4 Apresentação e Análises dos Resultados

4.1 Modos de Ruptura

Os resultados gerais dos ensaios são apresentados na Tabela 4.1. Foram observados três modos de ruptura: destacamento do concreto, descolamento do adesivo e ruptura por tração das fibras.

Corpo-de- prova	f _c (MPa)	l _a (cm)	F _{máx} (kN)	Δt (s)	σ _{fibra} (MPa)	Τ _σ (MPa/s)	τ _{ad} (MPa)	$\begin{array}{c} T_{\tau} \\ (MPa/s) \end{array}$	Modo de Ruptura	T _c (kN/s)
VE I 01	26,30	12	28,44	380	3108	8,18	3,16	0,0083	С	0,0748
VE I 02	26,17	12	28,33	280	3095	11,04	3,15	0,0112	С	0,1011
VD I 03	26,83	12	29,68	0,00134	3243	2425494	3,30	2466	F	22193
VE II 04	36,42	12	19,69	231	2152	9,30	2,19	0,0095	А	0,0851
VE II 05	41,47	12	28,39	282	3103	11,01	3,15	0,0112	А	0,1008
VE II 06	41,97	12	17,75	332	1940	5,84	1,97	0,0059	А	0,0535
VD II 07	33,98	12	30,72	0,00152	3358	2208985	3,41	2246	А	20211
VD II 08	33,98	12	21,16	0,00292	2312	791818	2,35	805	А	7247
VD II 09	33,63	12	10,96	0,00208	1197	575619	1,22	585	F	5269
VD III 10	32,48	12	11,72	0,00152	1068	702415	1,09	714	А	7711
VE III 11	32,38	12	20,54	208	1871	8,99	1,90	0,009	А	0,0988
VD III 12	32,38	12	41,34	0,00144	4375	2151640	6,30	4375	С	28708
VE III 13	33,14	12	12,21	70,56	1164	16,49	1,36	0,0192	F	0,1730
VDM III 14	33,48	6	28,61	0,00148	3127	2112681	6,36	4296	F	19331
VEM III 15	36,04	6	18,66	337	2039	6,06	4,15	0,0123	С	0,0554
VDM III 16	34,81	6	19,48	0,00172	2128	1237496	4,33	2516	F	11326
VDM II 17	38,60	6	24,66	0,00112	2695	2406351	5,48	4893	F	22018
VDM III 18	34,25	6	15,06	0,00128	1646	1286112	3,35	2615	F	11766
VDM III 19	30,27	6	11,66	0,0016	1274	796547	2,59	1620	F	7288
VDM II 20	38,60	6	43,22	0,00128	4724	3690485	9,61	7503	С	33766
VDM II 21	38,60	6	37,72	0,0014	4122	2944486	8,38	5987	С	26943
VDM II 22	38,60	6	26,90	0,0014	2939	2099599	5,98	4269	С	19214
VDM III 23	30,27	6	16,55	0,00192	1808	941997	3,68	1915	С	8620

Tabela 4.1 – Resultados dos ensaios.

 f_c é a resistência à compressão do concreto; l_a é o comprimento de ancoragem; $F_{máx}$ é a força máxima nas fibras; Δt é o tempo de carregamento; σ_{fibra} é a tensão normal máxima; $T_{\sigma} = \sigma_{fibra} / \Delta t$ é a taxa de tensão normal; τ_{ad} é a tensão máxima de aderência;. $T_{\tau} = \tau_{ad} / \Delta t$ é a taxa de tensão de aderência; $T_c = F_{máx} / \Delta t$ é a taxa de carregamento; modo de ruptura: C = destacamento do concreto, A = descolamento do adesivo e F = ruptura das fibras.

O destacamento do concreto é caracterizado pela ruptura à tração do concreto, como ilustrado na Figura 4.1. O descolamento do adesivo (Figura 4.2) é

um modo de ruptura prematuro e ocorre devido às falhas na preparação da superfície ou por deficiência do próprio adesivo. Ressalta-se que todos os corposde-prova foram projetados para romper por aderência, mas em alguns deles ocorreu à ruptura por tração das fibras de carbono (Figura 4.3). Nesses corpos-deprova observou-se que as fibras não estavam uniformemente tracionadas, havendo regiões na tira do tecido mais tracionadas do que as outras. Assim, as fibras mais tracionadas rompiam primeiro, transferindo a força para as fibras vizinhas resultando então numa ruptura prematura. Nos dados da Tabela 4.1 observa-se que a tensão normal máxima nas fibras desses corpos-de-prova foi menor do que a resistência do CFC, cujo valor é 3.253 MPa.

Figura 4.1 – Ruptura por destacamento do concreto no corpo-de-prova VD III 12.

Figura 4.2 – Ruptura por descolamento do adesivo no corpo-de-prova VE II 04.

Figura 4.3 – Ruptura das fibras de carbono no corpo-de-prova VE III 13.

4.2 Curvas Força *versus* Tempo e Taxa de Carregamento

As três curvas típicas obtidas nos ensaios são apresentadas nas Figuras 4.4, 4.5 e 4.6. As curvas força *versus* tempo de carregamento de todos os corpos-deprova encontram-se no Anexo.

A Figura 4.4 mostra a curva força *versus* tempo do corpo-de-prova VE II 04 sob carregamento estático, onde os trechos 1 e 2 correspondem à aplicação da força relativa ao peso da viga metálica e das barras e chapas mostradas na Figura 3.15. O trecho 3 corresponde à aplicação da força com o macaco hidráulico.

A Figura 4.5 mostra a curva força *versus* tempo do corpo-de-prova VD III 12 sob carregamento dinâmico.

Nos corpos-de-prova VDM III 20, VDM II 21, VDM II 22 e VDM III 23 os gráficos força-tempo mostram duas curvas, uma referente à força lida pela célula de carga localizada no topo e a outra referente à força lida pela célula de carga localizada no apoio (Figura 4.6).

As curvas força-tempo permitem obter o valor máximo da força aplicada e o tempo de duração do carregamento. A determinação da taxa de carregamento foi feita dividindo a força máxima pelo tempo compreendido entre o início do carregamento até a força máxima. A taxa de tensão de aderência e a taxa de tensão normal foram determinadas dividindo-se a tensão máxima de aderência e a tensão normal máxima pelo tempo entre o início do carregamento e o carregamento máximo, obtidos nas curvas força *versus* tempo de carregamento.

Figura 4.4 – Curva força aplicada *versus* tempo do corpo-de-prova VE II 04 (força medida na célula de carga localizada no topo do corpo-de-prova).

Figura 4.5 – Curva força aplicada *versus* tempo do corpo-de-prova VD III 12 (força medida na célula de carga localizada no topo do corpo-de-prova).

Figura 4.6 - Curva força aplicada versus tempo (corpo-de-prova VDM II 21).

4.3 Efeito da Taxa de Carregamento Sobre a Resistência de Aderência

A Tabela 4.2 reúne os resultados referentes apenas aos corpos-de-prova que romperam por destacamento do concreto, nos quais a resistência de aderência f_b foi efetivamente atingida. Os valores de f_b são os mesmos já apresentados na coluna τ_{ad} da Tabela 4.1. Como a ruptura desses corpos-de-prova foi por aderência, τ_{ad} passa a representar a resistência f_b .

Corpo-de-prova	$T_{\tau}(MPa/s)$	$T_{\sigma}(MPa/s)$	$f_b(MPa)$
VE I 01	0,008	8,18	3,16
VEI02	0,012	11,04	3,15
VD III 12	4375	3.137.890	6,30
VEM III 15	0,012	6,06	4,15
VDM II 20	7503	3.690.485	9,61
VDM II 21	5987	2.944.486	8,38
VDM II 22	4269	2.099.599	5,98
VDM III 23	1915	941.997	3,68

Tabela 4.2 – Taxa de carregamento e resistências de aderência dos corpos-de-prova que romperam por destacamento do concreto.

A relação entre a taxa de tensão de aderência T_{τ} e a resistência de aderência f_b é mostrada na Figura 4.7, onde se observa que essa relação pode ser considerada linear e representada pela expressão 4.1, obtida pelo método dos mínimos quadrados, com coeficiente de correlação R² = 0,93.

$$f_h = 0,0008T_\tau + 3,14 \tag{4.1}$$

 $\operatorname{com} f_b$ em MPa e T_τ em MPa/s

Em função da taxa de tensão normal T_{σ} a expressão 4.1 assume a forma:

$$f_b = 1.6 \times 10^{-6} T_\sigma + 3.14 \tag{4.2}$$

 $\operatorname{com} f_b \operatorname{em} \operatorname{MPa} \operatorname{e} T_{\sigma} \operatorname{em} \operatorname{MPa/s}$

As expressões 4.1 e 4.2 foram determinadas utilizando-se a taxa de carregamento obtida pela célula de carga localizada no topo do corpo-de-prova. Observa-se que os valores reais da T_{τ} e T_{σ} são menores devido à propagação da onda do carregamento.

Figura 4.7 – Relação entre a taxa de tensão de aderência T_{τ} e a resistência de aderência f_b para os corpos-de-prova que romperam por destacamento do concreto.

4.4 Efeito da Taxa de Carregamento Sobre a Resistência à Tração do CFC

Os corpos-de-prova com modo de ruptura nas fibras apresentam valores da tensão normal inferiores ao valor encontrado nos ensaios de caracterização do CFC (Capítulo 3). Este fato deve-se a não uniformidade da distribuição da tensão normal às fibras da tira do CFC. A impregnação das fibras de carbono com resina proporciona uma distribuição de tensões uniforme sob carregamento dinâmico, evitando a concentração em um feixe de fibras.

Corpos-de-prova	$f_f(MPa)$	$T_{\sigma}(MPa/s)$
VD I 03	3244	2425494
VD II 09	1197	575619
VE III 13	1164	16,49
VDM III 14	3127	2112681
VDM III 16	2128	1237496
VDM II 17	2695	2406351
VDM III 18	1646	1286112
VDM III 19	1274	796547

Tabela 4.3 – Valores das resistências à tração e das taxas de carregamento para os corpos-de-prova com ruptura nas fibras de carbono.

 f_f é a resistência à tração do compósito, igual a σ_{fibra} na Tabela 4.1; T_{σ} é taxa de tensão normal

A Figura 4.10 mostra a curva de tensão normal *versus* taxa de tensão normal para o modo de ruptura por tração das fibras.

Analisando-se os resultados apresentados na Figura 4.10 determina-se a expressão que relaciona a resistência à tração com a taxa de carregamento T_{σ} . O coeficiente de correlação da expressão 4.3 é $R^2 = 0.88$.

$$f_f = 0,0009T_\sigma + 828 \tag{4.3}$$

sendo

 f_f – resistência à tração do CFC, em MPa

 T_{σ} - taxa de tensão normal, em MPa/s

Observa-se que essa expressão apenas indica que a resistência deve aumentar com a taxa de carregamento, pois os valores alcançados para este modo de ruptura são inferiores aos valores de resistência a tração do CFC encontrados no capítulo 3.

Figura 4.8 – Relação entre a taxa de tensão normal T_{σ} e a resistência à tração f_b para os corpos-de-prova com ruptura por tração nas fibras de carbono.

4.5 Propagação da Onde de Choque

Nos corpos-de-prova instrumentados com EER constatou-se uma diferença entre o tempo reação da célula de carga e o tempo de reação do EER. Esta diferença está relacionada ao posicionamento dos elementos de leitura e a teoria da propagação de ondas. A célula de carga está localizada no topo do corpo-deprova, recebendo diretamente a força transmitida pelo martelo e o EER está localizado na parte inferior da viga, sendo excitado somente após o pulso de carregamento ter passado por todos os materiais envolvidos no ensaio. A velocidade de propagação de onda esta ligada às características dos elementos e a uniformidade do meio onde a onda se propaga.

A Figura 4.16 mostra a leitura da célula de carga dividida pela força máxima, e a leitura da deformação específica dividida pela deformação específica máxima, ambos em tempo de carregamento.

52

Figura 4.9 – Gráfico dos valores da célula de carga dividida pela força máxima e os valores da deformação dividida pela deformação específica máxima, ambos em relação ao tempo de ensaio (VD III 12).

Na Figura 4.9 verifica-se que a diferença do tempo entre a resposta da célula de carga localizada no topo do corpo-de-prova e o EER é de 3,24 ms. A Tabela 4.4 apresenta a diferença de tempo.

do corpo-de-prova e o EER.Corpo-de-prova $\Delta t_I (ms)$ $T_{\sigma}(MPa/s)$

Tabela 4.4 – Diferença do tempo entre a resposta da célula de carga localizada no topo

Corpo-de-prova	$\Delta t_1 (ms)$	$T_{\sigma}(MPa/s)$
VD III 12	3,24	7504
VDM II 20	3,00	5987
VDM II 21	4,28	4269
VDM II 22	3,48	1915
VDM III 23	3,40	7504

Nota: Δt_1 é a diferença do tempo entre a resposta da célula de carga localizada no topo da viga e no EER; T_{σ} é a taxa de carregamento.

Diante desse fato, adicionou-se uma célula de carga no ponto de apoio do corpo-de-prova. A diferença entre no tempo reação da célula de carga localizada no topo do corpo-de-prova e o tempo de reação da célula de carga localizada no seu apoio, está mostrada na Figura 4.6.

A Figura 4.8 mostra uma perturbação na célula de carga localizada no apoio do corpo-de-prova no tempo 0,5882 s até o tempo 0,5894 s. Somente após 1,2 ms se constata a leitura efetiva do carregamento.

A diferença no tempo de carregamento entre a célula de carga localizada no topo do corpo-de-prova e a célula de carga localizada no seu apoio é muito pequena, em média 0,24 ms (Tabela 4.5).

Tabela 4.5 – Diferença no tempo de carregamento entre a célula de carga localizada no topo do corpo-de-prova e a célula de carga localizada no seu apoio, para os corpos-de-prova com modo de ruptura no concreto.

Corpos-de-prova	$\Delta t_2 (ms)$	$T_{\sigma}(MPa/s)$
VDM II 20	0,12	7504
VDM II 21	0,12	5987
VDM II 22	0,08	4269
VDM III 23	0,64	1915

Nota: Δt_2 é a diferença no tempo de carregamento entre a célula de carga localizada no topo da viga e a célula de carga localizada no apoio da viga; T_{σ} é taxa de carregamento.