Reginaldo Rosa Cotto de Paula

Investigação Numérica do Escoamento Dentro e Acima do Dossel de Florestas

TESE DE DOUTORADO

DEPARTAMENTO DE ENGENHARIA MECÂNICA Programa de Pós–graduação em Engenharia Mecânica

Rio de Janeiro Setembro de 2007

Reginaldo Rosa Cotto de Paula

Investigação Numérica do Escoamento Dentro e Acima do Dossel de Florestas

Tese de Doutorado

Tese apresentada ao Programa de Pós–graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica da PUC–Rio como parte dos requisitos parciais para obtenção do título de Doutor em Engenharia Mecânica

Orientador: Prof. Marcos Sebastião de Paula Gomes

Rio de Janeiro Setembro de 2007

Reginaldo Rosa Cotto de Paula

Investigação Numérica do Escoamento Dentro e Acima do Dossel de Florestas

Tese apresentada como requisito parcial para obtendo grau de Doutor pelo Programa de Pós–graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio.Aprovada pela Comissão Examinadora abaixo assinada.

> Marcos Sebastião de Paula Gomes Orientador Pontifícia Universidade Católica do Rio de Janeiro

Prof. André Augusto Isnard Departamento de Engenharia Mecânica — PUC-Rio

Profa. Angela Ourivio Nieckele Departamento de Engenharia Mecânica — PUC-Rio

Prof. Ednaldo Oliveira dos Santos

Instituto Virtual Internacional de Mudanças Globais — UFRJ

Prof. Julio Tomás Aquije Chacaltana Departamento de Engenharia Ambiental — UFES

Prof. Neyval Costa Reis Júnior Departamento de Engenharia Ambiental — UFES

José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 14 de Setembro de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Reginaldo Rosa Cotto de Paula

Graduou–se em Física na Universidade Federal do Espírito Santo - UFES (Vitória, E.S.) em 1992. Concluiu o Mestrado na UFES em 2002 em Engenharia Ambiental na área de Recursos Atmosféricos.

PUC-Rio - Certificação Digital Nº 0221011/CA

Ficha Catalográfica

de Paula, Reginaldo Rosa Cotto

Investigação Numérica do Escoamento Dentro e Acima do Dossel de Florestas/ Reginaldo Rosa Cotto de Paula; orientador: Marcos Sebastião de Paula Gomes. — Rio de Janeiro : PUC-Rio, Departamento de Engenharia Mecânica, 2007.

160 f. : il. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas.

1. Engenharia mecânica – Teses. 2. Modelo de turbulência. 3. Escoamento sobre dosséis. 4. Termos fontes. 5. Camada de mistuta I. Gomes, Marcos Sebastião de Paula. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

À Ellen Crevelin Valentim, pelo grande incentivo e amor.

À minha mãe Maria do Carmo Cotto de Paula, razão maior do que eu sou.

Ao meu grande irmão Júlio Manoel Barros Júnior, pela paciência e amizade.

Agradecimentos

Ao meu orientador, Professor Marcos Sebastião de Paula Gomes, pelo apoio, conhecimento transmitido e confiança depositada.

Aos membros da banca, André Augusto Isnard, Angela Ourivio Nieckele, Ednaldo Oliveira dos Santos, Julio Tomás Aquije Chacaltana e Neyval Costa Reis Júnior, pelas sugestões e críticas científicas feitas ao trabalho apresentado.

Aos professores da Coordenadoria de Física e a Direção do CEFET-ES, pelo apoio administrativo.

Ao meu pai, Oliveira Cotto de Paula, a minha mãe Maria do Carmo de Paula e irmãos, Helen, Elton, Gissely e Giovana, meu filho Marcelo e sobrinhos, pelo incentivo e carinho sempre manifestados.

À Ellen Crevelin e família pelo grande carinho.

Aos meus amigos da PUC-Rio que muito contribuiram com sugestões e idéias no desenvolvimento deste trabalho: Bruno Venturini Loureiro, Daniel Irigon, Luis Eduardo Bittencour e Julio Manuel Barros Júnior. A equipe da secretaria do DEM.

Finalmente minha gratidão ao CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

de Paula, Reginaldo Rosa Cotto; Gomes, Marcos Sebastião de Paula. **Investigação Numérica do Escoamento Dentro e Acima do Dossel de Florestas**. Rio de Janeiro, 2007. 160p. Tese de Doutorado — Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho três métodos foram utilizados para estudar o escoamento turbulento em regiões de florestas. No primeiro método, a influência da vegetação no escoamento foi modelada através da adição de termos fontes nas equações de quantidade de movimento, energia cinética turbulenta e sua taxa de dissipação. No segundo, a vegetação foi considerada um meio poroso homogêneo. Finalmente, a camada do dossel foi representada por modelos 3-D de árvores, consideradas como obstáculos individuais. As equações foram resolvidas através do modelo de turbulência $k - \varepsilon$ padrão com o programa comercial FLUENT 6.2.16. As previsões dos perfis verticais da velocidade do vento médio, da intensidade da turbulência e dos tensores de Reynolds, foram comparadas com dados de experimentos de túnel de vento. Os resultados preditos dos perfis verticais da velocidade média e intensidade da turbulência, na primeira e na segunda metodologias, apresentaram boa concordância com os valores experimentais, porém, foram observadas discrepâncias nos perfis modelados do tensor de Reynolds. Entretanto, qualitativamente, a modelagem consegue capturar o comportamento físico do tensor de Reynolds no interior de florestas. Uma possível explicação para este fato, é que o modelo considera a isotropia para a viscosidade turbulenta, implicando na incapacidade de prever qualquer forte anisotropia do campo turbulento. Na terceira metodologia, as previsões dos perfis verticais de velocidade média e intensidade da turbulência apresentaram discrepâncias em relação às medições. Porém, os perfis verticais do tensor de Reynolds apresentaram boa concordância. Todos os perfis verticais da velocidade média apresentaram um ponto de inflexão na interface vegetação-atmosfera, característico de uma camada de mistura. Nas duas primeiras metodologias, este padrão foi confirmado nos perfis de tangente hiperbólica de uma camada de mistura.

Palavras-chave

Modelo de turbulência; Escoamento sobre dosséis; Termos fontes; Camada de Mistura.

Abstract

de Paula, Reginaldo Rosa Cotto; Gomes, Marcos Sebastião de Paula. Numerical Investigation of Flow Within and Above Forest Canopy. Rio de Janeiro, 2007. 160p. PhD. Thesis — Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

This work investigates different procedures in order to study the turbulent flow over the scale model of a forest region. Initially, the canopy flow was modeled by using source terms in the momentum, turbulent kinetic energy and its dissipation rate equations. After that, the forest canopy was considered a homogeneous porous medium. In the last step, the canopy boundary layer was modeled by artificial 3-D tree models. This was done by using the standard $k-\varepsilon$ turbulence model with the FLUENT commercial program. The modeled profiles of mean velocity, turbulence intensity and Reynolds stress were compared against data from wind tunnel experiments. In the two first methodologies, the model predictions of the vertical profiles of the wind speed and turbulence intensity showed good agreement with the experimental data. It was found that predictions of the Reynolds tensor were sensitive to the parameterization scheme of the standard $k - \varepsilon$ model. However, qualitatively, the model was capable of predicting the physical behavior of the Reynolds stress tensor in the canopy flow. A possible explanation for this behavior is the omission of any anisotropic eddy-viscosity effects within the $k - \varepsilon$ modelling approach. When it was considered the tree array, the model predictions for the wind speed and turbulence intensity were less satisfactory. However, it was found that the predicted results of the Reynolds stress tensor agreed well with the measured data. All the vertical profiles of the mean velocity contained an inflection point, something which is a necessary criterion for the mixing layer flow. In the tree array, the modeled results failed to the capture this behavior of the canopy flow. In the 2-D numerical simulations, it was found the characteristic hyperbolic tangent profile of a mixing layer.

Keywords

Turbulence model; Canopy flow; Source terms; Mixing layer.

Conteúdo

1 Introdução	23
1.1 Objetivos	25
1.2 Roteiro da Tese	26
	~
2 Revisao Bibliografica	27
2.1 Escoamento Dentro e Acima de Dosseis de Vegetação	27
2.2 Modelo de Turbulencia $k - \varepsilon$	30
2.3 Experimentos de Campo e de Tunel de Vento	32
3 Modelagem da Turbulência sobre Florestas	36
3.1 Perfil do Vento e Turbulência	37
3.2 Estrutura do Escoamento Sobre Florestas	39
3.3 Analogia com a Camada de Mistura	41
3.4 Modelagem Matemática do Escoamento sobre Florestas	43
3.5 Equações Governantes do Escoamento sobre Florestas	44
3.6 Equações de Transporte do Modelo $k-arepsilon$ Padrão	47
3.7 Termos Fontes	48
3.8 Escoamento sobre Florestas: Meio Poroso	49
3.9 Escoamento sobre Florestas: Elementos Rugosos	52
4 Os Experimentos de Túnel de Vento e o Método Numérico	53
4.1 Descrição dos Experimentos de Túnel de Vento	53
4.2 Métodos Numéricos	54
4.3 Domínio Computacional	57
4.4 Condições de Contorno	58
	05
5 Resultados e Discussão	65
5.1 Modelagem 2-D: Inclusao dos Termos Fontes	05 71
5.2 Widdelagem 2D: Floresta como um Welo Poroso Homogeneo	
5.3 Resultado da Modelagem 3-D do Escoamento sobre a Floresta	(0 80
5.4 Campo de Escoamento Tridimensional	80
5.5 Analise dos Resultados	83
6 Conclusões e Recomendações	93
Referências Bibliográficas	97
A Apêndice A	105
A.1 Estudo do Refinamento da Malha Numérica	105
A.2 Modelagem por Termos Fontes	106
A.3 Modelagem por Meio Poroso	110
A.4 Modelagem por Elementos Rugosos	113
B Apêndice B	120

B.1	A Turbulência na Camada Limite Planetária	120
B.2	Camada Limite Planetária	120
B.3	Estrutura da CLP	121
B.4	Evolução Temporal da CLP	124
B.5	Equações Governantes do Escoamento Turbulento Atmosférico	127
B.6	O Conceito de Média para Escoamentos Turbulentos	131
B.7	Equações Governantes para as Grandezas Médias e Turbulentas	134
B.8	O Problema do Fechamento	136
B.9	Energia Cinética Turbulenta	140
B.10	Estabilidade Atmosférica	142
CA	Apêndice C	149
C.1	Resultados Adicionais	149
C.2	Modelagem por Termos Fontes: Campo de Escoamento	149
C.3	Modelagem por Meios Porosos: Campo de Escoamento	152
C.4	Modelagem por Elementos Rugosos: Campo de Escoamento 3-D	152

Lista de Figuras

3.1	Espectro da energia turbulenta em regime de turbulência livre. Fonte: Adaptada de Finnigan (2000).	39
3.2	Espectro da energia turbulenta no interior do dossel da ve- getação. Fonte: Adaptada de Finnigan (2000).	39
3.3	Três regiões características da transição da superfície plana para a camada do dossel. Fonte: Adaptada de Krzikalla (2005).	40
3.4	Escoamento do ar na região de esteira de uma floresta. Fonte: Adaptada de (Krzikalla, 2005).	41
3.5	Deslocamento do perfil da camada limite e uma analogia com a camada de mistura. Fonte: Adaptada de Krzikalla (2005).	42
3.6	Representação da área frontal efetiva para o cálculo da porosi- dade. Fonte: Adaptada de Wu et al. (2001).	51
4.1	Arranjo típico dos dispositivos de simulação no túnel de vento da UCB.	55
4.2	Posições próximas de uma árvore onde foram medidos os perfis verticais nos experimentos de túnel de vento. Fonte: Adaptada de Nevale et al. (2000)	56
4.3	Modelos de árvores de Natal utilizadas nos experimentos de túnel de vento. Fonte: Novak et al. (2001).	57
44	Representação esquemática do domínio computacional 2-D	57
4.5	Representação esquemática do domínio computacional 2-D.	58
4.6	Representação esquemática do domínio computacional 2-D ado- tado na metodologia de termos fontes.	61
4.7	Perfis verticais do coeficiente de arrasto experimental. Fonte: Adaptada de Novak et al. (2000).	61
4.8	Perfis verticais da densidade de área foliar experimental. Fonte: Adaptada Novak et al. (2000).	62
4.9	Representação esquemática do domínio computacional 2-D ado- tado na metodologia de meios porosos.	62
4.10	Representação esquemática de um modelo de árvore 3-D.	63
4.11	Floresta intermediária: Representação esquemática dos modelos de árvores no domínio computacional 3-D	63
4.12	Floresta esparsa: Representação esquemática dos modelos de árvores no domínio computacional 3-D.	63
5.1	Floresta Densa: Comparação entre os resultados experimentais	
5.2	e numéricos dos perfis verticais da velocidade média do vento. Floresta Intermediária: Comparação entre os resultados experi- mentais e numéricos dos perfis verticais da velocidade média do	66
	vento.	66
5.3	Floresta Esparsa: Comparação entre os resultados experimentais e numéricos dos perfis verticais da velocidade média do vento.	66

5.4	Floresta Densa: Comparação entre os resultados experimentais	07
5.5	e numericos dos perfis verticais da intensidade da turbulencia. Floresta Intermediária: Comparação entre os resultados experi-	67
	mentais e numéricos dos perfis verticais da intensidade da tur-	
	bulência.	67
5.6	Floresta Esparsa: Comparação entre os resultados experimentais	
	e numéricos dos perfis verticais da intensidade da turbulência.	68
5.7	Floresta Densa: Comparação entre os resultados experimentais	
	e numéricos dos perfis verticais de $- u'w'$.	68
5.8	Floresta Intermediária: Comparação entre os resultados experi-	
	mentais e numéricos dos perfis verticais de $-u\dot{w}$.	69
5.9	Floresta Esparsa: Comparação entre os resultados experimentais	
F 10	e numericos dos perfis verticais de $-uw$.	69
5.10	Floresta Densa: Vetores campo de velocidade no interior do	70
г 11	dossel, na região do equilibrio interno $(x/h_f \ge 6, 6)$.	70
5.11	Floresta Densa: vetores campo de velocidade na transição da	70
F 10	Veteres compo de velocidade na transição da região de descel	70
J .1Z	para a superfície lica. Fonte: Adaptada de Chan et al. (1005)	71
5 1 3	Eloresta Densa: Comparação entre os resultados experimentais	11
J.15	e numéricos dos perfis verticais da velocidade média do vento	73
5 14	Eloresta Intermediária: Comparação entre os resultados experi-	10
5.14	mentais e numéricos dos perfis verticais da velocidade média do	
	vento.	73
5.15	Floresta Esparsa: Comparação entre os resultados experimentais	
	e numéricos dos perfis verticais da velocidade média do vento.	74
5.16	Floresta Densa: Comparação entre os resultados experimentais	
	e numéricos dos perfis verticais da intensidade da turbulência.	74
5.17	Floresta Intermediária: Comparação entre os resultados experi-	
	mentais e numéricos dos perfis verticais da intensidade da tur-	
	bulência.	75
5.18	Floresta Esparsa: Comparação entre os resultados experimentais	
	e numéricos dos perfis verticais da intensidade da turbulência.	75
5.19	Floresta Densa: Comparação entre os resultados experimentais	
	e numéricos dos perfis verticais de $- u'w'$.	76
5.20	Floresta Intermediária: Comparação entre os resultados experi-	=0
F 01	mentais e numéricos dos pertis verticais de $-uw$.	76
5.21	Floresta Esparsa: Comparação entre os resultados experimentais	
F 00	e numericos de $-uw$.	77
5.22	Floresta Densa: vetores campo de velocidade no interior do	
E 02	dossel, na região do equilibrio interno $(x/n_f \ge 0, 0)$.	((
5.23	região do dossel para a superfício lica	70
5 24	regiau uu uussei para a supernicie lisa. Eloresta Intermediária: Comparação entre os valores modidos o	10
J.24	numéricos dos perfis verticais da velocidade média do vento	78
5 25	Floresta esparsa: Comparação entre os valores medidos e	10
5.25	numéricos dos perfis verticais da velocidade média do vento	79
		.0

5.26	Floresta Intermediária: Comparação entre os valores medidos e	70
5.27	numericos dos perfis 3-D da intensidade da turbulencia. Floresta Esparsa: Comparação entre os valores medidos e	79
- 00	numéricos dos perfis 3-D da intensidade da turbulência.	80
5.28	Floresta Intermediária: Comparação entre os valores medidos e numéricos dos perfis 3-D de $-\overline{uw}$.	80
5.29	Floresta Esparsa: Comparação entre os valores medidos e	
5.30	numéricos dos perfis 3-D de $-uw$. Floresta intermediária ($\theta = 0^{\circ}$): Vetores campo de velocidade	81
0.00	nas proximidades de um conjunto de árvores (plano $x - y$ com	
5 31	$z = h_f / 2$). Eleresta intermediária ($\theta = 45^{\circ}$): Veteres campo de velocidade	81
J.JI	nas proximidades de de um conjunto de árvores (plano $x - y$	
F 20	$\operatorname{com} z = h_f/2).$	82
5.32	Floresta intermediaria ($\theta = 0^{\circ}$): Vetores campo de velocidade nas proximidades de uma árvore. (plano $x - y \text{ com } z = h_f / 2$).	83
5.33	Floresta intermediária ($\theta = 45^{o}$): Vetores campo de velocidade	
5 34	nas proximidades de uma árvore, (plano $x - y \operatorname{com} z = h_f / 2$). Eloresta intermediária ($\theta = 0^{\circ}$): Vetores campo de velocidade	84
5.54	nas proximidades de uma árvore (plano $x - z$).	85
5.35	Floresta intermediária ($\theta = 45^{\circ}$): Vetores campo de velocidade	05
5.36	Floresta intermediária ($\theta = 0^{\circ}$): Contorno da energia cinética	85
	turbulenta a jusante da região de transição da superfície lisa	
5 37	para rugosa (plano $x - y$). Eloresta esparsa ($\theta = 0^{\circ}$): Contorno da energia cinética turbu-	86
0.01	lenta a jusante da região de transição da superfície lisa para	
5 38	rugosa (plano $x - y$). Floresta Densa: Colanso do perfil da velocidade média para	87
5.50	metodologia de termos fontes.Comparação entre os perfis da	
F 20	velocidade e o perfil de uma tangente hiperbólica.	90
5.39	para metodologia de termos fontes.Comparação entre os perfis	
	da velocidade e o perfil de uma tangente hiperbólica.	90
5.40	Floresta Esparsa: Colapso do perfil da velocidade media para metodologia de termos fontes.Comparação entre os perfis da	
	velocidade e o perfil de uma tangente hiperbólica.	91
5.41	Floresta Densa: Colapso do perfil da velocidade média para metodologia de mejos porosos Comparação entre os perfis da	
	velocidade e o perfil de uma tangente hiperbólica.	91
5.42	Floresta Intermediária: Colapso do perfil da velocidade média	
	da velocidade e o perfil de uma tangente hiperbólica.	92
5.43	Floresta Esparsa: Colapso do perfil da velocidade média para	
	velocidade e o perfil de uma tangente hiperbólica.	92
A.1	Espacamento entre os pontos nodais.	106

A.2	Um exemplo de parte de uma malha irregular, bidimensional e	
	cartesiana usada nas simulações númericas.	107
A.3	Floresta Densa: Perfis verticais de velocidade em $x = 4,3$ m.	109
A.4	Floresta Densa: Perfis verticais de velocidade em $x = 5,9$ m.	109
A.5	Floresta Intermediária: Perfis verticais de velocidade em $x = 4,3$	
	m.	109
A.6	Floresta Intermediária: Perfis verticais de velocidade em $x = 5.9$	
	m.	109
A.7	Floresta Esparsa: Perfis verticais de velocidade em $x = 4.3$ m.	110
A 8	Eloresta Esparsa: Perfis verticais de velocidade em $x = 5.9$ m	110
Δ 9	Eloresta Densa: Perfis verticais da intensidade da turbulência em	110
/	r = 4.3 m	110
Δ 10	Eloresta Densa: Perfis verticais da intensidade da turbulência em	110
/ \. 10	r = 5.0 m	110
Λ 11	x = 3.5 m. Eleventa Intermediária: Perfis verticais da intensidade da tur	110
A.11	hulância am $a = 4.2$ m	111
A 10	Dulencia en $x = 4,5$ m.	111
A.12	Floresta Intermediaria: Periis verticais da Intensidade da tur-	111
A 10	bulencia em $x = 5,9$ m.	111
A.13	Floresta Esparsa: Perfis verticais da intensidade da turbulencia	110
	em $x = 4,3$ m.	112
A.14	Floresta Esparsa: Perfis verticais da intensidade da turbulência	
• • -	em $x = 5,9$ m.	112
A.15	Um exemplo de parte uma malha irregular, bidimensional e	
	cartesiana usada nas simulações númericas.	113
A.16	Representação do refinamento dos modelos de árvores cons-	
	truídas na metodologia de meio poroso. O primeiro conjunto	
	pertence a malha grosseira, o segundo a malha regular e o último	
	a malha fina.	114
A.17	Floresta Densa: Perfis verticais de velocidade em $x = 4,3$ m.	114
A.18	Floresta Densa: Perfis verticais de velocidade em $x = 5,9$ m.	114
A.19	Floresta Intermediária: Perfis verticais de velocidade em $x = 4,3$	
	m.	114
A.20	Floresta Intermediária: Perfis verticais de velocidade em $x = 5,9$	
	m.	114
A.21	Floresta Esparsa: Perfis verticais de velocidade em $x = 4,3$ m.	115
A.22	Floresta Esparsa: Perfis verticais de velocidade em $x = 5,9$ m.	115
A.23	Floresta Densa: Perfis verticais da intensidade da turbulência em	
	x = 4.3 m.	115
A.24	Floresta Densa: Perfis verticais da intensidade da turbulência em	
	x = 5.9 m.	115
A 25	Eloresta Intermediária: Perfis verticais da intensidade da tur-	110
/0	hulência em $r = 4.3$ m	116
Δ 26	Eloresta Intermediária: Perfis verticais da intensidade da tur-	110
, <u>∠</u> 0	hulância em $r - 5.0$ m	116
Δ 27	Eloresta Esparsa: Perfis verticais da intensidade da turbulência.	110
11.41	rioresta Esparsa. Ferris verticais da intensidade da turbulencia	
	am x - 43 m	117
Διο	em $x = 4,3$ m. Eloresta Esparsa: Perfis verticais da intensidade da turbulância	117
A.28	em $x = 4,3$ m. Floresta Esparsa: Perfis verticais da intensidade da turbulência em $x = 5.9$ m	117 117

) Floresta Intermediária: Perfis verticais de velocidade em $x = 4.3$	
m.	117
) Floresta Intermediária: Perfis verticais de velocidade em $x = 5,9$	
m.	117
L'Horesta Intermediária: Perfis verticais da intensidade da tur-	110
2 Eloresta Intermediária: Perfis verticais da intensidade da tur-	110
bulência em $x = 5,9$ m.	118
3 Floresta Esparsa: Perfis verticais de velocidade em $x =$ 4,3 m.	118
¹ Floresta Esparsa: Perfis verticais de velocidade em $x = 5,9$ m.	118
Floresta Esparsa: Perfis verticais da intensidade da turbulência	110
5 Eloresta Esparsa: Perfis verticais da intensidade da turbulência	119
x = 5.9 m.	119
Estrutura diurna da tropostera sobre uma fioresta com uma torre meteorológica. Fonte: Adaptada de Moncrieff et al. (1997)	194
Evolução temporal da CLP continental em latitudes médias,	121
durante o verão e sem cobertura de nuvens. Fonte: Adaptada de	
Stull (1988).	125
Perfis verticais médios típicos da CLC seca em latitudes médias:	
dade específica e (d) velocidade do vento. Fonte: Adaptada de	
Stull (1988).	126
Perfis verticais médios típicos da CLE em latitudes médias: (a)	
temperatura absoluta, (b) temperatura potencial (c) umidade	
(1988)	127
Perfis de temperatura na atmosfera: (1) Perfil adiabático; (2)	121
Perfil superadiabático (instável); (3) Sub-adiabático (estável);	
(4) Isotérmico (estável); (5) Inversão (extremamente estável).	143
Perfil da temperatura potencial dentro e acima de uma floresta: (a) poite clara com ventos fraços e (b) período diurno sem	
cobertura de nuvens e ventos fracos. Fonte: Adaptada de Stull	
(2000)	144
Ilustração do processo de mistura turbulenta em condições	
instaves com $w'\theta' > 0$ e $\partial\theta/\partial z < 0$. Fonte: Adaptada de Stull (2000)	145
llustração do processo de mistura turbulenta em condições	140
estáveis com $\overline{w'\theta'} < 0$ e $\partial \bar{\theta}/\partial z > 0$. Fonte: Adaptada de Stull	
(2000).	146
Relação entre as classes de estabilidade de Pasquill, L e z_o .	148
Floresta Intermediária: Vetores campo de velocidade na região	
do equilíbrio interno $(x/h_f \ge 6, 6)$ lisa.	150
Floresta Esparsa: Vetores campo de velocidade na região do sublidade intermo $(n/l) = \sum_{i=1}^{n} C_{i} C_{i}$	150
equilibrio Interno $(x/n_f \ge 0, 0)$ IISa. Floresta Intermediária: Vetores campo de velocidade para a	190
transição da região do dossel para a superfície lisa.	151
	P Floresta Intermediária: Perfis verticais de velocidade em $x = 4,3$ m. P Floresta Intermediária: Perfis verticais da intensidade da turbulência em $x = 4,3$ m. P Floresta Intermediária: Perfis verticais da intensidade da turbulência em $x = 4,3$ m. P Floresta Intermediária: Perfis verticais da intensidade da turbulência em $x = 5,9$ m. P Floresta Esparsa: Perfis verticais de velocidade em $x = 4,3$ m. P Floresta Esparsa: Perfis verticais da velocidade em $x = 5,9$ m. P Floresta Esparsa: Perfis verticais da intensidade da turbulência em $x = 4,3$ m. P Floresta Esparsa: Perfis verticais da intensidade da turbulência em $x = 4,3$ m. P Floresta Esparsa: Perfis verticais da intensidade da turbulência em $x = 5,9$ m. Estrutura diurna da troposfera sobre uma floresta com uma torre meteorológica. Fonte: Adaptada de Moncrieff et al. (1997). Evolução temporal da CLP continental em latitudes médias: (a) temperatura absoluta (b) temperatura potencial, (c) umi- dade específica e (d) velocidade do vento. Fonte: Adaptada de Stull (1988). Perfis verticais médios típicos da CLC seca em latitudes médias: (a) temperatura absoluta (b) temperatura potencial, (c) umi- dade específica e (d) velocidade do vento. Fonte: Adaptada de Stull (1988). Perfis verticais médios típicos da CLE em latitudes médias: (a) temperatura absoluta, (b) temperatura potencial (c) umidade específica e (d)velocidade do vento. Fonte: Adaptada de Stull (1988). Perfis de temperatura na atmosfera: (1) Perfil adiabático; (2) Perfil da temperatura potencial dentro e acima de uma floresta: (a) noite clara com ventos fracos e (b) período diurno sem cobertura de nuvens e ventos fracos. Fonte: Adaptada de Stull (2000). Ilustração do processo de mistura turbulenta em condições instáves com $\overline{w'\theta'} < 0$ e $\partial\overline{\theta}/\partial z < 0$. Fonte: Adaptada de Stull (2000). Relação entre as classes de estabilidade de Pasquill, L e z_o . Floresta Intermediária: Vetores campo de velocidade na região do equilíbrio interno $(x/h_f \ge 6, 6)$ lisa. Flor

C.4	Floresta Esparsa: Vetores campo de velocidade para a transição	
	da região do dossel para a superfície lisa.	151
C.5	Floresta Intermediária: Vetores campo de velocidade na região	
	do equilíbrio interno $(x/h_f~\geq 6,6)$ lisa.	152
C.6	Floresta Esparsa: Vetores campo de velocidade na região do	
	equilíbrio interno $(x/h_f~\geq 6,6)$ lisa.	153
C.7	Floresta Intermediária: Vetores campo de velocidade para a	
	transição da região do dossel para a superfície lisa.	153
C.8	Floresta Esparsa: Vetor campo de velocidade para a transição	
	da região do dossel para a superfície lisa.	154
C.9	Floresta esparsa ($ heta~=~0^o$): Vetores campo de velocidade nas	
	proximidades de um conjunto de árvores (plano $x-y$ com	
	$z = h_f / 2).$	155
C.10) Floresta esparsa ($ heta=45^o$): Vetores campo de velocidade nas	
	proximidades de de um conjunto de árvores (plano $x-y$ com	
	$z = h_f / 2$).	155
C.11	Floresta esparsa ($ heta$ = 0^{o}): Vetores campo de velocidade nas	
_	proximidades de uma árvore (plano $x - y$ com $z = h_f / 2$).	156
C.12	P. Floresta esparsa ($ heta=45^o$): Vetores campo de velocidade nas	
	proximidades de uma árvore (plano $x - y$ com $z = h_f / 2$).	156
C.13	5 Floresta esparsa ($ heta$ = 0^{o}): Vetores campo de velocidade nas	
_	proximidades de uma árvore (plano $x - z$).	157
C.14	Floresta esparsa ($\theta = 45^{\circ}$): Vetores campo de velocidade nas	
_	proximidades de uma árvore (plano $x - z$).	157
C.15	Floresta intermediária ($\theta = 0^{o}$): Contorno de velocidade nas	
	proximidades de um conjunto de árvores (plano $x - y$) com	
	$z/h_f = 0, 5.$	158
C.16	Floresta intermediária ($\theta = 45^{o}$): Contorno de velocidade nas	
	proximidades de um conjunto de árvores (plano $x - y$) com	
C 1 =	$z/h_f = 0, 5.$	159
C.17	Floresta esparsa ($\theta = 0^{\circ}$): Contorno de velocidade nas proximi-	4 50
_	dades de um conjunto de árvores (plano $x - y$) com $z/h_f = 0, 5$.159

C.18 Floresta esparsa ($\theta = 45^{\circ}$): Contorno de velocidade nas proximidades de um conjunto de árvores (plano x - y) com $z/h_f = 0, 5.160$

Lista de Tabelas

4.1	Parâmetros físicos e aerodinâmicos característicos dos modelos de florestas artificiais. Onde sa é o espacamento entre as árvores.	
	Fonte: Novak et al. (2001).	56
4.2	Valores prescritos de u_* , z_d e k na fronteira a montante.	59
4.3	Valores prescristos para u_{topo} , k_{topo} e ε_{topo} nas simulações	
	numéricas 3-D.	60
5.1	Primeira formulação para a porosidade: Parâmetros da vegetação	. 72
5.2	Segunda formulação para a porosidade: Parâmetros da vegetação	. 72
5.3	Escala de comprimento de cisalhamento do vento.	88
A.1	Discretização das malhas utilizadas na metodologia de termos	
	fontes.	108
A.2	Termos fontes: Tempo de processamento.	108
A.3	Discretização das malhas utilizadas na metodologia de meios	
	porosos.	111
A.4	Meio poroso: tempo de processamento.	112
A.5	Elementos rugosos: Tempo de processamento para FI.	116
A.6	Elementos rugosos: Tempo de processamento para FE.	118
B.1	Relação entre as classes de estabilidade de Pasquill, coeficientes	
	$a \in b \in L$.	147

LETRAS LATINAS

A_{geo}	área geométrica (m^2)
A_i	área frontal de uma árvore (m^2)
A(z)	densidade de área foliar $(m^2 m^{-3})$
c_p	calor específico a pressão constante (J $\rm kg^{-1}~K^{-1})$
c_{ps}	calor específico do ar seco a pressão constante (J $\rm ~kg^{-1}~K^{-1})$
$C_{1\varepsilon}, C_{2\varepsilon}, C_{3\varepsilon}$	constantes de fechamento do modelo de turbulência $k-\varepsilon$
C_D	coeficiente de arrasto
C_i	coeficiente de perda inercial (m^{-1})
C_{μ}	constante empírica do modelo de turbulência $k-\varepsilon$
d_h	diâmetro hidráulico da vegetação (m)
d_a	diâmetro geométrico de uma árvore (m)
\bar{e}	energia cinética turbulenta por unidade de massa (m² $\rm s^{-2}~kg^{-1})$
f_c	parâmetro de Coriolis
f_D	força de arrasto de pressão por unidade de massa (N $\rm kg^{-1})$
f_V	força de arrasto viscoso por unidade de massa (N $\rm kg^{-1})$
F	coeficiente de Forchheimer
F_D	força de arrasto (N)
F_f	fator de forma
g	aceleração da gravidade (m s ^{-2})
G_b	geração da ECT devido os efeitos de empuxo (k g $\rm m^{-1}~s^{-1})$
h_d	entropia do ar seco
G_k	geração da energia cinética turbulenta (kg $\rm m^{-1}~s^{-1})$
h_f	altura da floresta (m)
h_k	entalpia de uma fase k
Н	fluxo de calor sensível (J m $^{-2}$ s $^{-1}$)
H_p	escala de variação da densidade

- k energia cinética turbulenta (m² s⁻²)
- k_v constante de Von Kármán
- K_C difusividade molecular da espécie química (m² s⁻¹)
- K_H difusividade turbulenta de calor (m² s⁻¹)
- K_M difusividade turbulenta de quantidade de movimento (m² s⁻¹)
- K_p permeabilidade (m²)
- K_r coeficiente de resistência inercial
- K_T difusividade térmica molecular (m² s⁻¹)
- K_t difusividade turbulenta (s m⁻¹)
- K_{λ} coeficiente de absorção do vapor d'água
- K_{θ} difusividade turbulenta de calor
- ℓ_e escala de comprimento da dissipação da energia cinética (m)
- *L* comprimento de Monin-Obukhov (m)
- L_f comprimento da floresta (m)
- L_s escala de comprimento do cisalhamento do vento (m)
- q_v umidade específica do vapor d'água
- q'_v flutuação da umidade específica do vapor d'água
- $q_{r\lambda}$ fluxo de radiação
- p pressão (N m⁻²)
- p_o pressão atmosférica ao nível do mar (N m⁻²)
- p_s pressão parcial do ar seco (N m⁻²)
- p' flutuação da pressão (N m⁻²)
- \bar{p} pressão média (N m⁻²)
- p_v pressão parcial do vapor d'água (N m⁻²)
- Pr_t número de Prandtl turbulento
- R_f número de Richardson tipo fluxo

- R_i número de Richardson tipo gradiente
- R_i componente do fluxo de calor radiativo (J m² s⁻¹)
- R'_i flutuação do fluxo de calor radiativo médio (Jm²s⁻¹)
- R_q termo fonte das reações químicas (kg m⁻³ s⁻¹)
- R_s constante dos gases para o ar seco (J kg⁻¹ K⁻¹)
- R_v constante dos gases para o vapor d'água (J kg⁻¹ K⁻¹)
- $\overline{R_i}$ fluxo de calor radiativo médio (J m² s⁻¹)
- s_v espaçamento entre os elementos da vegetação (m)
- S_i termo fonte das forças de corpo (kg m⁻³ s⁻¹)
- S_k termo fonte da energia cinética turbulenta (kg m⁻¹ s⁻³)
- S_u termo fonte da quantidade de movimento (kg m⁻² s⁻²)
- S_{ε} $\,$ termo fonte da taxa de dissipação de energia cinética turbulenta
- t tempo (s)
- T temperatura absoluta (K)
- T' flutuação da temperatura absoluta (K)
- \overline{T} temperatura absoluta média (K
- T_{ℓ} temperatura local (K)
- T_o temperatura de referência (K)
- T_v temperatura virtual (K)
- T'_v flutuação da temperatura virtual (K)
- T_* temperatura de escala (K)
- \bar{T}_v temperatura virtual média (K)
- u_c velocidade da fase contínua (m s⁻¹)
- u_i componentes da velocidade do escoamento nas direções x_i (m s⁻¹)
- u'_i flutuação da velocidade (m s⁻¹)

LETRAS GREGAS

- β_t coeficiente de expansão térmica (K⁻¹)
- δ_{ij} delta de Kronecker
- δ_w espessura de vorticidade (m)
- ϵ_R razão entre as constantes dos gases ideais para o ar seco e vapor d'água
- ε taxa de dissipação da energia cinética turbulenta (m² s⁻³)
- ε_{ijk} tensor de Levi-Civita
- $\vec{\eta_j}$ jth componente de um vetor unitário paralelo ao eixo de rotação da Terra
- θ temperatura potencial (K)
- θ_v temperatura potencial virtual (K)
- θ'_v flutuação da temperatura potencial virtual (K)
- $\bar{\theta_v}$ temperatura potencial virtual média (K)
- λ_w escala integral de comprimento (m)
- Λ_m espaçamento na direção do fluxo (m)
- μ_t viscosidade turbulenta (kg m⁻¹ s⁻¹)
- ν viscosidade cinemática (m² s⁻¹)
- ν_{eff} viscosidade efetiva (m² s⁻¹)
- ρ_a densidade da vegetação (árvores m⁻²)
- ρ densidade de um fluido (kg m⁻³)
- ρ' flutuação da densidade (kg m^{-3})
- $\bar{\rho}$ densidade média (kg m⁻³)
- ρ_l densidade da água líquida (kg m⁻³)
- ρ_o densidade de referência (kg m⁻³)
- ρ_s densidade do ar seco (kg m⁻³)
- ρ_t densidade de árvores (árvores m⁻²)
- ρ_v densidade do vapor d'água (kg m⁻³)
- σ_k número de Prandl
t para a energia cinética turbulenta
- σ_p desvio padrão geométrico
- σ_{ε} número de Prand
lt para a taxa de dissipação da energia cinética turbulenta

- τ tensão de cisalhamento (kg m⁻¹ s⁻²)
- τ_{Dm} tensor da tensão de difusão (kg m⁻¹ s⁻²)
- τ_m tensor da tensão viscosa média (kg m^{-1} s^{-2})
- τ_s tensão de cisalhamento (kg m⁻¹ s⁻²)
- τ_{Tm} tensor da tensão turbulenta (kg m⁻¹s⁻²)
- ϕ porosidade
- ϕ_h perfil adimensional de temperatura
- ϕ_m perfil a dimensional do cisalhamento do vento
- ϕ_L latitude
- ω freqüência angular da turbulência (Hz)
- Ω_i velocidade angular da Terra (rads⁻¹)
- Ψ_h correção térmica da estabilidade na camada limite
- Ψ_m correção quantidade de movimento da estabilidade na camada limite

SIGLAS

AL	Atmosfera Livre
CLA	Camada Limite Atmosférica
CLC	Camada Limite Convectiva
CD	Camada do Dossel
CLE	Camada Limite Estável
CLN	Camada Limite Noturna
CLP	Camada Limite Planetária
CLS	Camada Limite Superficial
CM	Camada de Mistura
CR	Camada Residual
DAF	Densidade de Área Foliar
DFC	Dinâmica dos Fluidos Computacional
ECT	Energia Cinética Turbulenta
FD	floresta densa
FAO	Organização das Nações Unidas para a Agricultura e Alimentação
FE	floresta esparsa
FI	floresta intermediária
IAF	Índice de Área Foliar
PGT	Classes de Estabilidade de Pasquill-Gifford-Turner
SCI	Sub-camada Inercial
SCL	Sub-camada Laminar
SCR	Sub-Camada Rugosa
SIMPLE	Semi Implicit Method of Pressure Linked Equation
UCB	Universidade da Columbia Britânica