
3
Restricted Kalman filtering: theoretical issues

During all this chapter, I will discuss several topics concerning the

theory of imposing the linear restrictions enunciated under a quite general

form in (2-5) from Assumption 1. In section 3.1, I will present and compare

three different derivations of the restricted Kalman updating and smoothing

equations under an augmented modeling approach. In section 3.2, I prove

the statistical efficiency due to the imposition of restrictions, and this shall

be done using a geometrical framework. Stepping forward, I try in section

3.3 to establish the equivalence between the restricted Kalman filtering and

something that could be termed recursive restricted least squares estimator.

Finally, in section 3.4, I investigate how initial diffuse state vectors affect the

use of the Kalman smoother under linear restrictions.

3.1
Augmented restricted Kalman filtering: alternative proofs

3.1.1
Geometrical proof

When estimating state space models under linear restrictions as given

in eq. (2-5), the natural task is to impose these very restrictions on the

state estimators given by the Kalman equations in order to obtain a more

meaningful result. The following theorem guarantees that such task is possible

for the updating and smoothing equations, whenever one adopts an augmented

measurement equation:

Theorem 1 If the measurement vectors Yt are replaced by Y ∗
t = (Y ′

t , q
′
t)
′,

the matrices Zt are replaced by Z∗
t = [Z ′

t A′
t]
′, the vectors dt are replaced by

d∗t = (d′t, 0
′)′, and the measurement equation error vectors εt are replaced by

ε∗t = (ε′t, 0
′)′, then the Kalman updating and smoothing equations applied to

this new linear state space models satisfy the same linear restrictions given in

(2-5), that is,
Atat|t = qt (3-1)

Atat|n = qt (3-2)
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First proof of Theorem 1: Denote the subspace generated by the aug-

mented measurements up to time j, where j ∈ {t, t + 1, . . . , n}, by S ′′ =

span{1, Y11, . . . , Y1p, q11, . . . , q1k, . . . , Yj1, . . . , Yjp, qj1, . . . , qjk}, the unique lin-

ear orthogonal projection onto S ′′ by πS′′ and the ith row from At by Ati =

[cti1 . . . ctim]. Then, by making use of linearity of πS′′ and of the linear restric-

tions established in Assumption 1, it follows that

Atiat|j = cti1at1|j + · · ·+ ctimatm|j = cti1πS′′(αt1) + · · ·+ ctimπS′′(αtm)

= πS′′(cti1αt1 + · · ·+ ctimαtm) = πS′′(Atiαt) = πS′′(qti)

= qti ,

where the last equality comes from the fact that qti belongs to R(πS′′) = S ′′.

Since i is arbitrary, the theorem is proved. ¤

Theorem 1 was originally due to Doran (1992, p.570, 571), but our proof

also reveals some gains:

1. It does not presume that Ft is invertible for all t.

2. It unifies in a single argument both updating and (any type of ) smoothing

equations.

3. It does not make any explicit use of Kalman updating or smoothing

equations.

4. It is a shorter and consequently more elegant proof.

The first methodological contribution of this proof, namely the guarantee

that the augmented measurement procedure is able to deal with any type of

linear restriction, is directly related to item 1. Many examples of restrictions

that would decrease the rank of Ft are of deterministic nature, whether they

originate from economic theories or not (to be even more specific: consider

for instance the portfolio accounting restriction in time-varying extensions of

the asset class factor models due to Sharpe, 1992). The second contribution,

related to item 2, is that any set of state smoothing - from which we mention

the traditional fixed-interval, fixed-point and fixed-lag estimators (cf. Anderson

and Moore, 1979) - must yield restricted estimated states.

The following consequence from Theorem 1 has already proved to be

useful, once it was conveniently used by Doran (1996) in a state space

estimation of population totals.
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Corollary 1 If some univariate equations of the measurement vector Yt have

errors with zero variance, then

Zt2at|t = Yt2 and Zt2at|n = Yt2 (3-3)

where Zt2 is the block from Zt that corresponds to the block Yt2 from Yt whose

coordinates have null variance errors.

Proof: It is enough to see that Yt can be written as [Y ′
t1 Y ′

t2]
′ and that Zt, in

turn, can be written as [Z ′
t1 Z ′

t2]
′. Establishing that At = Zt2 and qt = Yt2,

Theorem 1 guarantees the desired result. ¤

3.1.2
Computational proof

During this subsection, I shall consider the following additional structure

to the restrictions in (2-5):

Assumption 2 The linear restrictions in (2-5) are such that the coordinates

of qt are linearly independent in L2 and from 1, Y11, . . . , Y1p, . . . , Yt1, . . . , Ytp.

Also, suppose that Ft > 0 for all t.

For the Kalman updating and smoothing equations, it is in fact an at-

tainable task, as Theorem 1 says, to carry out Kalman filtering estimations

under the above these linear restrictions. Here, this is now proved by explic-

itly using updating and smoothing equations, even though under strategies

somewhat different from those tackled by Doran (1992).

Second proof of Theorem 1: Uncouple the augmented model by recognizing

that, for all t, qt is a “new” measurement vector that is observed “after” Yt and

“before” Yt+1. This recognition leads to a new linear state space representation

entirely equivalent to the augmented model. The measurement equation for

this representation is defined by

Yt,j = Zt,jαt,j + dt,j + εt,j , εt,j ∼ (0, Ht,j) (3-4)

When j = 1, nothing is changed from the measurement equation from (2-1) of

section 2.1. But for j = 2 we must have

Yt,2 = qt, Zt,2 = At, dt,2 = 0 and Ht,2 = 0. (3-5)

Regarding the state equation, just notice that, for all t, αt,2 = αt,1 and

αt+1,1 = Ttαt,2 + ct + Rtηt, ηt ∼ (0, Qt). Within this equivalent framework,

it becomes possible to treat the imposing of the linear restriction in time t as

a new update of the state vector. Implementing: consider the state updating
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equation given in (2-3), already applied to the above equivalent model for t

fixed and j = 2:

at,2|t,2 = at|t−1,2 + Pt|t−1,2Z
′
t,2F

−1
t,2 (Yt,2 − Zt,2at|t−1,2)

= at|t−1,2 + Pt|t−1,2Z
′
t,2(Zt,2Pt|t−1,2Z

′
t,2 + Ht,2)

−1(Yt,2 − Zt,2at|t−1,2)

= at|t−1,2 + Pt|t−1,2A
′
t(AtPt|t−1,2A

′
t)
−1(qt − Atat|t−1,2),

where the second equality comes from the very expression of Ft (cf. the

established notation in section 2.2) and the third comes from (3-5). Now, since

(AtPt|t−1,2A
′
t)
−1 is a genuine inverse (cf. Assumption 2) and at,2|t,2 = at|t, this

last updated state vector being the one associated with the augmented model,

pre-multiply both sides of the last identity by At in order to get (3-1).

Now, rephrase the state smoothing equations in (2-4) for the augmented model

as follows:

at|n = at|t−1 + Pt|t−1rt−1

rt−1 = Z∗′
t F−1

t υt +
(
Tt − TtPt|t−1Z

∗′
t F−1

t Z∗
t

)′
rt, where Z∗

t =

[
Zt

At

]
.

Of course, other quantities would also have deserved asterisks, but they are

suppressed for ease of notation. Placing the expression of rt in at|n, it follows

that

at|n = at|t−1 + Pt|t−1(Z
∗′
t F−1

t υt + (Tt − TtPt|t−1Z
∗′
t F−1

t Z∗
t )′rt)

= at|t−1 + Pt|t−1Z
∗′
t F−1

t υt + Pt|t−1(Tt − TtPt|t−1Z
∗′
t F−1

t Z∗
t )′rt

= at|t + (Pt|t−1T
′
t − Pt|t−1Z

∗′
t F−1

t Z∗
t Pt|t−1T

′
t )rt,

where the last equality follows from the Kalman updating equation in (2-3).

Pre-multiplying both sides by At, it follows that

Atat|n = Atat|t + (AtPt|t−1T
′
t − AtPt|t−1Z

∗′
t F−1

t Z∗
t Pt|t−1T

′
t )rt.

According to Doran (1992), eq. (22) (from Assumption 2, Ft from the aug-

mented model is invertible), it follows that AtPt|t−1Z
∗′
t F−1

t =

[
0

kxp
I

kxk

]
. Use

this together with (3-1) already proved to obtain

Atat|n = qt +

(
AtPt|t−1T

′
t − [0 I]

[
Zt

At

]
Pt|t−1T

′
t

)
rt

= qt +
(
AtPt|t−1T

′
t − AtPt|t−1T

′
t

)
rt = qt,

which gives identity (3-2) ¤
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It is worth to be noticed that there is no methodological novelty here. In

turn, the contribution offered here comes from this second proof, which cer-

tainly deserves some qualification. Even though not encompassing significant

generalizations like those verified in the first proof, and besides being consid-

erably longer, this second proof makes use of simple matrix operations, which

illustrate potentially useful strategies that can be evoked more times in future

research. Indeed, one should recall that quite the same decomposition used

in the part of the proof related to the updating equations has been the great

responsible for the well-known treatment of multivariate state space models

under an univariate framework; cf. Durbin and Koopman (2001), section 6.4.

On the other hand, the part related to the smoothing equation is entirely

based on de Jong (1989)’s smoothing recursions, which are mathematically

transparent and computationally efficient.

3.1.3
Conditional expectation proof

The main goal of this subsection is to give a third and last proof for the

augmented restricted Kalman filtering. For such, I must add other structure

(quite “traditional”, we would say) to the linear state space model in (2-1).

Assumption 3 εt and ηt are independent (in time, between each other and of

α1) Gaussian stochastic processes. Also, α1 is a Gaussian random vector.

Besides considering this new “parametric”framework, denote by Fj the σ-field

generated by the measurement vectors up to time j; that is Fj ≡ σ (Y1, . . . , Yj).

Also set ât|j ≡ E (αt|Fj) and P̂t|j ≡ V (αt|Fj). Under Assumption 3, the

Kalman recursions are versions of these conditional moments when j = t− 1,

j = t and j = n; see Anderson and Moore (1979), Harvey (1989), Harvey

(1993), Tanizaki (1996) and Durbin and Koopman (2001). Consequently, all

the properties of the conditional expectation can be conveniently used in order

to allow a very quick proof for Theorem 1:

Third proof of Theorem 1: Let t be an arbitrary time instant. Define F∗
j ≡

σ (Y1, q1, . . . , Yj, qj). Fixing j in {t, t + 1, . . . , n}, it follows with probability 1

that
Atât|j = AtE

(
αt|F∗

j

)
= E

(
Atαt|F∗

j

)
= E

(
qt|F∗

j

)
= qt, (3-6)

where the third equality is due to the restrictions in (2-5) and the fourth

equality naturally comes from the very F∗
j -measurability of qt. Finally make

j = t and j = n. ¤
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The most evident comparison between this third proof and the previous proofs

is concerned with length and elegance. Besides, it maintains the same generality

in terms of linear restrictions and state smoothing, which has been guaranteed

already by the first proof given in subsection 3.1.1.

Now, on the potentially usefulness from this third proof:

1. The additional normality and independence assumptions, although re-

stricting a little the scope of Theorem 1, can be considered an asset

because these are straightforwardly generalizable to other types of state

space models - the non-Gaussian and/or nonlinear state space models.

The only drawback is that most of statistical techniques designed to

handle more general state space models do require the existence of an

expression for the conditional laws p (yt|αt), which are obscured by the

“singularity” incurred in the augmenting procedure.

2. Finally, the third proof plainly reveals that the Bayesian approach for

state space modeling (cf. West and Harisson, 1997; Durbin and Koop-

man, 2001; and Shumway and Stoffer, 2006) can also deal with linear

restrictions by adopting augmented measurement equations as well. Yet,

one in such case shall be aware of some unavoidable singularities.

3.2
Statistical efficiency

In this section I demonstrate the statistical efficiency - in terms of mean

square estimation error - of the restricted Kalman filtering discussed so far.

For this, I shall make use of a geometrical perspective, something that might

be general enough, while still grasping at intuition and simplicity. For what

follows, it is important to bear in mind that the Kalman recursions, in addition

to being recursive computational formulae from an operational standpoint, give

linear orthogonal projections evaluations onto some specific subspaces spanned

by the model measurements.

I begin by quoting the well-established and useful fact:

Lemma 1 Take a Hilbert space H, two subspaces M,N of H and the linear

orthogonal projections πM and πN . If M ⊆ N , then, for each x ∈ H,

πM (πN (x)) = πM (x).

Proof : N is, by its own, a Hilbert space (because it is closed) andM is a closed

subspace of N . Then, using the Orthogonal Projection Theorem (cf. Theorem

5.20 of Kubrusly, 2001), we get N = M +
(M⊥ ∩N )

. So, from Proposition

DBD
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5.58 of Kubrusly (2001), it follows that πN = πM + πM⊥∩N ; tautologically, for

each x ∈ H,

πN (x) = πM (x) + πM⊥∩N (x) . (3-7)

Now, apply πM on both sides of (3-7). ¤

Some additional notation must also be set:

– at|j, Pt|j and S ′ are defined as previously and relate to the standard state

space model;

– a∗t|j, P ∗
t|j and S ′′ are obtained with the augmented state space model,

associated with Theroem 1

Now, everything needed for formally guaranteeing the statistical effi-

ciency has been gathered. Two demonstrations are given. Both are based on a

strong geometrical appeal and have an inductive style, in the sense that, firstly,

individual coordinates of the state vector are tackled and then, in a second

moment, the strategy is generalized for arbitrary linear combinations of these

coordinates. But they do differ in some aspects. The first proof concentrates

on the optimality of the linear orthogonal projection that comes directly from

first principles, while the second proof is rather “constructive”, uses Lemma 1

and focuses on a standard decomposition.

Theorem 2 P ∗
t|j ≤ Pt|j in the usual ordering of symmetric matrices.

First proof of Theorem 2: Let i = 1, . . . , m. Since the set containing

the original model measurements until time j is contained in the cor-

respondent set the from augmented model, it follows that S ′ ⊆ S ′′ ≡
span{1, Y11, . . . , Y1p, q11, . . . , q1k, . . . , Yj1, . . . , Yjp, qj1, . . . , qjk}. Therefore, from

Theorem 5.53 of Kubrusly (2001),

E
[(

αti − a∗ti|j
)2

]
= inf

Y ∈S′′
E

[
(αti − Y )2] ≤ E

[(
αti − ati|j

)2
]
.

Generalizing: take x = (x1, . . . , xm)′ ∈ Rm. Using linearity, the linear orthog-

onal projections onto S ′ and onto S ′′, both evaluated in x′αt = x1αt1 + · · · +
xmαtm, are given by

x′at|j = x1at1|j + · · ·+ xmatm|j

and

x′a∗t|j = x1a
∗
t1|j + · · ·+ xma∗tm|j .
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Observing that x′at|j ∈ S ′′ (because ati|j ∈ S ′ ⊆ S ′′∀i = 1, . . . , m and S ′′ is a

linear manifold), it follows that

x′P ∗
t|jx = x′E

[
(αt − a∗t|j)(αt − a∗t|j)

′] x = E
[
x′(αt − a∗t|j)(αt − a∗t|j)

′x
]

= E
[
(x′αt − x′a∗t|j)(x

′αt − x′a∗t|j)
′] = E

[(
x′αt − x′a∗t|j

)2
]

= inf
Y ∈S′′

E
[
(x′αt − Y )

2
]
≤ E

[(
x′αt − x′at|j

)2
]

= E
[
(x′αt − x′at|j)(x

′αt − x′at|j)
′] = E

[
x′(αt − at|j)(αt − at|j)

′x
]

= x′E
[
(αt − at|j)(αt − at|j)

′] x = x′Pt|jx.

Since x is arbitrary, the conclusion is that P ∗
t|j is, in fact, “less than or equal

to” Pt|j. ¤

Second proof of Theorem 2: Consider again an arbitrary i = 1, . . . , m. Recall

once more that S ′ and S ′′ already defined are subspaces (closed linear mani-

folds) of L2 and that S ′ ⊆ S ′′. Theorem 5.20 of Kubrusly (2001) asserts the

existence of ξ ∈ S ′′⊥ such that

αti = a∗ti|j + ξ. (3-8)

Also, Theorem 5.20 of Kubrusly (2001) and Lemma 1 (make H = L2, M = S ′,

N = S ′′ and x = αti) assure the existence of ν ∈ S ′′ ∩ S ′⊥ such that

a∗ti|j = ati|j + ν. (3-9)

From the decomposition (3-8), obtain

E
[(

αti − a∗ti|j
)2

]
= E

(
ξ2

)
. (3-10)

Now, add both decompositions (3-8) and (3-9) in order to get αti−ati|j = ξ+ν,

and evoke Pythagorean theorem - which is licit since ξ and ν are orthogonal -

to have
E

[(
αti − ati|j

)2
]

= E
(
ξ2

)
+ E

(
ν2

)
. (3-11)

Identities (3-10) and (3-11) assert the claimed efficiency for each coordinate

estimation of the state vector. The case of an arbitrary linear combinations

x′αt is dealt with in a similar fashion. ¤

Looking at cases in which j ≥ t, the last theorem shows that Kalman

updating and smoothing equations, when used with the augmented model, be-

sides respecting the linear restrictions from equation (3-1), give more accurate

estimators.
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3.3
Restricted Kalman filtering versus restricted recursive least squares

Consider the following univariate special case of model (2-1) where the

state vector is time invariant and Zt ≡ x′t is a row vector of exogenous

explanatory variables:

Yt = x′tβt + εt , εt ∼ (0, σ2)

βt+1 = βt.
(3-12)

This model can and should be viewed as a linear regression model written in

a linear state space representation. It is known (see Harvey, 1981 and 1993)

that application of the Kalman state updating equation to (3-12) numerically

coincides with the method of recursive least squares. Back in the days when

matrix inversion was a computational burden, this equivalence proved useful

since it turned out to be possible to estimate a regression model with no need

to invert a “big” X ′X matrix. In addition, this made attainable the updating

of ordinary least squares (OLS) estimates whenever new observations added

to the data set. Nowadays this equivalence still deserves its merits in statistics

and econometrics. Firstly, depending on the ill-conditioning of the regressors,

it still may be difficult to invert “big” X ′X matrices, a problem that justifies

recursive estimation. Secondly, this equivalence is in full connection with the

traditional coefficients stability test by Brown et al. (1975).

The purpose of this section is to generalize the above parallel in the

context of linear restrictions. I shall admit that the coefficient vector of a

regression model is supposed to obey certain linear restrictions which are

enunciated as
Aβ = q, (3-13)

where A is a known k×m matrix, k ≤ m, and q = (q1, ..., qk)
′ is a known k×1

vector. Since the main objective is to bridge the restricted recursive estimation

to the restricted Kalman filtering, structures (3-12) and (3-13) are now taken

together to generate the following augmented measurement equation:

(
Yt

q

)
=

(
x′t
A

)
βt +

(
εt

0

)
,

(
εt

0

)
∼

( (
0

0

)
,

(
σ2 0

0 0

) )
. (3-14)

From Theorem 1, the application of the Kalman updating equation to the

model in (3-14) produces updated state vectors which satisfy Abt|t = q. But,

in fact, there is more: the terms of the sequence
(
bt|t

)
are the output from on

line successive applications of restricted least squares. In order to establish this

link, the restricted least square (RLS) estimator and its covariance matrix for

a linear regression model Y = Xβ + ε, ε ∼ (0, σ2I), where β obeys (3-13), is
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recalled below:

β̂RLS = β̂OLS + (X ′X)−1A′[A(X ′X)−1A′]−1(q − Aβ̂OLS) (3-15)

V ar
(
β̂RLS

)
= σ2(X ′X)−1 − (X ′X)−1A′[A(X ′X)−1A′]−1A(X ′X)−1.

The derivation of the expression in (3-15) is presented in almost any book on

econometrics. See for instance Johnston and Dinardo (1997) or Greene (2003).

This section’s result:

Theorem 3 Under the state space model in (3-14), the Kalman state updating

equation is identical to a recursive application of (3-15).

Proof : The model in (3-14) can be decomposed in a way that recognizes q

as a “new” measurement vector obtained/observed just “after”Yt and right

“before” Yt+1. Thus, the measurement equation is recast as

Yt,j = Zt,jβt,j + εt,j , εt,j ∼ (0, Ht,j). (3-16)

Notice that Yt,1 = Yt, Zt,1 = x′t and Ht,1 = σ2; on the other hand Yt,2 = q,

Zt,2 = A and Ht,2 = 0. The new state equation is written in the same way as

before.

It now becomes possible to regard the imposing of the linear restrictions

as a new updating of the state vector. In fact, for an arbitrary t, denote

the output of the Kalman updating using all the measurements from eq.(3-

16) up to Yt,1 by β̂t,1|t,1, which, as already discussed, equals the output of

the recursive least squares - and consequently the OLS estimator - applied

to the “observations”{Y1, q1, ..., qk, ..., Yt−1, q1, ..., qk, Yt}. The state equation

implies that β̂t,2|t,1 = β̂t,1|t,1. Then, as Yt,2 = q arrives, and by noticing

that Pt,2|t,1 = Pt,1|t,1 = σ2 (X ′
tXt)

−1, Zt,2 = A and υt,2 = q − Aβ̂t,2|t,1 and

Ft,2 = Aσ2 (X ′
tXt)

−1 A′, the Kalman state updating equation in (2-3) becomes

β̂t,2|t,2 = β̂t,1|t,1 + (X ′
tXt)

−1
A′

(
A (X ′

tXt)
−1

A′
)−1 (

q − Aβ̂t,1|t,1
)

. (3-17)

But, as just mentioned, β̂t,1|t,1 = β̂MQO. Therefore, the conclusion is that

the Kalman updating in (3-17) is indeed an application of RLS estimator

of (3-15). The equivalence between covariance matrices can be also established

analogously. ¤

Some conceptual and practical consequences follow. First of all, it now

becomes clear that the restricted Kalman filtering is indeed a generalization

of the RLS estimator, a statement that, albeit intuitive, was lacking a proper

formalization. In addition, Theorem 3 also shows that a regression model with
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random walk time-varying coefficients under restrictions (set βt+1 = βt + ηt,

ηt ∼ (0, Q), as the state equation for model (3-14)) does encapsulate the

regression model with static coefficients, still under the same restrictions. Then,

whenever the restricted Kalman filtering is applied to the time-varying version,

both models can be compared as usual - to estimate the static model, just

set Q ≡ 0. Finally, note that the recursive residuals obtained from recursive

application of (3-15) are automatically uncorrelated - indeed, Theorem 3 says

they are innovations. This is a desirable property in paving the way towards

the development of a generalization of the stability test by Brown et al. (1975).

3.4
Initialization

3.4.1
Motivation

Besides considering the linear restrictions in equation (2-5), in this section

I will also admit that some coordinates of the initial state vector α1 have infinity

variances. This is the basic set-up of the so-called diffuse initialization of the

Kalman recursions, a subject extensively studied in Ansley and Kohn (1985),

de Jong (1988), Harvey (1989), de Jong (1991), Koopman (1997), Durbin

and Koopman (2001), Koopman and Durbin (2003), and de Jong and Chu-

Chun-Lin (2003). Under this at least partially unspecified initial conditions,

a question that comes is whether the methods of imposing linear restrictions

can be derived from the very beginning. Observe that, once some elements

of P1 explode, there shall be no L2 theory available anymore, nor could even

the traditional Kalman equations be tackled, at least in the period when the

effect of diffuseness - which lasts for an initial portion of the data - has not

vanished yet. So, the strategies used in proofs by Doran (1992) and by Pizzinga

(2008) to achieve the augmented restricted Kalman filtering (cf. Theorem 1)

unfortunately become useless here. The purpose of this section is to address

this theoretical issue precisely, by exploring the conditions which allow one to

extend the restricted estimation to diffuse initializations, and by working out

appropriately the modified versions of the Kalman equations; that is, the proof

shall be “computational” instead of “geometrical”.

3.4.2
Reviewing the initial exact Kalman smoother

From now on, the initial state vector is modeled as

α1 = a + Bδ + R0η0,

DBD
PUC-Rio - Certificação Digital Nº 0410307/CA
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in which a is fixed and known, δ ∼ (0, κIq), η0 ∼ (0, Q0), and B and R0 are

m × q and m × (m − q) selection matrices respectively, such that B′R0 = 0

and B′α1 = δ. In general, δ consists of initial conditions for the non-stationary

terms of the m-variate process αt. Under this fix, the exact initial Kalman

smoother, obtained when κ −→ +∞, is, in Durbin and Koopman (2001)’s

notation,

υ
(0)
t = Yt − Zta

(0)
t − dt, F∗,t = ZtP∗,tZ ′

t + Ht, F∞,t = ZtP∞,tZ
′
t

L
(0)
t = Tt − TtP∞,tZ

′
tF

−1
∞,tZt, L

(1)
t = −TtP∗,tZ ′

tF
−1
∞,tZt + TtP∞,tZ

′
tF

−1
∞,tF∗,tF

−1
∞,tZt,

(3-18)

a
(0)
t+1 = Tta

(0)
t + ct + TtP∞,tZ

′
tF

−1
∞,tυ

(0)
t , P∗,t+1 = TtP∞,tL

(1)′
t + TtP∗,tL

(0)′
t + RtQtR

′
t,

P∞,t+1 = TtP∞,tL
(0)′
t , t = 1, . . . , n,

r
(0)
t−1 = L

(0)′
t r

(0)
t , r

(1)
t−1 = ZtF

−1
∞,tυ

(0)
t + L

(0)′
t r

(1)
t + L

(1)′
t r

(0)
t ,

at|n = a
(0)
t + P∗,tr

(0)
t−1 + P∞,tr

(1)
t−1, r(0)

n = 0, r(1)
n = 0, t = n, . . . , 1,

(3-19)

whenever F∞,t just defined above is nonsingular. Otherwise, changes must

take place in the recursions (3-18) and (3-19) (cf. Koopman and Durbin,

2003). According to Koopman (1997), there exists a time instant d after which

the above recursions collapse to the traditional Kalman smoother; therefore,

P∞,t = 0 for t > d necessarily.

The presented recursions constitute the paradigm proposed in Koop-

man (1997), Durbin and Koopman (2001, sec. 5.3), and Koopman and Durbin

(2003) for the treatment of state smoothing diffuse initialization. An alterna-

tive approach, based on the augmentation of the measurement equation, is

proposed in de Jong and Chu-Chun-Lin (2003)

3.4.3
Combining exact initialization with linear restrictions

Before going to the main result of the paper, some preliminary steps must

me addressed. The first is to list and to discuss the conditions under which it

will be possible to combine diffuse initial conditions for the Kalman smoothing

equations with the imposition of linear restrictions. Let them be enunciated

and, without any loss of generality, consider them valid for all t = 1, . . . , n.

Assumption 4 {qti, . . . , qtk} is a linearly independent subset of L2 (Ω,F ,P).

Assumption 5 ∀i = 1, . . . , k : qti /∈ span{1, Y11, . . . , Y1p, q11, . . . , q1k, . . . ,

Yt−1,1, . . . , Yt−1,p, qt−1,1, . . . , qt−1,k, Yt,1, . . . , Yt,p}.
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Assumption 6 The matrices Zt and At are such that the rank of [Z ′
t A′

t]
′ is

p + k.

Each Assumption should be examined in terms of generality and plau-

sibility. Assumption 4 guarantees non-redundance of the linear restrictions.

Assumption 5, in turn, definitively moves the focus towards the augmented

restricted Kalman filtering, since this is actually the appropriate way of han-

dling “stochastic” restrictions; indeed, if one faces some qti fixed or perfectly

predictable given the past, the corresponding linear restrictions would be much

better dealt with by the reduced restricted Kalman filtering (section 4.2), un-

der which the exact initial Kalman smoother in (3-18) and (3-19) are straight-

forwardly applicable. Notice also that, under any state equation chosen, As-

sumptions 4 and 5 necessarily imply AtPt|t−1A
′
t > 0. Finally, Assumption 6,

besides reinforcing that the linear restrictions are distinct, should be under-

stood as an impossibility of repeated signals along the lines of the augmented

measurement equation proposed in Theorem 1, something quite natural from

a practical perspective.

The second preliminary step is to quote the following auxiliary result:

Lemma 2 Consider a state space model with the augmented measurement

proposed in Theorem 1. If Ft > 0, then AtPt|t−1 [Z ′
t A′

t] F
−1
t = [0k×p Ik×k].

Notice that Lemma 2 is actually a rephrasing of eq.(22) from Doran (1992),

which has already proved to be key in the second proof of Theorem 1.

Finally, here is the main result concerning initialization:

Theorem 4 (The initial exact restricted Kalman smoother) Suppose the aug-

mented state space model associated to Theorem 1 satisfies Assumptions 4, 5

and 6. Then the initial exact Kalman smoother in (3-18) and (3-19) yields

Atat|n = qt. (3-20)

Proof : Fix an arbitrary t ∈ {1, . . . , d}, where d is the length of the diffuse pe-

riod associated with the augmented model. Define Z̃t = [Z ′
t A′

t]
′. Other quan-

tities would also have deserved tildes, but they are suppressed for conserving

notation. From the Assumptions 4 and 5, F∞,t cannot be a zero matrix. Sup-

posing first that F∞,t is nonsingular, take the recursive formulae of r
(0)
t−1 and

r
(1)
t−1 in (3-19) and place them in the expression of at|n, which gives

at|n = a
(0)
t +P∞,tZ̃

′
tF

−1
∞,tυ

(0)
t +P∞,tL

(0)′
t r

(1)
t +P∞,tL

(1)′
t r

(0)
t +P∗,tL

(0)′
t r

(0)
t . (3-21)

From (3-21), identity (3-20) will be proved whenever the following three claims

are established.
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Claim 1. At

(
a

(0)
t + P∞,tZ̃

′
tF

−1
∞,tυ

(0)
t

)
= qt.

Proof: Define a
(0)
t|t ≡ a

(0)
t + P∞,tZ̃

′
tF

−1
∞,tυ

(0)
t . Looking at the recursion in (3-18),

it follows that a
(0)
t|t is the Kalman updating equation given in (2-3) applied

to an augmented state space model with system matrices given by Z†
t = Z̃t,

d†t = (d′t 0′)′, H†
t = 0(p+k)×(p+k), T †

t = Tt, c†t = ct, and Q†
t = 0; and also a†1 = 0

and P †
1 = P∞,1 = BB′. ¤

Claim 2 : AtP∞,tL
(0)′
t = 0.

Proof: Still considering the auxiliary state space model from the previous claim,

use the expression of L
(0)′
t in (3-18) and Lemma 2 to get

AtP∞,tL
(0)′
t = AtP∞,tT

′
t − AtP∞,tZ̃

′
tF

−1
∞,tZ̃tP∞,tT

′
t

= AtP∞,tT
′
t − [0k×p Ik×k] Z̃tP∞,tT

′
t

= 0. ¤

Claim 3 : At

(
P∞,tL

(1)′
t + P∗,tL

(0)′
t

)
= 0.

Proof: From the expression of L
(1)′
t in (3-18), it follows that

AtP∞,tL
(1)′
t = −AtP∞,tZ̃

′
tF

−1
∞,tZ̃tP∗,tT ′

t + AtP∞,tZ̃
′
tF

−1
∞,tF∗,tF

−1
∞,tZ̃tP∞,tT

′
t

= − [0k×p Ik×k] Z̃tP∗,tT ′
t + [0k×p Ik×k]

[
Z̃tP∗,tZ̃ ′

t + diag (Ht, 0k×k)
]
F−1
∞,tZ̃tP∞,tT

′
t

= −AtP∗,tT ′
t + AtP∗,tZ̃ ′

tF
−1
∞,tZ̃tP∞,tT

′
t , (3-22)

where the second equality comes from Lemma 2 combined with the auxiliary

state space model firstly evoked in Claim 1, and from the expression of F∗,t in

(3-18) associated with the the augmented model.

On the other hand, the expression of L
(0)
t implies

AtP∗,tL
(0)′
t = AtP∗,tT ′

t − AtP∗,tZ̃ ′
tF

−1
∞,tZ̃tP∞,tT

′
t . (3-23)

Add (3-22) and (3-23). ¤

In case of F∞,t being singular, uncouple the augmented measurement (Y ′
t , q

′
t)
′

in such a way that

Yt,1, . . . , Yt,p−1, (Yt,p, q
′
t)
′
.

Without losing generality, assume that Zt,pP∞,tZ
′
t,p > 0, where Zt,p is the pth-

row of Zt (recall: P∞,t > 0 for t ≤ d). Since F∞,t associated with (Yt,p, q
′
t)
′ is

nonsingular (cf. Assumption 6), proceed exactly as before in order to attain

(3-20). This completes the proof. ¤
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From a practical perspective, a point coming from this last result, which

must be reinforced, is that, under quite general conditions, it is always possible

to yield restricted smoothed state vectors, even when the estimation lies in

the “diffuse” period (that is, for t = 1, . . . d, whatever d may be). Said in

other words: the beginning of the series is not critical anyhow to get more

interpretable results (which is certainly the case whenever estimated state

vectors under meaningful restrictions are achieved).
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