{cu} = 3.5 \%_{00}$$

$$\varepsilon_{c2} = 2 \%_{00}$$

$$\sigma_{cd} = 0.85 f_{cd}$$

$$f_{cd} = f_{ck} / \gamma_{c}$$

$$(3.2)$$

 ε_c é a deformação no concreto, σ_c é a tensão de compressão, f_{cd} é o valor de cálculo da resistência à compressão, γ_c é o coeficiente de minoração (γ_c =1,4) e f_{ck} é o valor característico da resistência à compressão.

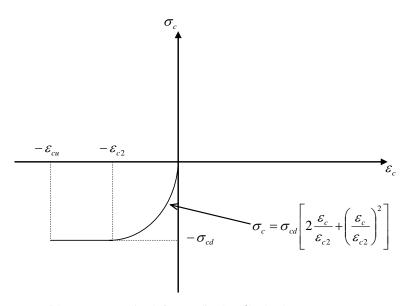


Figura 3.1 – Diagrama tensão-deformação de cálculo do concreto.

Para os aços, a mesma norma recomenda usar (Figuras 3.2):

$$\sigma_{s} = E_{s} \varepsilon_{s} \qquad \text{se } |\varepsilon_{s}| \leq \varepsilon_{yd}$$

$$\sigma_{s} = sign(\varepsilon_{s}) f_{yd} \qquad \text{se } |\varepsilon_{s}| > \varepsilon_{yd}$$

$$(3.3)$$

onde σ_s é a tensão normal no aço; ε_s é a deformação no aço; ε_{yd} é a deformação de escoamento de cálculo do aço; f_{yd} é a tensão de escoamento de cálculo do aço; E_s é o modulo de elasticidade transversal do aço e sign(x) é a função que retorna o sinal da função dada (se $x \ge 0$ a função retorna +1, caso contrário, ela retorna -1).

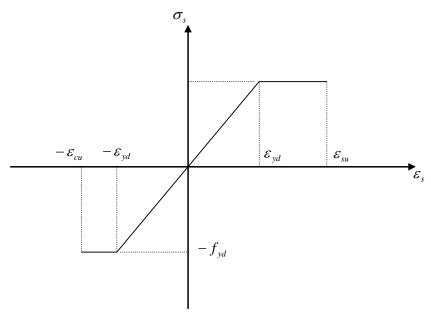


Figura 3.2 - Diagrama tensão-deformação de cálculo do aço classe A.

Para a análise da resposta da estrutura em termos de esforços internos solicitantes, deve-se trabalhar com os valores médios das resistências, ou seja, substitui-se o f_{cd} pelo seu valor médio, f_{cm} , e o f_{yd} pelo seu valor médio, f_{ym} . Os coeficientes de ponderação das ações são iguais os recomendados pela NBR 6118 (ABNT, 2004). Para o cálculo dos esforços internos resistentes seguese também a NBR 6118.

3.2.3. Deformação axial e curvatura

O sistema de coordenadas de referência dos elementos adotado está representado na Figura 3.3, considerando-se que o carregamento aplicado atua no plano *x-y* permanecendo neste plano após a deformação.

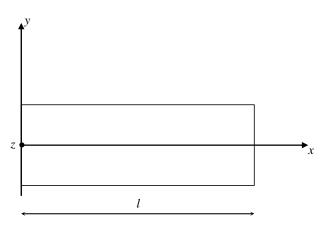


Figura 3.3 – Sistema de coordenadas de referência dos elementos finitos.

As componentes de deslocamento finais de P0 nas direções x e y são u e v, e as componentes de deslocamento finais de P nas direções x e y são u_x e u_y (Figura 3.4).

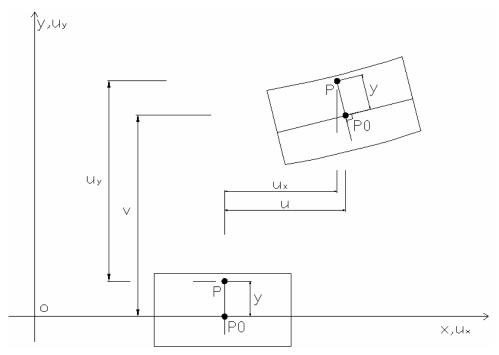


Figura 3.4 – Configuração deformada de um trecho de elemento.

Com base na hipótese de Navier-Bernoulli e das rotações moderadas, a equação que descreve $\varepsilon_{_{\chi}}$ devida ao campo de deslocamentos pode ser escrita como

$$\varepsilon_{x} = \frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial v}{\partial x} \right)^{2} - y \frac{\partial v^{2}}{\partial^{2} x}$$
 (3.4)

$$\varepsilon_{x} = \varepsilon_{0} - y\chi$$

$$\varepsilon_{0} = u' + \frac{1}{2}v'^{2}$$

$$\chi = v''$$
(3.5)

onde ε_0 é a deformação axial; χ é a curvatura; ()' e ()'' significam as derivadas de primeira e segunda ordens em relação a x.

3.2.4. Esforços internos no elemento

Na formulação adotada por Melo (2000b) obtêm-se as equações de equilíbrio não-lineares para o pórtico obtidas pelo principio dos trabalhos virtuais. Os esforços internos para o equilíbrio são: a força normal N; a resultante das tensões do concreto e do aço; e o momento M, resultante dos momentos produzidos pelas tensões internas do concreto e do aço em relação ao centróide da seção transversal. Utilizando-se as convenções de sinais da Figura 3.5, tem-se:

$$N = \iint_{A_{m}} \sigma_{X} dA = \iint_{A_{c,m}} \sigma_{X} dA + \sigma_{SI,m} A_{SI,m} + \sigma_{SS,m} A_{SS,m}$$

$$M = -\iint_{A_{m}} \sigma_{X} y dA = -\iint_{A_{c,m}} \sigma_{X} y dA - \sigma_{SI,m} y_{SI,m} A_{SI,m} - \sigma_{SS,m} y_{SS,m} A_{SS,m}$$
(3.6)

Os esforços das Equações (3.6) são definidos para uma seção qualquer do elemento finito m. Assim, tem-se $A_{SI,m}$, $A_{SS,m}$ para as armaduras longitudinais inferior e superior, $A_{c,m}$ para a área de concreto, $\sigma_{SI,m}$, $\sigma_{SS,m}$ para as tensões nas armaduras longitudinais inferior e superior e $y_{SI,m}$, $y_{SS,m}$ para as ordenadas que distam do centro de gravidade da seção de concreto até o centro de gravidade das armaduras longitudinais inferior e superior, respectivamente.

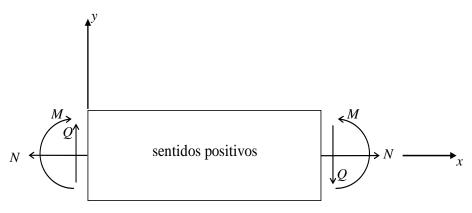


Figura 3.5 – Convenção de sinal para esforços no elemento.

3.2.5. Equação de equilíbrio

O problema de solução das equações de equilíbrio não-lineares (Eq. 3.7) é resolvido de forma incremental pelo método de Newton-Raphson

$$\Psi = F - P = 0 \tag{3.7}$$

sendo F o vetor das forças nodais internas da estrutura e P o vetor das forças nodais externas. O problema possui neq equações não-lineares, sendo neq o número de graus de liberdade da estrutura.

O processo iterativo utiliza incrementos de deslocamento (Eq. 3.8) até que as forças desequilibradas se anulem ($\Psi\cong 0$). Assim têm-se as equações de equilíbrio incrementais.

$$u^{(k+1)} = u^{(k)} + \Delta u^{(k+1)} \tag{3.8}$$

$$\Psi\left(u^{(k)}\right) = F\left(u^{(k)}\right) - P$$

$$K_{T}\left(u^{(k)}\right) \Delta u^{(k+1)} = -\Psi\left(u^{(k)}\right)$$
(3.9)

Onde

$$K_{T}\left(u^{(k)}\right) = \left[\frac{\partial F}{\partial u}\right]_{u(k)} \tag{3.10}$$

sendo $K_T \Big(u^{(k)} \Big)$ a matriz de rigidez tangente e $\Psi \Big(u^{(k)} \Big)$ o vetor de forças desequilibradas da estrutura.

3.2.6. Modelos de elementos finitos

Para a discretização da estrutura foram implementados por Melo (2000b) dois modelos de elementos finitos.

Para ambos os modelos, os deslocamentos u e v são aproximados em função de deslocamentos nodais locais generalizados $q^T = \{q_u^T q_v^T\}$.

$$u = \phi_u^T q_u$$

$$v = \phi_v^T q_v$$
(3.11)

O primeiro modelo utilizado tem os deslocamentos axial e transversal aproximados por polinômios lineares e cúbicos, respectivamente. As funções de interpolação generalizada são dadas por:

$$\phi_{u}^{T} = \{1 - \xi \quad \xi\}$$

$$\phi_{v}^{T} = \{(1 + 2\xi)(1 - \xi)^{2} \quad l\xi(1 - \xi)^{2} \quad \xi^{2}(3 - 2\xi) \quad -l\xi^{2}(1 - \xi)\}$$
(3.12)

onde $\xi = x/l$ é a coordenada adimensional. Com relação aos deslocamentos nodais generalizados q, para este modelo tem-se

$$q_{u}^{T} = \{u_{1} \ u_{2}\}\$$

$$q_{v}^{T} = \{v_{1} \ \theta_{1} \ v_{2} \ \theta_{2}\}\$$
(3.13)

O segundo modelo utilizado tem os deslocamentos axial e transversal aproximados por polinômios quadráticos e cúbicos, respectivamente. As funções de interpolação generalizada são dadas por:

$$\phi_{u}^{T} = \left\{ 1 - 3\xi + 2\xi^{2} \quad \xi(2\xi - 1) \quad 4\xi(1 - \xi) \right\}$$

$$\phi_{v}^{T} = \left\{ (1 + 2\xi)(1 - \xi)^{2} \quad l\xi(1 - \xi)^{2} \quad \xi^{2}(3 - 2\xi) \quad -l\xi^{2}(1 - \xi) \right\}$$
(3.14)

para os deslocamentos nodais generalizados q, deste modelo, tem-se,

$$q_{u}^{T} = \{u_{1} \ u_{2} \ u_{3}\}$$

$$q_{v}^{T} = \{v_{1} \ \theta_{1} \ v_{2} \ \theta_{2}\}$$
(3.15)

Através das funções de interpolação, definem-se a matriz de rigidez tangente do elemento (k_T) e o vetor de forças nodais internas no elemento (f), para os dois modelos implementados.

$$k_T = \left\lceil \frac{\partial f}{\partial q} \right\rceil \tag{3.16}$$

$$k_{T_m} = \int_{l_m} \left[\left(\frac{\partial u'}{dq_m} + \frac{\partial v'}{dq_m} \right) \left\{ \frac{\partial N}{dq_m} \right\}^T + N \frac{\partial v'}{dq_m} \left(\frac{\partial v'}{dq_m} \right)^T + \frac{\partial v''}{dq_m} \left\{ \frac{\partial M}{dq_m} \right\} \right] dx$$
 (3.17)

$$f_{m} = \int_{I_{m}} \left[N \left(\frac{\partial u'}{\partial q} + v' \frac{\partial v'}{\partial q} \right) + M \frac{\partial v''}{\partial q} \right] dx$$
 (3.18)

Assim, a matriz de rigidez tangente da estrutura (K_T) e o vetor de forças nodais internas da estrutura (F), para os dois modelos implementados são:

$$K_{T} = \sum_{m=1}^{nel} \left(T_{m}^{T} k_{T_{m}} T_{m} \right) \tag{3.19}$$

$$F = \sum_{m=1}^{nel} \left(T_m^T f_m \right) \tag{3.20}$$

onde T_m^T é a transposta da matriz de transformação do elemento m que é definida a partir das relações geométricas entre os deslocamentos generalizados do elemento (q) nos eixos locais xy e os deslocamentos generalizados da estrutura nos eixos globais XY.

$$T = \begin{bmatrix} \cos & sen & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos & sen & 0 \\ -sen & \cos & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -sen & \cos & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}_{6x6}$$
(3.21)

A Figura 3.6 mostra os eixos globais XY, os eixos locais xy e os graus de liberdade globais para cada modelo de elemento finito utilizado.

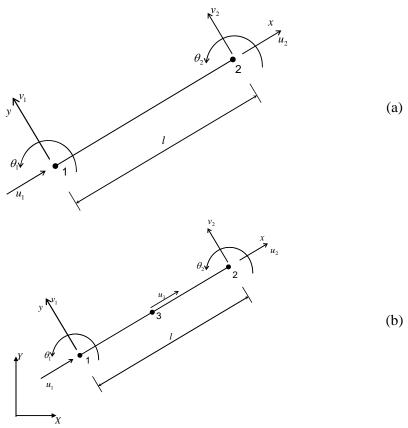


Figura 3.6 – (a) Modelo 1 e (b) modelo 2 com seus respectivos eixos de referência e graus de liberdade locais.

3.3. Cargas críticas

Para um elemento reto de concreto armado submetido à flexo-compressão, verifica-se que, sob a ação de carregamento crescente, podem ser alcançados dois tipos diferentes de falha, impossibilitando sua utilização:

- ruptura do material, que ocorre quando algum dos critérios de falha do material é violado em algum ponto da estrutura;
- colapso por instabilidade do elemento ou da estrutura, que se caracteriza pela perda de equilíbrio.

Buscando estimar o coeficiente de colapso da estrutura para ambos os casos, Melo (2000b) apresenta a análise da carga crítica de instabilidade (λ^*) e o cálculo da carga crítica de ruína por falha do material (λ^r).

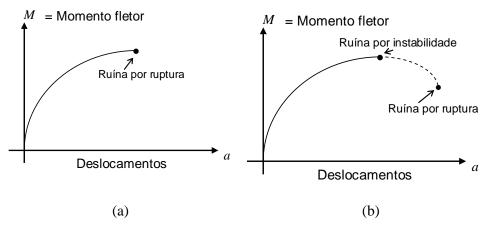


Figura 3.7 – (a) Ruína por ruptura e (b) ruína por perda de estabilidade.

Na Figura 3.7(a) visualiza-se um exemplo onde uma seção de concreto armado submetida à flexo-compressão monotonicamente falha por não atender o critério de resistência ($\lambda^* \geq \lambda^r$), e na Figura 3.7(b) a estrutura atinge o colapso por instabilidade antes de ocorrer a falha por não atender o critério de resistência ($\lambda^* < \lambda^r$).

Neste trabalho é utilizado o algoritmo implementado por Melo (2000b) que executa uma busca de ordem zero para a determinação da carga crítica, baseada na inspeção do sinal do determinante da matriz de rigidez tangente. Partindo-se de λ_0 , executa-se o procedimento de bissecção até determinar o intervalo que contém o valor crítico e, em seguida, faz-se uma busca pelo método da seção áurea até identificar λ^* . Verificações nas seções de extremidade dos elementos são realizadas durante o processo para constatar se houve falha no critério de resistência das seções.