

Paulo Henrique da Silva Aniceto

Desenvolvimento de Técnica Baseada em Fluorescência para Medição de Escoamento Bifásico em Regime de Golfada

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica.

Orientador: Luis Fernando Alzuguir Azevedo

Rio de Janeiro Setembro de 2007

Paulo Henrique da Silva Aniceto

Desenvolvimento de Técnica Baseada em Fluorescência para Medição de Escoamento Bifásico em Regime de Golfada

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Luis Fernando Alzuguir Azevedo Orientador Pontifícia Universidade Católica do Rio de Janeiro

> **Prof. Marcos Sebastião de Paula Gomes** Pontifícia Universidade Católica do Rio de Janeiro

> > **Prof. Sidney Stuckenbruck** Olympus Software Científico e Engenharia

> > > **Prof. José Eugênio Leal** Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 4 de setembro de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Paulo Henrique da Silva Aniceto

Graduou-se em Engenharia Mecânica e Engenharia de Produção Mecânica na Pontifícia Universidade Católica do Rio de Janeiro (Rio de Janeiro, Brasil) em 2001. Especializou-se em Engenharia de Petróleo na Pontifícia Universidade Católica do Rio de Janeiro (Rio de Janeiro, Brasil) em 2002. Ingressou na Petrobras em 2006 como Engenheiro de Petróleo.

Ficha Catalográfica

Aniceto, Paulo Henrique da Silva

Desenvolvimento de técnica em fluorescência para medição de escoamento bifásico em regime de golfada / Paulo Henrique da Silva Aniceto ; orientador: Luiz Fernando Alzuguir Azevedo. – 2007.

123 f. : il. ; 30 cm

Dissertação (Mestrado em Engenharia Mecânica)– Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Escoamento bifásico. 3. Velocimetria por imagem de partículas. 4. Fluorescência induzida por laser. 5. Iluminação pulsada de fundo. I. Azevedo, Luiz Fernando Alzuguir. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

Agradecimentos

Ao meu orientador, Professor Luis Fernando A. Azevedo, pela orientação, incentivo e ajuda no desenvolvimento do trabalho.

Aos professores e funcionários do Departamento de Engenharia Mecânica da PUC-Rio pela cordialidade e apoio administrativo.

Agradeço aos Professores membros da banca, pelos comentários e sugestões feitos ao trabalho apresentado.

Ao Julio Manuel Barros Jr., Pedro Canário Rabello e Alexandre SantAnna Ribeiro que contribuíram para o andamento da parte experimental desse trabalho. Assim como aos colegas do Laboratório de Termociência da PUC-Rio e aos demais funcionários do Laboratório de Sensores a Fibra Óptica, que contribuíram de diferentes maneiras para o sucesso deste trabalho.

Finalmente, agradeço aos meus pais e toda minha família pelo apoio e carinho sempre manifestados.

Aniceto, Paulo Henrique da Silva; Azevedo, Luis Fernando Alzuguir. **Desenvolvimento de técnica baseada em fluorescência para medição de escoamento bifásico em regime de golfada.** Rio de Janeiro, 2007. 123p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho é apresentada a implementação e aplicação de uma técnica experimental ótica, já descrita na literatura, para a medição instantânea do campo de velocidades gerado em escoamento bifásico líquido-gás. O trabalho concentrou-se no regime de escoamento em golfadas. Água e ar foram utilizados como fluidos de trabalho nos testes. A técnica implementada combina Velocimetria por Imagem de Partículas (PIV – Particle Image Velocimetry), com Fluorescência Induzida por Laser (LIF - Laser Induced Fluorescence) e Iluminação Pulsada de Fundo (PST - Pulsed Shadow Technique), o que permite determinar simultaneamente o campo instantâneo de velocidade na água gerado pela passagem da bolha de ar, assim como a forma e velocidade da bolha. Processamento digital de imagens foi utilizado para extrair as informações sobre o campo de velocidade do líquido e as características da bolha. A técnica implementada foi aplicada no escoamento gerado pela passagem de uma bolha de gás em uma coluna de líquido estagnado. A técnica PIV foi utilizada para determinar o campo de velocidades na fase líquida iluminando-se o escoamento com um plano de luz laser pulsada. O uso de partículas fluorescentes em conjunto com filtros óticos posicionados em frente a uma câmera digital permitiram suprimir a reflexão intensa proveniente das interfaces líquido-gás e das paredes do tubo. Entretanto, esta técnica não é capaz de determinar a exata posição da interface líquido-gás. O uso da iluminação pulsada de fundo proveniente de um painel de LED's permite a visualização da interface gáslíquido com boa definição. Uma única câmera digital posicionada ortogonalmente ao plano de luz laser e em oposição ao painel de LED's foi usada para o registro das imagens. Os resultados obtidos revelaram com excelente resolução os detalhes do escoamento na esteira, filme na parede e nariz de uma bolha ascendente, comprovando a eficácia da técnica implementada.

Palavras-chaves

Escoamento bifásico; Velocimetria por Imagem de Partículas; Fluorescência Induzida por Laser; Iluminação Pulsada de Fundo.

Abstract

Aniceto, Paulo Henrique da Silva; Azevedo, Luis Fernando Alzuguir. **Development of technique based on fluorescence to measure twophase slug flow**. Rio de Janeiro, 2007. 123p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

This work presents the implementation of a non-intrusive optical technique for measuring the hydrodynamic characteristics of liquid-gas, two-phase flows. The work was limited to the study of air-water slug flows. The technique implemented, already described in the literature, combines Particle Image Velocimetry – PIV, Laser Induced Fluorescence – LIF, and pulsed background illumination, known as Pulsed Shadow Technique - PST. The combination of these techniques allows the simultaneous measurement of the instantaneous flow field generated in the liquid by the passage of the air bubble, together with the shape and velocity of the bubble. The technique was employed in the study of an air bubble rising in a stagnant liquid layer. The PIV technique was employed in the determination of the instantaneous flow field in the liquid using fluorescent particles illuminated by a pulsed laser sheet. An optical high-pass filter was used to block the light scattered by the air-water interfaces and by the pipe walls, allowing the digital camera employed to only capture the particle positions. A LED panel furnished back illumination at a wave length that passed through the high-pass filter and allowed an accurate determination of the bubble shape. A digital image processing procedure was employed to determine the bubble shape, velocity and liquid flow field. The results obtained revealed, with excellent resolution, the details of the liquid flow at the wake, wall film and nose of the rising bubble, thereby attesting to the quality of the technique implemented.

Keywords

Two-phase slug flow; Particle Image Velocimetry; Laser Induced Fluorescence; Pulsed Shadow Technique.

Sumário

1 Introdução	16
1.1. Objetivo	23
1.2. Organização do trabalho	24
2 Revisão bibliográfica	26
3 Descrição da técnica de medição utilizada	28
3.1. Velocimetria por Imagem de Partícula (PIV)	28
3.1.1. Fluido	30
3.1.2. Partículas	31
3.1.2.1. Concentração	31
3.1.2.2. Acompanhamento do fluido	32
3.1.2.3. Espalhamento de luz	33
3.1.3. CCD	34
3.1.4. Sistema de iluminação	36
3.1.4.1. Plano de luz laser	37
3.1.5. Sincronizador	38
3.1.6. Método da Correlação Cruzada	39
3.1.7. Coeficiente de Correlação	40
3.1.8. Determinação dos vetores de velocidade	41
3.1.9. Resolução sub-pixel	42
3.1.10. Técnica de Hart	43
3.2. Fluorescência Induzida por Laser (LIF)	43
3.3. Iluminação Pulsada de Fundo (<i>PST</i>)	46
4 Procedimente Experimental	49
4 1 Montagom Experimental	40
4.1.1 Bancada	40
4.1.2 Socia do tosto	40
4.1.2. Seção de leste	53
4.1.4. Reservatório	55
4 1 5. Placa centralizadora	58
	50

4.1.6. Seção geradora de bolhas	60
4.1.7. Sistema <i>PIV</i>	61
4.1.8. Sistema <i>PST</i>	64
4.2. Procedimento Experimental	68
4.3. Processamento da técnica <i>PST</i>	72
4.4. Processamento das imagens de PIV	73
4.5. Medição da velocidade da bolha com fotocélulas	75
5 Análise de Resultados	77
5.1. Determinação da forma da bolha com solução de Rodamina líquida	77
5.2. Resultados utilizando a técnica de PIV e LIF	80
5.3. Resultados das técnicas de PIV, LIF e PST simultâneas.	84
5.3.1. Resultados no nariz da bolha	84
5.3.2. Resultados na esteira da bolha	99
5.3.3. Resultados de uma pequena golfada	109
5.4. Velocidade da bolha	118
6 Conclusões	120
7 Bibliografia	121

Lista de figuras

Figura 1.1 – Padrões de escoamento multifásico horizontal (Fonte: Tong e	
Tang, 1997).	18
Figura 1.2 - Padrões de escoamento multifásico vertical ascendente	
(Fonte: Tong e Tang, 1997).	20
Figura 1.3 – Padrões de escoamento em um poço produtor de óleo vertical	
(Fonte: Hasan e Kabir, 1988).	21
Figura 3.1 – Princípio de funcionamento do PIV (Fonte:	
www.dantecdynamics.com).	29
Figura 3.2 - Par de imagens da técnica de PIV: (a) instante t=to e (b)	
instante t=to+ Δ t.	30
Figura 3.3 – Luz espalhada por uma partícula esférica de diâmetro igual a:	
(a) 1 $\mu m,$ (b) 10 μm e (c) 30 μm (calculada pelo software MiePlot versão	
3.5.01, 2006. Disponível em http://www.philiplaven.com/mieplot.htm.	
Acesso em 05 maio 2007).	35
Figura 3.4 - Diagrama temporal de sincronismo entre o laser e a câmera	
(convencional).	36
Figura 3.5 - Diagrama temporal de sincronismo entre o laser e a câmera	
(frame stradding).	36
Figura 3.6 - Diagrama de lentes para formação do plano de luz com um	
laser.	38
Figura 3.7 - Janelas de interrogação e de busca para a correlação	
cruzada.	39
Figura 3.8 – Deslocamento da partícula.	40
Figura 3.9 – Mapa típico do coeficiente de correlação, R, para correlação	
cruzada (Fonte: Almeida, 1997).	41
Figura 3.10 – Convenção de índices.	42
Figura 3.11 – Diagrama de Jablonski.	45
Figura 3.12 – Espectro de absorção e fluorescência (Fonte: Manual da TSI	
Incorporated).	46
Figura 3.13 – Desenho esquemático da técnica <i>PST</i> .	47
Figura 4.1 – Desenho esquemático da montagem experimental.	49
Figura 4.2 - Desenho técnico do aparato experimental (cotas em	
milímetros): (a) vista frontal completa e (b) vista frontal da seção de	

escoamento.	50
Figura 4.3 - Desenho técnico do aparato experimental (cotas em	
milímetros): (a) vista lateral esquerda e (b) vista lateral direita.	51
Figura 4.4 – Aparato experimental da seção de testes.	52
Figura 4.5 – Fotografia da caixa de visualização.	54
Figura 4.6 - Desenho técnico da caixa de visualização (cotas em	
milímetros).	55
Figura 4.7 – Vedação superior da caixa de visualização.	55
Figura 4.8 – Vista explodida da caixa de visualização.	56
Figura 4.9 – Montagem real do reservatório.	57
Figura 4.10 – Desenho técnico do reservatório (cotas em milímetros).	58
Figura 4.11 – Montagem real da placa centralizadora.	59
Figura 4.12 – Placa centralizadora (cotas em milímetros).	59
Figura 4.13 – Conjunto de válvulas para gerar bolhas de Taylor.	60
Figura 4.14 - Conjunto de válvulas para gerar bolhas de Taylor: (a) após	
gerar bolha, (b) posição de drenagem do fluido entre as válvulas, (c)	
sistema com ar para gerar a bolha e (d) gerando bolha.	61
Figura 4.15 – Filtro OG 590 (Fonte: site www.mellesgriot.com).	62
Figura 4.16 – Filtro (Fonte: site www.mellesgriot.com).	62
Figura 4.17 – Câmera CCD, lente e filtro.	63
Figura 4.18 – Sistema <i>PST</i> .	64
Figura 4.19 – Painel com LED´s.	65
Figura 4.20 – LED vermelho de 5 mm (Fonte: Site Farnell).	65
Figura 4.21 – Placa difusora.	66
Figura 4.22 – <i>Layout</i> do painel dos LED's.	66
Figura 4.23 – Esquemático do circuito eletrônico.	67
Figura 4.24 – Visão da seção de teste.	68
Figura 4.25 - Imagem adquirida: a) somente com PIV e LIF, b) somente	
com <i>PST</i> e c) com <i>PIV</i> , <i>LIF</i> e <i>PST</i> simultâneos.	69
Figura 4.26 – Nível de cinza somente com a técnica de PIV e LIF.	70
Figura 4.27 – Nível de cinza somente com a técnica de <i>PST</i> .	71
Figura 4.28 – Nível de cinza com a técnica de PIV, LIF e PST simultâneas.	71
Figura 4.29 – Filtro de mediana.	72
Figura 4.30 – Portão fotoelétrico (Fonte: www.pasco.com).	75
Figura 4.31 – Medição da velocidade da bolha.	76
Figura 5.1 – Pequena bolha de Taylor em solução de água e Bodamina	

1 U J. I е ... ъ υ IIIIa чų uç

líquida.	78
Figura 5.2 - Nariz da bolha de Taylor em solução de água e Rodamina	
líquida.	78
Figura 5.3 – Bolha de Taylor em solução de água e Rodamina líquida.	79
Figura 5.4 - Esteira da bolha de Taylor em solução de água e Rodamina	
líquida.	79
Figura 5.5 – Imagem saturada pela luz refletida pela superfície das bolhas	
(Fonte: Hishida et al., 2001).	80
Figura 5.6 – Imagem adquirida com a técnica <i>PIV</i> e <i>LIF</i> (μ = 0,027 Pa.s).	81
Figura 5.7 – Processamento sem máscara retornando vetores espúrios	
dentro da bolha.	82
Figura 5.8 – Máscara desenhada visualmente na interface líquido-gás	
provável.	82
Figura 5.9 – Processamento da imagem com máscara.	83
Figura 5.10 – Campo de velocidades no nariz da golfada.	83
Figura 5.11 – Imagem do tubo obtida com o <i>PIV, LIF</i> e <i>PST</i> .	85
Figura 5.12 – Imagem do tubo após filtro de mediana de 5x5 <i>pixels</i> .	86
Figura 5.13 – Imagem do tubo após filtro de mediana de 7x7 <i>pixels</i> .	86
Figura 5.14 – Imagem do nariz da bolha de Taylor obtida com o PIV, LIF e	
PST (Re _B = 135).	87
Figura 5.15 - Imagem do nariz da bolha de Taylor após filtro de mediana	
de 5x5 <i>pixels</i> ($Re_B = 135$).	87
Figura 5.16 - Imagem do nariz da bolha de Taylor após filtro de mediana	
de 7x7 <i>pixels</i> ($Re_B = 135$).	88
Figura 5.17 - Resultado da subtração das imagens após o filtro de	
mediana de 7x7 <i>pixels</i> ($Re_B = 135$).	89
Figura 5.18 – Binarização da subtração (Re _B = 135).	89
Figura 5.19 – Máscara digital do nariz da bolha de Taylor (Re _B = 135).	90
Figura 5.20 - Processamento com janela de 64x64 pixels e máscara	
digital ($\text{Re}_{\text{B}} = 135$).	91
Figura 5.21 - Campo de velocidades do nariz da bolha de Taylor com	
$64x64 \ pixels \ (Re_B = 135).$	92
Figura 5.22 - Processamento com janela de 32x32 pixels e máscara	
digital ($\text{Re}_{\text{B}} = 135$).	92
Figura 5.23 - Campo de velocidades do nariz da bolha de Taylor com	
$32x32 \ pixels \ (Re_B = 135).$	93

Figura 5.24 – Imagem do nariz da bolha de Taylor obtida com o PIV, LIF e	
PST (Re _B = 1102).	94
Figura 5.25 – Máscara digital do nariz da bolha de Taylor ($Re_B = 1102$).	94
Figura 5.26 - Campo de velocidades do nariz da bolha de Taylor com	
$64x64 \ pixels \ (Re_B = 1102).$	95
Figura 5.27 - Campo de velocidades do nariz da bolha de Taylor com	
$32x32 \ pixels \ (Re_B = 1102).$	96
Figura 5.28 – Campo de velocidades na película líquida: (a) $Re_B = 135 e$	
(b) Re _B = 1102.	98
Figura 5.29 – Velocidade axial na película líquida.	98
Figura 5.30 – Imagem da esteira da bolha de Taylor obtida com o PIV, LIF	
e <i>PST</i> (Nf = 390).	100
Figura 5.31 – Imagem da esteira da bolha de Taylor após filtro de mediana	
de 5x5 <i>pixels</i> (Nf = 390).	100
Figura 5.32 – Imagem da esteira da bolha de Taylor após filtro de mediana	
de 7x7 <i>pixels</i> (Nf = 390).	101
Figura 5.33 - Resultado da subtração das imagens após o filtro de	
mediana de 7 <i>pixels</i> (Nf = 390).	101
Figura 5.34 – Binarização da subtração (Nf = 390).	102
Figura 5.35 – Máscara digital da esteira da bolha de Taylor (Nf = 390).	102
Figura 5.36 – Máscara inversa para desenhar base da bolha.	103
Figura 5.37 – Processamento com janela de 64x64 <i>pixels</i> e máscara digital	
(Nf = 390).	104
Figura 5.38 - Campo de velocidades da esteira da bolha de Taylor com	
64x64 <i>pixels</i> (Nf = 390).	104
Figura 5.39 – Processamento com janela de 32x32 pixels e máscara digital	
(Nf = 390).	105
Figura 5.40 - Campo de velocidades da esteira da bolha de Taylor com	
32x32 <i>pixels</i> (Nf = 390).	105
Figura 5.41 – Imagem da esteira da bolha de Taylor obtida com o PIV, LIF	
$e PST (N_f = 3168).$	107
Figura 5.42 – Máscara digital da esteira da bolha de Taylor (N _f = 3168).	107
Figura 5.43 - Campo de velocidades da esteira da bolha de Taylor com	
$64x64 \ pixels \ (N_f = 3168).$	108
Figura 5.44 - Campo de velocidades da esteira da bolha de Taylor com	
$32x32 \ pixels \ (N_f = 3168).$	108

Figura 5.45 – Imagem de uma pequena bolha de Taylor obtida com o PIV,	
$LIF e PST (Re_B = 135).$	109
Figura 5.46 – Imagem da bolha de Taylor após filtro de mediana de 5x5	
<i>pixels</i> ($\operatorname{Re}_{B} = 135$).	110
Figura 5.47 – Imagem da bolha de Taylor após filtro de mediana de 7x7	
<i>pixels</i> (Re_{B} = 135).	110
Figura 5.48 - Resultado da subtração das imagens após o filtro de	
mediana de 7 <i>pixels</i>	111
$({\sf Re}_{\sf B}=135).$	111
Figura 5.49 – Binarização da subtração (Re _B = 135).	111
Figura 5.50 – Máscara digital da bolha de Taylor ($Re_B = 135$).	112
Figura 5.51 – Aplicação da máscara inversa para desenhar base da bolha	
$({\sf Re}_{\sf B}=135).$	112
Figura 5.52 – Processamento com janela de 64x64 <i>pixels</i> e máscara digital	
(Nf = 390).	113
Figura 5.53 – Campo de velocidades da bolha de Taylor com 64x64 <i>pixels</i>	
(Nf = 390).	114
Figura 5.54 – Processamento com janela de 32x32 pixels e máscara	
digital (Nf = 390).	114
Figura 5.55 – Campo de velocidades da bolha de Taylor com 32x32 <i>pixels</i>	
(Nf = 390).	115
Figura 5.56 - Imagem da bolha de Taylor obtida com o PIV, LIF e PST	
$(\text{Re}_{\text{B}} = 1102).$	116
Figura 5.57 - Máscara digital para uma pequena bolha de Taylor (Re _B =	
1102).	116
Figura 5.58 – Campo de velocidades da bolha de Taylor com 64x64 <i>pixels</i>	
(Nf = 3168).	117
Figura 5.59 – Campo de velocidades da bolha de Taylor com 32x32 <i>pixels</i>	
(Nf = 3168).	117
Figura 5.60 – Cálculo da velocidade da bolha.	118

Lista de tabelas

Tabela 5.1 – Dados experimentais para solução de 80% glicerina e 20%	
água destilada.	84
Tabela 5.2 - Dados experimentais para solução de 50% glicerina e 50%	
água destilada.	93

Lista de Símbolos

- d_P Diâmetro da partícula traçadora [μm]
- g Aceleração da gravidade [m/s²]
- U_G Velocidade terminal de uma partícula [m/s]
- U_P Velocidade de uma partícula [m/s]
- U_B Velocidade da bolha [m/s]
- dr Diâmetro da imagem de uma partícula [μm]
- d_{dif} Diâmetro da partícula devido à difração [μm]
- D Diâmetro interno do tubo [m]

Símbolos gregos

λ	Comprimento de onda [nm]
μ _F	Viscosidade dinâmica do fluido [Pa.s]

- ρ_F Massa específica do fluido [kg/m³]
- ρ_P Massa específica da partícula [kg/m³]
- τ Tensão de cisalhamento [Pa]
- τ_w Tensão de cisalhamento na parede do tubo [Pa]
- δ Espessura da película líquida na região anular [m]
- v Viscosidade cinemática [m²/s]

Variáveis adimensionais

Nf	Parâmetro adimensional
Re_{dp}	Número de Reynolds baseado no diâmetro da partícula
Re_{B}	Número de Reynolds baseado na velocidade da bolha

- n_P Índice de refração da partícula
- n_P Índice de refração do meio
- M ampliação da imagem
- f# número f da lente
- Δz_p plano de luz laser
- R Coeficiente de correlação