Aline Amaral Quintella Abdu

Comportamento Elongacional dos Materiais Termoplásticos Compósitos

DISSERTAÇÃO DE MESTRADO

DEPARTAMENTO DE ENGENHARIA MECÂNICA Programa de Pós-graduação em Engenharia Mecânica

Rio de Janeiro Agosto de 2007

Aline Amaral Quintella Abdu

Comportamento Elongacional dos Materiais Termoplásticos Compósitos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica da PUC-Rio

Orientador: Prof. Monica Feijo Naccache

Rio de Janeiro Agosto de 2007

Aline Amaral Quintella Abdu

Comportamento Elongacional dos Materiais Termoplásticos Compósitos

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> **Prof. Monica Feijo Naccache, Ph.D.** Orientador Departamento de Engenharia Mecânica – PUC–Rio

> **Prof. Paulo Roberto de Souza Mendes, Ph.D.** Departamento de Engenharia Mecânica – PUC-RJ

Prof. Roney Thompson, Ph.D. Departamento de Engenharia Mecânica – UFF

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 03 de Agosto de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Aline Amaral Quintella Abdu

Graduou-se em Engenharia Mecânica pela Pontifícia Universidade Católica do Rio de Janeiro, tendo dedicado 3 anos à projetos de iniciação científica (PROFIX-CNPq). Atualmente trabalha na área de petróleo e gás.

Ficha Catalográfica

Abdu, Aline Amaral Quintella

Comportamento Elongacional dos Materiais Termoplásticos Compósitos / Aline Amaral Quintella Abdu; orientadora: Monica Feijo Naccache . — 2007.

75 f: ; 30 cm

Dissertação (Mestrado em Engenharia Mecnica) -Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui referências bibliográficas.

1. Engenharia Mecânica – Teses. 2. Escoamentos Viscoelásticos. 3. Reômetro Capilar. 4. Materiais Compósitos. I. Naccache, Monica Feijo. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

Agradecimentos

Aos meus pais, meu irmão e meus amigos pelo apoio e compreensão e paciência durante a elaboração deste trabalho.

A professora Mônica Feijó Naccache por sua dedicação e inestimável contribuição na minha formação e elaboração deste trabalho.

À PUC-Rio, ao CNPq, pelos auxílios concedidos para a realização deste trabalho.

Resumo

Abdu, Aline Amaral Quintella; Naccache, Monica Feijo. Comportamento Elongacional dos Materiais Termoplásticos Compósitos. Rio de Janeiro, 2007. 75p. Engenharia Dissertação de Mestrado — Departamento deMecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Os materiais termoplásticos compósitos, tais como o polipropileno reforçado com fibras de vidro curtas, são usados cada vez mais em diversos setores industriais. O reforço da fibra de vidro é uma forma utilizada para melhorar as propriedades mecânicas dos termoplásticos, devido ao elevado módulo das fibras e à melhor adesão entre as fibras e a matriz polimérica. No entanto, há poucas informações referentes às propriedades desses fluidos na literatura. No presente trabalho, um estudo das propriedades cisalhantes e elongacionais do polipropileno reforçado com fibras de vidros curtas é apresentado. As viscosidades cisalhantes e elongacionais foram obtidas em um reômetro capilar através da medição da queda de pressão na entrada convergente de um capilar axissimétrico. Utilizaram-se duas geometrias diferentes na entrada do capilar, para a obtenção dos dados experimentais: as geometrias semi-hiperbólica convergente e cônica convergente. Neste último, a viscosidade elongacional foi obtida a partir da queda de pressão na entrada, utilizando as análises de Cogswell e Binding. Simulações numéricas foram realizadas com o objetivo de investigar o comportamento do polipropileno em um processo de extrusão. As equações de conservação de massa e quantidade de movimento foram resolvidas utilizando o método dos elementos finitos a partir do programa comercial Polyflow (Ansys). Para modelar o comportamento da mecânico viscoelástico do polipropileno foram utilizados os modelos de Maxwell, Oldroyd-B e Phan-Thien Tanner (PTT), no entanto a comparação entre os resultados numéricos e os experimentais obtidos no reômetro capilar não apresentaram concordância satisfatória.

Palavras-chave

escoamentos viscoelásticos, reômetro capilar, materiais compósitos.

Abstract

Abdu, Aline Amaral Quintella; Naccache, Monica Feijo. Elongational Behavior of Composite Thermoplastic Materials. Rio de Janeiro, 2007. 75p. MSc. Dissertation — Departament of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

Composite thermoplastic materials, like glass fiber reforced polypropropylene, are used increasingly in several industries. In particular, glass fiber reinforcement is used to improve the mechanical properties of thermoplastics, due to the high fiber modulous and to the better adesion between the fibers and the polymeric matrix. However, few data of material properties of these fluids are available in the literature. In this work, a study of shear and elongational properties of a commercial short glass fiber reinforced polypropylene is presented. The shear and elongational viscosities were obtained using the pressure drop measured at a capillary rheometer, with axisymmetric converging dies. Two different die geometries were used: semihyperbolically convergent dies and conical convergent dies. In the last case, the elongational viscosity was obtained using the Cogswell and Binding analysis. Numerical simulations were also performed, to investigate the flow field through the extrusion die process, and to evaluate the pressure drop and elongational viscosity. The conservation equations of mass and momentum were solved via the finite element method, using the commercial program POLYFLOW (Ansys). The Maxwell, Oldroyd B and Phan Thien-Tanner (PTT) constitutive equations were used to model the viscoelastic mechanical behavior of Polypropylene, but the comparison between numerical results and experimental data obtained from the capillary rheometer did not show good agreement.

Keywords

viscoelastic flows, cappillary rheometer, composite materials

Conteúdo

1 INTRODUÇÃO 1.1 Objetivos do trabalho	11 15
 CARACTERIZAÇÃO REOLÓGICA DE MODELOS REFORÇADOS COM FIBRAS E DO POLIPROPILENO Reometria Equacionamento da Análise de Cogswell Equacionamento da Análise de Binding 	17 17 23 27
3 ANÁLISE EXPERIMENTAL 3.1 Resultados Experimentais	29 30
 4 ANÁLISE NUMÉRICA 4.1 Objetivos 4.2 Modelagem Matemática 4.3 Condições de Contorno 4.4 Programa Polyflow 4.5 Teste de malha 4.6 Resultados 	 48 48 48 52 53 55 57
5 MICROSCOPIA	65
6 CONCLUSÕES 6.1 Propostas para trabalhos futuros	72 73
BIBLIOGRAFIA	74

Lista de Figuras

2.1	Esquema de um reômetro capilar.	18 10
2.2	2 Reolletro capital ACER 2000.	19
2.3	Curva da viscosidade cisamante em função da deformação.	20
2.4		21
2.5	Esquema geometria conica convergente.	24
2.6	Esquema geometria semi-hiperbólica.	26
3.1	Comparação dos resultados de viscosidade com e sem a adição	30
2	Departibilidade des testes	21
0.4 0.2	Comparação dos valores do viscosido do para diferentes tovas do	51
5.3	compartação dos valores de viscosidade para diferentes taxas de compactação.	32
3.4	Viscosidade cisalhante <i>versus</i> taxa de cisalhamento para o polipropileno puro, para o reforçado com 10% e 30% de fibra de	
	vidro.	33
3.5	5 Comparação entre o polipropileno puro e o reforçado com 30% de fibra de vidro com [11]. Os resultados para o polipropileno	
	puro foram multiplicados por 0.1 por conveniência.	34
3.6	5 Viscosidade cisalhante em função da taxa de cisalhamento para	-
	diferentes razões de aspecto (I/D)	35
37	$^{\prime}$ Curva da queda de pressão total em função de L/D para o	00
0.1	polipropileno puro	36
38	3 Curva da queda de pressão total em função de L/D para o	00
0.0	polipropileno reforcado com 10% de fibra de vidro	37
30	Curva da queda de pressão total em função de L/D para o	01
0	polipropilego reforcado com 30% de fibra de vidro	38
3 1	4 Eunção $B(z)$ descrita nela geometria do canilar hinerbólico	38
3 1	In Gráfico da viscosidade cisalbante anós a correção de Bagley para	00
J.1	o PDN	30
3 1	11. Gráfico da viscosidade cisalbante anós a correção de Baglev para	05
5.1	 DD10 	40
2 1	15 Tampo do residôncia para o polipropilopo puro o diferentes	40
5.1	geometries	40
2 1	geometrias.	40
3.1	 o PP30. 	41
3.1	13 Função $R(z)$ descrita pela geometria do capilar cônico	42
3.1	6 Viscosidade elongacional aparente obtida com o capilar	
-	semi-hiperbólico. <i>Hencky strain</i> 4.	43
31	7 Viscosidade elongacional aparente obtida com o capilar	10
0.1	semi-hiperbólico Hencky strain 7	44
2 1	18 Viscosidade elongacional anarente nara todas as análicos	 /5
21	lo Viscosidade elongacional aparente para e polipropilone pure	40 45
ວ. ວ່າ	Viscosidade elongacional aparente para o poliproprierio puro.	40
3.4	do fibro do video	10
		40

3.21	Viscosidade elongacional aparente para o polipropileno com 30%	
	de fibra de vidro.	46
3.22	Comparação entre as análises de Cogswell e Binding.	47
4.1	Viscosidade elongacional prevista pelo modelo de Maxwell.	51
4.2	Viscosidade elongacional prevista pelo modelo de Oldroyd-B.	52
4.3	Viscosidade elongacional prevista pelo modelo PTT.	53
4.4	Domínio computacional da geometria cônica convergente e da	
	geometria hiperbólica.	54
4.5	Teste de malhas.	56
4.6	Perfil de velocidade na posição y = $0,015$ m.	57
4.7	Pressão adimensional na linha de centro.	58
4.8	$ au_{11} - au_{22}$ na posição y = 0,041 m.	59
4.9	$ au_{11} - au_{22}$ na posição y = 0,015 m.	60
4.10	Campo de velocidade.	61
4.11	Campo de pressão.	61
4.12	Diterença de tensões normais.	62
4.13	Campo de velocidade.	62
4.14	Campo de pressao.	63
4.15	Diferença de tensoes normais.	63
4.10	Campos de velocidade, pressão e primeira diferença de tensoes	C A
1 17	Campos de velocidado, pressão o primeiro diference do tençãos	04
4.17	campos de velocidade, pressão e primeira diferença de tensoes	
	deslizamento na naredo	64
	desizamento na palede.	04
5.1	PP10 com $\dot{\gamma} = 10$.	66
5.2	PP10 com $\dot{\gamma} = 100$.	67
5.3	PP10 com $\dot{\gamma} = 300$.	67
5.4	PP10 com $\dot{\gamma} = 700$.	68
5.5	PP10 com $\dot{\gamma} = 1000$.	68
5.6	PP30 com $\dot{\gamma} = 10$.	69
5.7	PP30 com $\dot{\gamma} = 100$.	69
5.8	PP30 com $\dot{\gamma} = 300$.	70
5.9	$PP30 \text{ com } \dot{\gamma} = 700.$	70
5.10	PP30 com $\gamma = 1000$.	71
5.11	PP30 Strain 4.	71

Um raciocínio lógico leva você de A a B. A imaginação leva você a qualquer lugar.

Albert Einstein.