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Abstract 

The determination of Mn in diesel, gasoline and naphtha samples at g L-1 level

by GFAAS, after sample stabilization in a three component medium 

(microemulsion) was investigated. Microemulsions were prepared by mixing

appropriate volumes of sample, propan-1-ol and nitric acid aqueous solution, 

and a long-term homogeneous system was immediately spontaneously formed. 

After multivariate optimization by central composite design the optimum

microemulsion composition as well as the temperature program was defined. In 

this way, calibration using aqueous analytical solution was possible, since the 

same sensitivity was observed in the optimized microemulsion medium and

0.2% v/v HNO3. Recoveries at the 3 µg L-1 level using both inorganic and 

organic Mn standards spiked solutions ranged from 98 to 107% and the limits of

detection were 0.6, 0.5 and 0.3 µg L-1 in the original diesel, gasoline and 

naphtha samples, respectively. The Mn characteristic concentration was 0.17

µg L-1 for an injection volume of 20 L. Typical coefficients of variation of 4, 5 

and 8% were found for ten consecutive measurements at concentration levels 

of 0.3, 0.8, and 1.5µg L-1, respectively. The total determination cycle lasted 4 

min for diesel and 3 min for gasoline and naphtha, equivalent to a sample

throughput of 7 h-1 for duplicate determinations in diesel and 10 h-1 for duplicate 

determinations in gasoline and naphtha. Accuracy was assessed by

comparative analysis and no statistically significant difference was found

between the results obtained with the proposed and chosen reference methods 

in the analysis of real samples. 

Keywords: Manganese, diesel, gasoline, naphtha, microemulsion, GFAAS 
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1.  Introduction 

Information on trace element concentrations in petroleum derivatives is getting 

increasingly importance because of environmental and economic issues. Their 

presence in products such as gasoline and diesel reduces the efficiency of catalytic 

reactors in vehicle exhaust systems, increasing the emission of exhaust gases, and 

can impair the performance of the motor by the decomposition of the fuel, formation 

of precipitates or by promoting the corrosion of motor parts [1,2]. For naphtha, the 

determination of trace metals is important since they can poison the catalyst during 

the cracking process [3,4]. Some elements are already present in petroleum, 

appearing in the lighter fractions due to the co-distillation of their more volatile 

compounds; other trace metals can be introduced as contaminants during refining, 

storage and transport. Moreover, some elements can be added, normally in organic 

form, to improve some characteristics of the fuel. For example, manganese has been 

reported to occur over a wide range of concentrations as a natural trace element in 

crude oils [5] but it can be added as methylcyclopentadienyl manganese tricarbonyl 

(MMT) to gasoline as antiknock agent until at a level equivalent to 8.3 mg Mn L-1 [6-

8]. In addition, the content of potentially toxic elements must be evaluated since 

these elements are released to the atmosphere due to the use of petroleum derivate 

fuels as energy source in oil-fired power plants and automobiles [7]. MMT is used as 

fuel additive since the 70’s of last century in substitution of the more toxic 

tetraethyllead. MMT is also used to reduce emissions [9]. Even though manganese is 

known to be an essential trace element for humans, high levels of this metal are 

associated to Parkinson’s like diseases and attention deficiency [9,10,11]. The 

combustion of MMT produces manganese oxides, mainly Mn3O4 in the atmosphere 

[12] and it has been reported that Mn atmospherics levels about 5 g L-1 can cause 

chronic poisoning and induced pneumonia [13]. Thus, accurate quantification of Mn 

and other metals in fuel samples is important for production, technical use and 

environmental reasons. 

Several analytical techniques for the determination of Mn in petroleum 

derivatives have been proposed: Gas chromatography (GC) associated to alternate 

current plasma (ACP) detection [13] or inductively coupled plasma optical emission 

spectrometry (ICP OES) [12]; high performance liquid chromatographic (HPLC) with 
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diode laser atomic absorption spectrometry (DLAAS) detection [14]; solid phase 

microextraction (SPME) with atomic absorption spectrometry detection [15]; flame 

atomic absorption spectrometry (FAAS) [16,17], and inductively coupled plasma 

mass spectrometry (ICP-MS) using both electrothermal vaporization [18] and direct 

injection nebulization (DIN) [19].  

Chromatographic methods are time-consuming, what impairs their use in 

routine analysis. Sample pre-treatments, such as SPME (as well as extraction to 

aqueous phase, combustion in an oxygen bomb and wet or dry ashing) are also time 

consuming and risks of contamination and losses due to sample manipulation are 

increased, although calibration may be made simpler since an aqueous final solution 

is obtained. FAAS makes it possible the direct analysis of hydrocarbon matrices after 

just a dilution with an adequate organic solvent or emulsion formation. However, 

aside its low sensitivity the nature of the organic medium as well as the physical 

chemical form (speciation) of the analyte may have a strong influence on the 

sensitivity causing calibration problems [16,17]. ICP techniques are sensitive and 

multielemental, but the introduction of organic solvents into the plasma requires 

special cares in order to avoid plasma extinction or carbon deposition on the sampler 

and skimmer cones (ICP-MS). ETV-ICP-MS shows improved transport efficiency 

compared with direct solution nebulization [18] and avoids matrix interference due 

the previous volatilization of the matrix. However, ICP-MS instrumentation due to its 

high acquisition and running cost is still inaccessible for many laboratories. An 

advantageous alternative for the determination of trace elements in petroleum 

fractions and distillates is the graphite furnace atomic absorption spectrometry (GF 

AAS). Although still a monoelemental technique, its sensitivity is adequate for most 

cases and a minimum sample pre-treatment is necessary [1,20,21,22]. The removal 

of the matrix during the pyrolysis step associated to a strict observation of the STPF 

rules makes it possible the accurate determination of trace metals in high organic 

loaded samples (such as petroleum derivatives) using aqueous calibration solutions 

prepared with inorganic standards [22].

However, no matter the analysis procedure chosen, sample stability must be 

considered, since metals dissolved in organic liquids at the g L-1 level are readily 

lost [1,4]. Thus, sample stabilization is mandatory for guaranteeing sample 

representativeness as well as repeatability along the analysis. Previous works 

[1,22,23,24,25] have shown that different trace elements were successfully stabilized 
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in hydrocarbon liquid samples by the formation of three component solutions 

(microemulsions). Microemulsions are spontaneously and immediately formed after 

mixing their components, resulting in a one-phase, homogeneous, transparent and 

indefinitively stable medium, in contrast to emulsions [2,4]. Such stability dispenses 

any further shaking during analysis [2,4], permitting the full exploitation of the 

autosampler capabilities. Moreover, dilution factors are small, avoiding prohibitive 

impoverishment of the overall limit of detection.

Thus, the present work develops an alternative strategy for the determination of 

manganese in diesel, gasoline and naphtha by GFAAS, taking advantage of sample 

stabilization by formation of microemulsions. 

2. Experimental 

2.1. Instrumentation 

The Mn GFAAS measurements were performed with a model AAS 5 EA atomic 

absorption spectrometer (Carl Zeiss, Germany) equipped with a transversally heated 

graphite atomizer, a continuum source (deuterium lamp) background corrector and 

an AS-42 autosampler. Pin-platform graphite tubes (Analytik Jena, Jena, Germany; 

part number 407.A81.026) were used as atomization cell. A Mn hollow cathode lamp 

(Analytik Jena) operated at 6 mA and 279.5nm was used as line source. The slit was 

fixed at 0.2nm. All measurements were made in peak area, with a 4s integration time.

2.1.2. Materials, reagents, solutions and samples 

Argon 99.99 (AGA, Rio de Janeiro, Brazil) was used as protective and carrier 

gas. Ultra pure water, obtained from a Gehaka Master System apparatus (Gehaka, 

S. Paulo, Brazil) was used throughout. Analytical grade HNO3 (Vetec, Rio de Janeiro, 

Brazil) was purified by subboiling distillation using an of PTFE subboiler apparatus 

(Hans Kuerner, Rosenheim, Germany). A 1000 mg L-1 Mn stock solution was 

prepared by adequate dilution of a Titrisol ampoule (Merck, Darmstadt, Germany) 

with 0.2% v/v HNO3. Aqueous calibration solutions were prepared by further 
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convenient dilutions of this solution also with 0.2% v/v HNO3. Organic calibration 

solutions were prepared by adequate dilution of a 100 mg Kg-1 Mn sulfonate stock 

solution in oil (Spex 21 Oil standard –multi element solution, Metuchen, NJ, USA) 

with n-hexane (Vetec, Rio de Janeiro, Brazil). Propan-1-ol (Vetec, Rio de Janeiro, 

Brazil) was used for preparing the microemulsions while Pd(NO3)2 (10000 mg L-1 Pd, 

Merck, Darmstadt, Germany), IrCl3 (5000 mg L-1 Ir in 10% HNO3 v/v, Fluka, Buchs, 

Switzerland) and Mg(NO3)2 (2000 mg L-1 Mg, Merck, Darmstadt, Germany) were 

used for preparing the modifiers. Carbon tetrachloride (Vetec, Rio de Janeiro, Brazil), 

bromine (Vetec, Rio de Janeiro, Brazil) and methyl isobutyl ketone - MIBK (Merck, 

Darmstadt, Germany) were used in the comparative procedure. 

All the samples and solutions were handled in chapel and using gloves and 

masks with appropriate filter. 

All plastic and glassware were washed with tap water, immersed in Extran 

(48h), rinsed with tap and deionized water, and immersed in 20% v/v HNO3 for, at 

least, 24h. Before use, these materials were thoroughly rinsed with ultrapure water 

and oven dried at 40 oC, avoiding any contact with metallic surfaces and dust 

contamination. Contamination was always checked up by a strict blank control. 

Commercial gasoline and diesel samples were collected in gas stations of the Vitória 

city (Brazil) in polyethylene bottles, and immediately brought to the laboratory. In the 

stability investigations (Fig 1), the experiments began as soon as the samples arrived 

in the laboratory. In the comparative analysis for accuracy assessment, the samples 

were analyzed in parallel by the proposed procedure and by the comparative 

procedure (ASTM D 3831-90) [105]. Similar cares were taken with the naphtha 

samples, which were supplied by local industries.

2.2. Procedures 

2.2.1. Proposed procedure

The samples (diesel, gasoline and naphtha) were immediately stabilized after 

collection. The stabilization was achieved by mixing the sample with propan-1-ol and 

HNO3 solutions at 5.9:4.0:0.1, 6.7:3.2:0.1, 6.6:3.3:0.1 volume ratios for diesel, 

gasoline and naphtha, respectively, and shaking manually. The HNO3 concentrations 
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were 45, 40 and 75% v/v for the three studied kind of samples, respectively. Twenty 

microliters of the stabilized three components sample were then injected into the 

graphite atomizer. Calibration was performed with aqueous (0.2% v/v HNO3)

calibration solutions. 

2.2.2. Comparative procedure- ASTM D 3831-90 [105] -modified

To 1.0mL of the sample, 100 L of 50% v/v bromine solution (in CCl4) were 

added, and mixed. This solution was diluted with 2.0 mL of MIBK and 20 L were then 

injected in the graphite atomizer. Calibration was performed with organic calibration 

solutions submitted to the same treatment. The modifications in relation to the ASTM 

procedures were the use of GF AAS instead of F AAS and the dilution ratio (1+2 

instead of 1+9 of the original procedure). These modifications were necessary for 

limit of detection amelioration. 

3. Results and discussion 

3.1. Mn stabilization in the samples 

The stability of Mn in diesel and gasoline samples in natura was investigated. 

For naphtha, the sample was spiked with both inorganic and organic Mn standards, 

since original levels could not be detected. The samples were transferred to 

autosampler cups of different materials (polyethylene, teflon and glass) and 

periodically analyzed, using no modifier. Although it is still not the optimized 

temperature program, it served for the present purpose, since only relative results 

are necessary. In order to avoid evaporation, the autosampler cups were closed 

tightly between each measurement. Manganese signal drop over time was observed 

in all cases (Fig 1a). In general, the drop is larger for Mn in naphtha, followed by 

diesel and gasoline. These drops were attributed to the adsorption of analyte traces 

on the containers’ wall. The same test was performed with the samples stabilized by 

the formation of three component solutions, prepared by mixing appropriate volumes 

of the sample, propan-1-ol and HNO3 aqueous solution, forming a microemulsion: No 
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Mn signal drop was observed over several days in any situation, proving the long-

term stabilization of the three types of samples (Fig 1b). The volume proportions of 

the microemulsions are as described in section 2.2.1, and their respective 

optimization is shown in section 3.3. 

3.2. Matrix modifiers 

The necessity and performance of conventional (Pd, Mg or Pd/Mg) and 

permanent (Ir) modifiers were evaluated by pyrolysis temperature curves, using 

samples stabilized as microemulsion. Non-spiked gasoline and diesel samples were 

used. The naphtha sample was spiked (2 µg L-1) with organic Mn before stabilization, 

since its original Mn content was too low for the present study. An aqueous analytical 

solution (3 µg L-1) was also investigated. For gasoline, naphtha and the aqueous 

solution the conventional modifier solution volume was 10µL. Their concentrations 

were 1000, 1000 and 500+500 mg L-1 for the Pd, Mg and Pd+Mg modifiers solutions, 

respectively. Since the modifier solution is aqueous and the sample is stabilized as 

microemulsion, if both are mixed, the microemulsion breaks, and interaction fails. 

Thus, the modifier solutions were dried before the sample addition onto the platform 

aiming at permitting a better interaction between the modifier and the sample. In the 

investigation of the permanent modifier, a total of 600µg of Ir was deposited onto the 

graphite platform using the coating procedure described by Grinberg et al [27]. For 

aqueous solution using the studied conventional modifiers, higher pyrolysis 

temperatures can be used in comparison to the solution without a modifier; however, 

the modifiers resulted in a significant loss of sensitivity, which might be due to an 

over-stabilization effect. The Ir permanent modifier has not improved the pyrolysis 

temperatures as well as resulted in the worst sensitivity. In general, the same trend 

was observed for diesel, gasoline and naphtha samples stabilized as microemulsion. 

Since only low background attenuation was observed at the maximum allowed 

pyrolysis temperature without modifier, and no evident advantage was foreseen by 

their use by the present study, further experiments were carried out without modifier.
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3.3. Multivariate optimization of the microemulsion composition and 

temperature program

The optimization of the microemulsion composition (proportion) as well as the 

graphite furnace temperature program for each kind of sample was performed by 

multivariate optimization. The variables related to the microemulsion composition 

were the nitric acid final concentration and the sample/propan-1-ol volume ratio. The 

HNO3 solution volume and microemulsion total volume were kept constant at 100µL 

and 10mL, respectively. The pyrolysis and atomization temperatures were the 

variables related to the furnace temperature program. In principle, a complete 

factorial design (24) was performed, with 4 factors and 2 levels. The 16 (24)

experiments were made at a random order. The data were analyzed by using the 

Statistica 6.0 Statsoft software and the 2(k-p) standard design [28]. This design 

delivers a linear model, for which the F test showed lack of fit, and the low R2 values 

for all samples indicated that the linear model obtained was not adequate. Thus, the 

factors were optimized by a central composite design, performing 16 (24)

experiments related to the factorial design, 8 (2x4) star experiments ( = ±16¼) and 5 

central experiments. The different levels are shown in Table 1. The central values 

were taken from the previous experiments concerning the pyrolysis temperature 

curves without modifier. The Table 2 show the regression coefficients of the 

significant effects (p<0.05) for each kind of sample. The R2 adjusted values were 

0.824, 0.803 and 0.730 for Mn in diesel, gasoline and naphtha, respectively. The 

critical points are shown in Table 3. The optimized furnace temperature programs are 

shown in Table 4. The other steps of the temperature program were set in 

accordance to previous experience with similar samples [1,22,25]. Drying 

temperatures and rates were visually optimized, so to permit a complete evaporation 

of the solvent, without sample ejection, at a minimum time.  Pyrolysis ramp rate were 

optimized considering the elimination of small explosions that occur if a too fast ramp 

is used. Atomization ramp was optimized considering the signal shape, that is, a 

signal resolution within an integration time of 4s. Note that for the diesel samples a 

slower drying ramp was necessary as well as a higher drying temperature [22,25].
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3.4. Calibration 

Aqueous calibration curve (0.2% HNO3 v/v) was compared with calibration 

curves derived from spiking low Mn level samples (stabilized as microemulsion) with 

both inorganic and organic Mn. Inorganic Mn was dissolved in propan-1-ol and 

organic Mn in n-hexane.  The curves’ slopes and the correlation coefficients (R2)

obtained were: spiked inorganic Mn in 0.2% v/v HNO3 aqueous solution [y=0.033x 

(±0.001); R2=0.9987] and in microemulsion media of diesel [y=0.031x (±0.001); 

R2=0.9969], of gasoline [y=0.031x (±0.001); R2=0.9981] and of naphtha [y=0.032x 

(±0.001); R2=0.9977]; spiked organic Mn in microemulsion media of diesel [y=0.031x 

(±0.001); R2=0.9939], of gasoline [y=0.030x (±0.001); R2=0.9979] and of naphtha 

[y=0.033x (±0.001); R2=0.9986]. Thus, no significant difference (Student-t test, 

p<0.05) was observed for the curves’ slopes. That is, the same sensitivity was 

observed in all cases, supporting the adequacy of calibration with aqueous 

calibration solutions.

3.5. Analytical figures of merit 

The limits of detection (LOD) at the optimized conditions were 0.6, 0.5 and 0.3 

µg L-1 in the original diesel, gasoline and naphtha samples, respectively, calculated 

according the IUPAC: Three times the standard deviation for 10 measurements of 

the microemulsion blank, divided by the slope of the calibration curve, multiplied by 

the sample dilution factor. In this case, the microemulsion blanks were obtained 

using real samples with Mn levels below the LOD. The differences of LOD are due to 

different accuracies for each kind of matrix. The Mn characteristic concentration was 

0.17 µg L-1 for an injection volume of 20 L. The total determination cycle lasted 3 

min for gasoline and naphtha and 4 min for diesel, equivalent to sample throughputs 

of 10 h-1 for duplicate determinations in gasoline and naphtha and 7 h-1 for duplicate 

determinations in diesel.   
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3.6. Accuracy 

Since there is no adequate certified reference material for the present 

investigation, accuracy was first assessed by recovery tests. Samples (stabilized as 

microemulsions) were spiked with both inorganic Mn (3 µg L-1, n = 4) as well as with 

organic Mn (~3 µg L-1, n = 4). In the tests with inorganic Mn, the recoveries were 98 ± 

4, 98 ± 1 and 98 ± 4 %, for diesel, gasoline and naphtha samples, respectively. In 

relation to the organic Mn spiked samples these figures were 107 ± 3, 96 ± 1 and 105 

± 5 %. Accuracy was further assured by the Mn determination in diesel, gasoline and 

naphtha samples using the proposed and a comparative procedure (ASTM D 3831-

90) [105], modified as described is section 2.2.2.. It was used an ASTM method, 

even modified, since it is a known and well established method, though the LOD 

limitation. The use of another method with a lower LOD would imply in the validation 

of this method, and would fall in a recurrent problem, out of the scope of the present 

work. The gasoline and diesel samples were collected in gas stations of the Vitória 

city (Brazil) and the naphtha samples were supplied by local industries. The results 

are shown in Table 5, where no significant difference between the results arisen from 

both procedures is observed (ANOVA, univariate). It is worth mentioning that 

Brazilian gasoline does not contain manganese as MMT, using ethanol (20-24% v/v) 

as antiknock agent. 

4. Conclusions 

Sample stabilization showed to be mandatory for the determination of Mn at the 

low µg L-1 level in the studied samples. This is of concern not only during analysis but 

specially for defining sampling and storage strategies, no matter the analytical 

method employed. Otherwise, sample representativeness will be lost and the 

analysis turns senseless. Excellent sample stabilization was obtained by simply 

mixing appropriate volumes of the samples, propan-1-ol and nitric acid aqueous 

solution, resulting in one-phase, transparent and long term stable media. This is in 

contrast to other emulsifying strategies that need mechanical homogenization before 

each measurement, limiting the use of the autosampler. Also, no sonication 
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assistance is necessary, turning the procedure adequate for field use. Since no other 

sample pre-treatment is necessary and the dilution factor is less then 2, practically 

the full detection capability of the GF AAS could be exploited. The use of matrix 

modification (Pd, Mg, Pd/Mg and Ir) was unnecessary and background attenuation 

was always within the range of the background correction system. After multivariate 

optimization Mn exhibited the same sensitivity in all investigated media (including 

aqueous). In consequence, calibration with aqueous calibration solutions was 

possible. Thus, the main advantages of the proposed procedure are: the lower 

dilution factor, resulting in better LOD; the microemulsion is formed easily and 

stabilizes the sample. Besides, the use of organic standards for calibration is not 

necessary: The calibration can be performed with aqueous calibration solutions, 

using less expensive and more available aqueous standard solutions. Furthermore, 

the use aggressive reagents and organic solvents are avoided. The use of multiple 

injections [29,30] or devices such as the filter furnace [20] may improve the limit of 

detection even further. 
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Fig 1: Stability of Mn in the samples (a) in natura or (b) stabilized as 

microemulsion, stored in: polyethylene cups: ( ) diesel, ( ) gasoline; ( ) naphtha 

spiked with inorganic Mn and (+) naphtha spiked with organic Mn; teflon cups: ( )

diesel, ( ) gasoline; (x) naphtha spiked with inorganic Mn and (-) naphtha spiked 

with organic Mn; glass cups: ( ) diesel; ( ) gasoline and ( ) naphtha spiked with 

inorganic Mn and ( ) naphtha spiked with organic Mn. 
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Tables

Table 1: Studied variables and their respective levels for the central composite 

design.

Levels 

Diesel Gasoline Naphtha Variable 

-2 -1 0 +1 +2 -2 -1 0 +1 +2 -2 -1 0 +1 +2 

Pyrolysis temperature 

(ºC) 
500 700 900 1100 1300 800 900 1000 1100 1200 800 900 1000 1100 1200

Atomization 

temperature (ºC) 
2225 2300 2375 2450 2525 2225 2300 2375 2450 2525 2225 2300 2375 2450 2525

HNO3  conc (% v/v) in 

the microemulsion 
0.15 0.30 0.45 0.60 0.75 0.15 0.30 0.45 0.60 0.75 0.15 0.30 0.45 0.60 0.75

Sample/ propan-1-ol 

volume ratio 
0.30 0.70 1.11 1.51 1.91 0.72 1.06 1.41 1.75 2.10 0.72 1.06 1.41 1.75 2.10

Table 2: Regression coefficients of the studied factors derived from the central 

composite design.

Regression coefficients(1)

Sample 
Interc. Tp2 Ta2 HNO3

2 (s/p)2 Tp Ta HNO3 s/p Tp.Ta Tp.HNO3 Tp.s/p Ta.HNO3

Diesel 14.645 -0.167 -0.489 -0.332 -0.358 0.287 0.904 ns 0.410 ns ns ns ns 

Gasoline 3.854 -0.059 -0.084 -0.041 ns -0.061 -0.130 ns -0.243 0.063 ns -0.051 0.049 

Naphtha 15.578 ns ns ns 0.099 Ns -0.425 -0.212 -0.317 ns ns ns 0.166 

(1)
 Interc., Tp, Ta, HNO3, s/p and ns refer to intercept, pyrolysis temperature, atomization temperature, HNO3 solution 

concentration, sample/propan-1-ol volume ratios, and “non significant”, respectively. 
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Table 3: Critical (optimum) points for the studied variables after the central 

composite design optimization. 

Critical values 
Variable  

Diesel Gasoline Naphtha 

Pyrolysis temperature (ºC) 1100 800 950 

Atomization temperature (ºC) 2450 2300 2430 

HNO3 conc. in the microemulsion (% v/v) 0.45 0.40 0.75 

Sample / propan-1-ol volume ratio 1.47 2.10 2.00 

Table 4: Optimized temperature programs for the determination of Mn in diesel, 

gasoline and naphtha samples stabilized as microemulsion. 

 Diesel Gasoline Naphtha 

Step
Temp 

(ºC) 

Rate 

(ºC/s) 

Hold 

(s)

Temp 

(ºC) 

Rate 

(ºC/s)

Hold 

(s)

Temp 

(ºC) 

Rate 

(ºC/s) 

Hold 

(s) 

Drying 100 5 5 100 5 5 100 5 5 

Drying 180 2 10 200 3 10 200 3 10 

Drying 250 1 5 - - - - - - 

Pyrolysis 1100 100 20 800 100 20 950 100 20 

AZ(1) 1100 0 5 800 0 5 950 0 5 

Atomize 2450 2000 3 2300 2000 3 2430 2000 3 

Cleanout 2600 500 2 2550 500 2 2550 500 2 
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Table 5: Determination of Mn (n=3, g L-1) in gasoline (G), diesel (D), and 

naphtha(1) (N) samples by the proposed and comparative procedures. 

Proposed procedure ASTM D 3831-90 
Sample 

Mn sd (2) Mn sd (2)

G1 1.3 0.1 1.5 0.3 

G2 1.2 0.2 0.8 0.4 

G3 1.6 0.4 2.4 0.5 

G4 2.9 0.4 2.1 0.5 

G5 1.1 0.2 1.7 0.4 

G6 0.9 0.3 1.6 0.5 

D1 1.5 0.2 1.4 0.2 

D2 0.6 0.2 0.4 0.3 

D3 1.4 0.3 0.9 0.4 

D4 1.2 0.2 1.7 0.2 

N1 + 1.0 1.2 0.2 1.5 0.3 

N1 + 2.0 2.1 0.1 2.2 0.3 

N1 + 3.0 3.1 0.2 2.4 0.3 

N2 + 1.5 1.6 0.1 1.4 0.2 

(1)
 Mn in naphta samples was below the LOD; the samples were then spiked with organic Mn, attaining 

the concentration values (in µg L
-1
) displayed in the respective cell.  

(2)
 sd = standard deviation. 
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