

Freddy Nelson Guevara Peralta

Comparação de Métodos de Projeto para Muros de Solo Reforçado com Geossintéticos

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do titulo de Mestre em Engenharia Civil.

Orientadores: Alberto de Sampaio Ferraz Jardim Sayão Leonardo de Bona Becker

Rio de Janeiro Novembro de 2007

Freddy Nelson Guevara Peralta

Comparação de Métodos de Projeto para Muros de Solo Reforçado com Geossintéticos

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Alberto de Sampaio Ferraz Jardim Sayão Orientador PUC-Rio

> > Leonardo de Bona Becker Co-Orientador UFRJ

Sergio Augusto Barreto da Fontoura PUC-Rio

Anna Laura Lopes da Silva Nunes COPPE-UFRJ

> Mauricio Ehrlich COPPE-UFRJ

José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 14 de novembro de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Freddy Nelson Guevara Peralta

Graduou-se em Engenharia Civil em 2001 pela Universidad Nacional de Ingeniería (UNI-Peru). Trabalhou na área de projetos, construção e supervisão de obras rodoviárias, Ingressou em 2005 no curso de mestrado em Engenharia Civil da Pontificia Universidade Católica do Rio de Janeiro, na área de Geotecnia, desenvolvendo dissertação de mestrado na linha de pesquisa experimental.

Ficha Catalográfica

Guevara, Freddy Nelson Peralta Comparação de métodos de Projeto para Muros de Solos Reforçado com Geossintéticos / Freddy Nelson Guevara Peralta; Orientadores: Alberto de Sampaio Ferraz Jardim Sayão e Leonardo de Bona Becker - Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2007. v., 162 f.: il. ; 29,7 cm. Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil. Incluí referências bibliográficas. 1. Engenharia civil – Teses. 2. Muros de solo Reforçado. 3. Geossintéticos. 4. Forças de tração. 5. Monitoramento. 6 Análise numérica. 7 Método de elementos finitos, I. Alberto de Sampaio Ferraz Jardim Sayão. II. Leonardo de Bona Becker. III. Pontifícia

Universidade Católica do Rio de Janeiro. Departamento de

Engenharia Civil. IV. Título.

CDD: 624

Agradecimentos

É difícil poder expressar todo meu agradecimento somente com palavras às pessoas que me ajudaram e apoiaram no desenvolvimento desta pesquisa.

Agradeço à minha esposa Milagros, pelo carinho e compreensão com minhas ausências junto a nosso filho Luis Enrique durante meus estudos de mestrado.

Agradeço aos meus queridos pais, Silvia e Urbano, pelo apoio, compreensão e carinho durante todo este tempo.

Aos meus irmãos, Armando, Ivan, Ruben, Pilar e Arturo, pelo apoio e a confiança.

À memória de meu irmão Luis que sempre está em minha mente e coração.

Aos meus sogros Victor e Victoria, pelo apoio e compreensão durante este tempo.

Ao Professor Alberto Sayão, pela orientação e amizade durante esta pesquisa.

Ao Professor Leonardo Becker, pela grande ajuda e incentivo no desenvolvimento desta pesquisa.

Aos professores da PUC-Rio, obrigado pela aprendizagem.

Aos professores que participaram da comissão examinadora.

Aos meus amigos pelo apoio no desenvolvimento desta pesquisa.

À secretária de pós-graduação Rita de Cássia pela grande ajuda e amizade nestes anos de mestrado.

Ao professor Zenon Aguilar (UNI – Peru) pelo apoio e incentivo em estudar o mestrado.

Meus sinceros agradecimentos a todas aquelas pessoas não citadas, mas que de alguma forma contribuíram para o sucesso deste trabalho.

À CAPES, ao CNPq e a PUC-Rio, pelo apoio financeiro, indispensável para a realização deste trabalho.

Resumo

Freddy Nelson Guevara Peralta. **Comparação de Métodos de Projeto para Muros de Solo Reforçado com Geossintéticos.** Rio de Janeiro, 2007. 162p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

Atualmente, muitos projetistas utilizam diferentes métodos para o projeto de muros de solo reforçado com geossintéticos. Uma avaliação desses diversos métodos pode ser realizada pela comparação com os resultados obtidos do monitoramento de casos reais e suas respectivas retro-análises, sendo este o objetivo desse trabalho. Na presente pesquisa, três casos reais bem documentados de muros de solo reforçado (MSR) com geossintéticos, construídos no Brasil, foram selecionados para análise. O monitoramento destas estruturas registra a força de tração em cada camada de reforço, ao final da construção. A magnitude de força máxima de tração, medida nos reforços foi comparada com os resultados previstos pelos diferentes métodos de projeto. Além disso, foram realizadas simulações numéricas para avaliar o desenvolvimento de forças de tração nos reforços e comparar os resultados medidos com os previstos pelas simulações. Estas comparações indicam que, em dois dos três casos avaliados, os métodos baseados em equilíbrio limite subestimaram os valores de força de tração, principalmente nas camadas superiores. Isto vale para MSR compactados com equipamentos de alta energia. O método analítico sob condições de trabalho, proposto por Ehrlich e Mitchell (1994), prevê resultados superiores aos registrados em campo, ou seja, a favor de segurança, para os três casos avaliados. A simulação numérica consegue obter ordens de grandeza das forças de tração máxima próxima aos resultados de campo. A formulação de Ehrlich e Mitchell (1994) para o cálculo da tensão vertical induzida durante a compactação, em conjunto com a modelagem por MEF, aponta resultados coerentes para os três muros.

Palavras-chave

Muros de solo reforçado, Geossintéticos, Forças de tração, Análise numérica de muro reforçado.

Abstract

Freddy Nelson Guevara Peralta. **Comparison of design methods for geosynthetics reinforced soil wall.** Rio de Janeiro, 2007. 162p. M.Sc. Dissertation - Civil Engineering Departament, Pontifical Catholic University of Rio de Janeiro.

Currently, several different methods for designing geosynthetic reinforced soil walls are available in the literature. An evaluation of these methods can be carried on by a direct comparison with the observed response of instrumented walls in the field. This comparison is the main objective of this research work. Three case histories of geosynthetic reinforced soil wall, constructed in Brazil, were selected for this research. The monitored response of these structures registered the tension in each reinforcement layer during construction. The maximum values of reinforcement tension have been compared with the computed values from different design methods. Moreover, predicted tension values from numerical simulations were also compared to the measured values in each reinforcement layer in the instrumented field walls. These comparisons indicate that, in two of the three evaluated cases, the design methods based on limit equilibrium underestimated the maximum tension. This was noted to be particularly significant in the upper layers of reinforced walls compacted under high energy levels. The analytical method based on work conditions proposed by Ehrlich and Mitchell (1994) resulted in tension values higher than those registered in the field instrumentation, for the three selected cases. Numerical simulations predicted maximum tension in reinforcements with similar values than those from the field instrumentation. The Ehrlich and Mitchell (1994) formulation for predicting the vertical tension induced by compaction resulted coherent with computed values from numerical finite element method for the three walls evaluated herein.

Keywords

Reinforced soil wall, Geosynthetics, Reinforcement tension, Numerical analysis of reinforced wall.

Sumário

1 Introdução	23
1.1. Considerações preliminares	23
1.2. Objetivos da pesquisa	24
1.3. Metodologia	24
1.4. Estrutura da tese	25
2 Revisão bibliográfica	26
2.1. Introdução	26
2.2. Geossintéticos e suas propriedades relevantes	27
2.2.1. Geossintéticos aplicados ao reforço de solos	30
2.2.1.1. Geotêxteis	30
2.2.1.2. Geogrelhas	32
2.3. Estruturas de solo reforçado	34
2.3.1. Sistemas construtivos disponíveis	34
2.3.2. Estabilidade de muros reforçados	36
2.4. Métodos de projeto para análise de estabilidade interna de MSR	39
2.4.1. Métodos baseados nas condições de ruptura	40
2.4.1.1. Método de equilíbrio limite - <i>Tieback</i>	41
2.4.1.2. Métodos de Slope Stability	45
2.4.2. Métodos baseados nas condições de trabalho	51
2.4.2.1. Método de K-Stiffness	52
2.4.2.2. Método de Ehrlich e Mitchell (1994)	54
2.4.3. Análise numérica em solo reforçado	61
2.5. Força de tração nos reforços	64
2.5.1. Medições de forças de tração no reforço	65
2.5.2. Influência da característica do solo	66
2.5.3. Influência da rigidez do reforço	68
2.5.4. Influência da compactação do solo	69
2.5.5. Influência da rigidez da face	72

3 Análises de casos reais de muros de solo reforçados com	
geossintéticos	75
3.1. Introdução	75
3.2. Comportamento de geogrelhas em muros de solo reforçado	77
3.2.1. Vista geral	77
3.2.2. Características dos materiais	78
3.2.3. Plano de instrumentação	79
3.2.4. Resultados da instrumentação do muro	83
3.2.4.1. Recalques da base das seções instrumentadas	83
3.2.4.2. Resultados dos deslocamentos dos reforços	83
3.3. Avaliação experimental de protótipos de solo reforçado com	
geotêxtil	84
3.3.1. Descrição geral	84
3.3.2. Características dos materiais	85
3.3.3. Instrumentação	85
3.3.4. Resultados da instrumentação	88
3.3.4.1. Deslocamento e deformações no reforço	88
3.3.4.2. Deslocamentos da face do muro	90
3.4. Muro de solo reforçado construído com solos finos tropicais	91
3.4.1. Vista geral	91
3.4.2. Características dos materiais	92
3.4.3. Plano de instrumentação	93
3.4.4. Resultados da instrumentação do muro	94
3.4.4.1. Forças de tração no reforço	94
3.5. Conclusões	95
4 Comparação dos métodos de projeto com resultados de campo	97
4.1. Introdução	97
4.2. Métodos de projeto adotados	97
4.2.1. Dados de entrada	98
4.3. Descrição dos casos reais avaliados	98
4.4. Condições de comparação	100
4.5. Aplicação dos métodos ao Muro 1	101

PUC-Rio - Certificação Digital Nº 0521511/CA

4.5.1. Dados de entrada	101
4.5.2. Métodos de equilíbrio limite	101
4.5.3. Métodos baseados nas condições de trabalho	106
4.6. Aplicação dos métodos ao Muro 2	108
4.6.1. Dados de entrada	108
4.6.2. Métodos de equilíbrio limite	109
4.6.3. Métodos baseados nas condições de trabalho	113
4.7. Aplicação dos métodos ao Muro 3	115
4.7.1. Dados de entrada	115
4.7.2. Métodos de equilíbrio limite	116
4.7.3. Métodos baseados nas condições de trabalho	120
4.8. Conclusões	122
5 Simulação numérica dos muros reforçados	124
5.1. Introdução	124
5.2. Características gerais da simulação	124
5.2.1. Programa utilizado	124
5.2.2. Tipos de elementos finitos utilizados	125
5.2.3. Modelos e propriedades dos materiais	125
5.2.3.1. Modelo Elástico	125
5.2.3.2. Modelo Mohr – Coulomb	126
5.2.3.3. Modelo Hardening Soil	126
5.2.4. Elementos de reforço	130
5.3. Técnicas usadas para a simulação numérica	130
5.3.1. Geração do modelo	130
5.3.2. Condições de contorno	131
5.3.3. Efeitos de compactação	131
5.3.4. Sistema de face	131
5.3.5. Simulação da construção do muro	132
5.4. Resultados da simulação numérica	133
5.4.1. Dados de entrada	133
5.4.2. Resultados do Muro 1	135
5.4.3. Resultados do Muro 2	138

5.4.4. Resultados do Muro 3	140
5.5. Conclusões	142
6 Comparação dos métodos analíticos com as simulações numéricas	144
6.1. Introdução	144
6.2. Métodos de projeto	144
6.3. Aplicação dos métodos aos casos reais	145
6.3.1. Muro 1	145
6.3.2. Muro 2	146
6.3.3. Muro 3	148
6.4. Conclusões	150
7 Considerações finais	152
7.1. Conclusões	152
7.2. Sugestões	154
Referências bibliográficas	155

Lista de figuras

Figura 2.1 – Geossintéticos comumente usados em obras geotécnicas: a)	
geotêxteis, b) geogrelhas, c) geocompostos e d) geomembranas.	28
Figura 2.2 – Utilização de geossintéticos em obras geotécnicas.	31
Figura 2.3 – Geotêxteis tecidos (a e b) e não tecidos (c e d).	33
Figura 2.4 – Tipos de geogrelhas. (a) extrudada bidirecional, (b) extrudada	
unidirecional, (c) soldada, (d) tecida, (e) soldada a laser.	33
Figura 2.5 – Classificação de muros e taludes reforçados de acordo à Norma	
Europea PREN 14475.	35
Figura 2.8 – Modos de ruptura na análise de estabilidade externa (Bonaparte	
et al.,1987).	38
Figura 2.9 - Mecanismo de interação: a) atrito; b) resistência passiva	
(Jewell, 1996).	38
Figura 2.10 – Modos de ruptura interna idealizados por Jones (1996).	38
Figura 2.11 - Definição da zona ative e resistente e mecanismo de	
transferência de tensões (Lee, 2000).	39
Figura 2.12 – Procedimento de análise <i>Tieback</i> (Bonaparte et al. 1987).	42
Figura 2.13 - Distribuição da tensão lateral de solo considerada pelos	
diferentes métodos de projeto Tieback (Claybourn e Wu,1993).	44
Figura 2.14 – Análise de estabilidade considerando que a tensão no reforço	
não altera a resistência do solo (Bonaparte et al., 1987).	46
Figura 2.15 – Análise de estabilidade considerando que a tensão no reforço	
incrementa a resistência do solo (Bonaparte et al., 1987).	46
Figura 2.16 – Ábaco para a determinação do coeficiente de força do método	
de Schmertmann et al. (1987).	49
Figura 2.17 – Reorientação das forças de tração no reforço (Oliveira, 2000).	49
Figura 2.18 – Forças atuantes na cunha de ruptura e o polígono de forças	
(Leshchinsky e Perry, 1989).	50
Figura 2.19 – Determinação da extensão da superfície de ruptura	
(Leshchinsky e Perry, 1989).	50
Figura 2.20 – Ábaco para o cálculo do coeficiente de pressão de terra K_{req} ,	

(Jewell, 1991).	51
Figura 2.21 – Cálculo de D _{tmax} com a profundidade normalizada para MSR	
com geossintéticos (Allen e Bathurst., 2001a).	54
Figura 2.22 – Mecanismo de equilíbrio interno (Ehrlich e Mitchell., 1994).	55
Figura 2.23 – Trajetória de tensões do modelo (Ehrlich e Mitchell,1994).	56
Figura 2.24 - Ábacos para taludes de 90° e coesão nula (Dantas e Ehrlich,	
2000).	60
Figura 2.25 - Lugar geométrico dos pontos de tração máxima (Dantas e	
Ehrlich, 2000).	61
Figura 2.26 - Propriedades dos materiais envolvidas no desenvolvimento	
dos modelos analíticos (adaptado de Lee, 2000).	62
Figura 2.27 – Efeito da rigidez do reforço (Adib, 1988).	65
Figura 2.29 – Ilustração esquemática sobre o estado de tensões e	
deformações em um elemento hipotético de solo reforçado (Dantas, 2004).	69
Figura 2.30 - Acréscimo de tensão no solo devido à operação de	
compactação (Dantas, 2004).	70
Figura 2.31 - Influência da compactação do solo na tração atuante nos	
reforços, para estruturas com face rígida e diferentes índices de rigidez	
relativa (Loiola, 2001).	71
Figura 2.32 – Evolução de T _{max} ao longo do reforço (Saramago, 2002).	72
Figura 2.33 – Diagrama ilustrativo para o caso em que	
$T_{TR} > T_A > (T_R + T_{W,\max})$ (Tatsuoka, 1993).	73
Figura 3.2 – Detalhe da seção transversal típica da MSR com geogrelha	
(Becker, 2006).	78
Figura 3.3 – Vista em planta das duas seções instrumentadas (Becker, 2006).	79
Figura 3.4 – Posicionamento dos <i>tell-tales</i> nas geogrelhas, com distâncias	
referênciadas à face do muro (Becker, 2006).	80
Figura 3.5 – Disposição dos <i>tell-tales</i> na geogrelha e vista da estrutura de	
suporte do equipamento de leitura na face do muro reforçado (Becker, 2006).	81
Figura 3.6 – Detalhes da caixa sueca (Becker, 2006).	81
Figura 3.7 – Marco topográfico instalado na face do muro, entre duas	
camadas de sacaria (Becker 2006).	82
Figura 3.8 – Seção transversal instrumentada com tell-tales, marcos	

superficiais e caixas suecas (Becker 2006).	82
Figura 3.9 - Recalques na base do muro de solo reforçado para a seção	
E20+15 (Becker, 2006).	83
Figura 3.10 – Instrumentação do protótipo (Benjamin, 2006).	86
Figura 3.11 – Esquema de uma manta instrumentada com tell tales	
(Benjamin, 2006).	87
Figura 3.12 – Sistema para acompanhar o deslocamento da face (Benjamin,	
2006).	87
Figura 3.13 - Medição dos deslocamentos da face utilizando equipamentos	
de topografia (Benjamin, 2006).	87
Figura 3.14 - Curvas de deformação para o protótipo 8 ao final da	
construção (Benjamin 2006).	89
Figura 3.15 – Superfícies de força de tração máxima dos reforços para várias	
idades (Benjamin, 2006).	90
Figura 3.16 - Deslocamentos da face do protótipo 8 medidos diretamente	
pelos tell- tales (Benjamin, 2006).	91
Figura 3.17 - Posicionamento dos instrumentos vista em corte (Riccio e	
Ehrlich, 2007).	93
Figura 3.18 – Posicionamento dos instrumentos vista em planta da camada	
numero 3 (Riccio e Ehrlich, 2007).	94
Figura 3.19 – Distribuição de carga ao longo dos reforços instrumentados, ao	
final da construção (Riccio e Ehrlich, 2007).	95
Figura 4.1 – Valores de força de tração máxima medidos (campo) e previstos	
(equilíbrio limite – <i>tieback</i>) – Muro 1.	103
Figura 4.2 – Muro 1 – Valores de máxima força de tração medidos (campo)	
e previstos (equilíbrio limite – <i>slope stability</i>) – Muro 1.	105
Figura 4.3 – Valores de força de tração máxima medidos (campo) e previstos	
(nas condições de trabalho) – Muro 1.	107
Figura 4.4 – Valores de força de tração máxima medidos (campo) e previstos	
(equilíbrio limite – <i>tieback</i>) – Muro 2.	110
Figura 4.5 – Valores de máxima força de tração medidos (campo) e previstos	
(equilíbrio limite – <i>slope stability</i>) – Muro 2.	112
Figura 4.6 – Análises de estabilidade de talude de muro 2 sob condições	

estáticas sem reforço. (Slide 5.0).	113
Figura 4.7 – Valores de força de tração máxima medidos (campo) e previstos	
(nas condições de trabalho) – Muro 2.	115
Figura 4.8 – Valores de força de tração máxima medidos (campo) e previstos	
(equilíbrio limite – <i>tieback</i>) – Muro 3.	118
Figura 4.9 – Valores de máxima força de tração medidos (campo) e previstos	
(equilíbrio limite – <i>slope stability</i>) – Muro 3.	120
Figura 4.10 – Muro 3 – Valores de força de tração máxima medidos (campo)	
e previstos (nas condições de trabalho).	122
Figura 5.1 – Relação hiperbólica tensão – deformação para ensaios triaxiais	
CU (Brinkgreve, 2004).	127
Figura 5.2 – Determinação do valor de E_{oed}^{ref} em ensaios de adensamento	
(Brinkgreve, 2004).	128
Figura 5.3 – Simulação por etapas do processo construtivo dos muros.	132
Figura 5.4 – Detalhe da geometria do muro 1.	134
Figura 5.5 – Detalhe da geometria do muro 2	135
Figura 5.6 – Detalhes da geometria do muro 3.	135
Figura 5.7 – Detalhe da deformada ao final da construção de muro 1.	136
Figura 5.8 – Comparação entre as forças de tração previstas e medidas para o	
muro 1.	137
Figura 5.9 – Detalhe da deformada de muro 2 ao final da construção	138
Figura 5.10 – Comparação entre as forças de tração previstas e medidas para	
o muro 2.	139
Figura 5.11 – Detalhe da deformada do muro 3 ao final da construção.	140
Figura 5.12 – Comparação entre as forças de tração previstas e medidas para	
o muro 3.	141
Figura 6.1 – Valores de máxima força de tração medidos (campo) e previstos	
– Muro 1.	145
Figura 6.2 – Valores de máxima força de tração medidos (campo) e previstos	
– Muro 2.	147
Figura 6.3 - Comparação entre os resultados medidos em campo e os	
previstos – Muro 3.	149

Lista de tabelas

Tabela 2.1 – Vantagens e desvantagens dos principais polímeros.	27
Tabela 2.2 – Principais funções dos geossintéticos (Bueno, 2003).	29
Tabela 2.3 - Tipos de geossintéticos e suas principais funções (Bueno,	
2003).	30
Tabela 2.4 - Métodos de análise tieback para o projeto de MSR com	
geossintéticos.	42
Tabela 2.5 – Métodos de análise de equilíbrio limite - <i>slope stability</i> .	47
Tabela 2.6 - Características das análises numéricas citadas na literatura	
(Becker, 2006).	64
Tabela 2.7 – Especificações de materiais de aterro para MSR com	
geossintéticos (Elias et al., 2001).	67
Tabela 3.1 – Resumo das características dos muros instrumentados.	76
Tabela 3.2 – Propriedades médias de solo empregado (Becker, 2006).	78
Tabela 3.3 – Propriedades das geogrelhas (Becker, 2006).	79
Tabela 3.4 - Instrumentos empregados no monitoramento do muro de solo	
reforçado (Becker, 2006).	82
Tabela 3.5 – Forças de tração máxima medidas em campo para o muro 1.	84
Tabela 3.6 – Parâmetros de resistência ao cisalhamento (Benjamin, 2006).	85
Tabela 3.7 – Características dos geotêxteis (Benjamin, 2006).	85
Tabela 3.8 – Forcas de tração máxima medidas em campo para o muro 2.	90
Tabela 3.9 – Curvas granulométricas dos solos (Riccio e Ehrlich, 2007).	92
Tabela 3.10 - Resultados dos ensaios de caracterização (Riccio e Ehrlich,	
2007).	92
Tabela 3.11 – Resultados dos ensaios triaxiais (Riccio e Ehrlich, 2007).	92
Tabela 3.12 – Propriedades nominais das geogrelhas (HUESKER, 1999).	92
Tabela 3.13 – Forças de tração máxima medidas em campo para o muro 3.	95
Tabela 4.1 - Resumo dos métodos de projeto para o dimensionamento de	
MSR com geossintéticos adotados para análise.	98
Tabela 4.2 – Resumo dos MSR com geossintéticos.	99
Tabela 4.3 – Resumo dos dados de entrada para o muro 1.	101

Tabela 4.4 – Máximas forças de tração segundo os métodos de equilíbrio	
limite (<i>tieback</i>) – Muro 1.	102
Tabela 4.5 – Valores de $T_{previsto}/T_{medido}$ para as três camadas de reforço	
instrumentadas (<i>tieback</i>) – Muro 1.	102
Tabela 4.6 – Máximas forças de tração segundo os métodos de equilíbrio	
limite (<i>slope stability</i>) – Muro 1.	104
Tabela 4.7 – Valores de $T_{previsto}/T_{medido}$ para as três camadas de reforço	
instrumentadas (slope stability) – Muro 1.	105
Tabela 4.8 – Métodos baseados nas condições de trabalho Muro 1.	106
Tabela 4.9 – Valores de $T_{previsto}/T_{medido}$ para três camadas de reforço	
instrumentadas (nas condições de trabalho) – Muro 1.	107
Tabela 4.10 – Resumo dos dados de entrada para o muro 2.	108
Tabela 4.11 - Máxima força de tração segundo os métodos de equilíbrio	
limite (<i>tieback</i>) – Muro 2.	109
Tabela 4.12 – Valores de $T_{previsto}/T_{medido}$ para as camadas de reforço	
instrumentadas (tieback) – Muro 2.	109
Tabela 4.13 – Máximas forças de tração segundo os métodos de equilíbrio	
limite (<i>slope stability</i>) – Muro2.	111
Tabela 4.14 – Valores de $T_{previsto}/T_{medido}$ para quatro camadas de reforço	
instrumentadas (slope stability) – Muro 2.	112
Tabela 4.15 – Máximas forças de tração segundo os métodos baseados nas	
condições de trabalho – Muro2.	114
Tabela 4.16 – Valores de $T_{previsto}/T_{medido}$ para quatro camadas de reforço	
instrumentadas (nas condições de trabalho) – Muro 2.	114
Tabela 4.17 – Resumo dos dados de entrada para o muro 3.	116
Tabela 4.18 – Máximas forças de tração segundo os métodos de equilíbrio	
limite (<i>tieback</i>) – Muro 3.	117
Tabela 4.19 – Valores de $T_{previsto}/T_{medido}$ para quatro camadas de reforço	
instrumentadas (tieback) – Muro 3.	117
Tabela 4.20 - Máxima força de tração segundo os métodos de equilíbrio	
limite (<i>slope stability</i>) – Muro 3.	119

Tabela 4.21 – Valores de $T_{previsto}/T_{medido}$ em quatro camadas de reforço	
instrumentadas – Muro 3.	119
Tabela 4.22 – Máximas forças de tração segundo os métodos baseados nas	
condições de trabalho – Muro 3.	121
Tabela 4.23 – Valores de $T_{previsto}/T_{medido}$ em quatro camadas de reforço	
instrumentadas – Muro 3.	121
Tabela 5.1 – Parâmetros do modelo Hardening Soil.	129
Tabela 5.2 – Parâmetros de entrada para a simulação numérica do muro 1.	133
Tabela 5.3 – Parâmetros de entrada para a simulação numérica do muro 2.	133
Tabela 5.4 – Parâmetros de entrada para a simulação numérica do muro 3.	133
Tabela 5.5 – Parâmetros de entrada do reforço para os muros avaliados	134
Tabela 5.6 – Forças de tração máximas em diferentes camadas obtidas pelo	
MEF para o muro 1.	136
Tabela 5.7 – Cálculo de $T_{previsto}/T_{medido}$ em três camadas de reforço	
instrumentadas – Muro 1.	136
Tabela 5.8 – Forças de tração máximas em diferentes camadas obtidas pelo	
modelo numérico para o muro 2.	138
Tabela 5.9 – Cálculo de $T_{previsto}/T_{medido}$ em três camadas de reforço	
instrumentadas – Muro 2.	139
Tabela 5.10 – Forças de tração máxima em diferentes camadas obtidos pelo	
MEF para o muro 3.	140
Tabela 5.11 – Cálculo de $T_{previsto}/T_{medido}$ em três camadas de reforço	
instrumentadas – Muro 3.	141
Tabela 6.1 – Métodos de projeto a confrontar nesta pesquisa.	144
Tabela 6.2 – Cálculo de $T_{previsto}/T_{medido}$ para três camadas de reforço	
instrumentadas – Muro 1.	145
Tabela 6.3 – Cálculo de $T_{previsto}/T_{medido}$ para quatro camadas de reforço	
instrumentadas – Muro 2.	147
Tabela 6.4 – Cálculo de $T_{previsto}/T_{medido}$ para quatro camadas de reforço	
instrumentadas – Muro 3.	148

Lista de Símbolos

Romanos

- *a* Constante adimensional em função da rigidez fornecido pelo método de Allen et al. (2003)
- A_r Área de seção transversal do reforço
- c Coesão do solo
- c' Coesão efetiva do solo
- *d* Constante fornecido pelo método de Allen et al. (2003)
- $D_{t_{max}}$ Fator de distribuição para estimar T_{max} no método de Allen et al. (2003)
 - e Excentricidade
 - *E* Módulo de Young
 - E_r Módulo de elasticidade do reforço
- E_{oed} Rigidez tangente para deformações volumétricas
- E_{oed}^{ref} Rigidez tangente para uma tensão vertical de referência obtida em um ensaio odométrico
- E_{ur} Rigidez secante para trajetórias de descarregamento e recarregamento
- E_{ur}^{ref} Rigidez secante para trajetórias de descarregamento e recarregamento para uma tensão de confinamento de referência
- E_{50} Rigidez secante correspondente à metade da tensão desviadora de ruptura
- E_{50}^{ref} Rigidez secante correspondente à metade da tensão desviadora de ruptura para uma tensão de confinamento de referencia
- *H* Altura do muro
- *J* Módulo de deformabilidade de uma camada de reforço
- J_{ave} Módulo de deformabilidade médio de todas as camadas de reforço em toda a seção do muro
- *K* Coeficiente de empuxo no método de Schmertmann et al. (1987)

- K_a Coeficiente de empuxo ativo
- K_{aa} Coeficiente de empuxo ativo equivalente
- K_{abh} Componente horizontal da pressão ativa de terra
- K_{avh} Componente vertical da pressão ativa de terra
- K_{ar} Coeficiente de empuxo traz do muro
- K_c Coeficiente de empuxo de equilíbrio no carregamento
- K_{o} Coeficiente de empuxo no repouso
- K_o^{nc} Coeficiente de empuxo no repouso para solos normalmente consolidados
- K_{reg} Constante de empuxo fornecido pelo método de Jewell (1991)
- K_r Coeficiente do empuxo de equilíbrio no descarregamento
- K_{rE} Coeficiente de empuxo no método de Elias et al. (2001)
- $K_{\Delta 2}$ Coeficiente de decréscimo do empuxo lateral para o descarregamento sob condição K_{a}
- *L* Comprimento do rolo
- L_e Comprimento inserido na zona resistente
- L_r Comprimento inserido na zona ativa
- L_R Comprimento do reforço
- *m* Função de potência
- *M* Módulo de deformabilidade do compósito
- N_{γ} Fator de capacidade de carga
- *n* Módulo exponente de Duncan et al (1980|)
- P_a Pressão atmosférica
- *q* Sobrecarga
- $\frac{1}{q}$ Tensão desviadora

- *Q* Força vertical máxima de operação
- R_f Parâmetro do modelo hiperbólico de Duncan et al. (1980)
- *S* Altura de sobrecarga
- S_{global} Rigidez global dos reforços
- S_h Espaçamento horizontal
- S_i Índice de rigidez relativa solo reforço
- S_{local} Rigidez local do reforço
- S_{v} Espaçamento vertical
- t_i Força de tração solicitante no reforço j
- *T* Força horizontal total necessária à estabilização do talude reforçado.
- T_A Resistência ao arrancamento no trecho da zona ativa
- T_R Resistência ao arrancamento no trecho da zona resistente
- $T_{\rm max}$ Força de tração máxima
- T_{medido} Força de tração medida em campo
- $T_{previsto}$ Força de tração prevista pelo método de projeto
- $T_{projeto}$ Força de tração de projeto no reforço
- $T_{reforco}$ Força de tração no reforço
- T_{run} Força de tração máxima na ruptura
- T_{TR} Resistência à tração do reforço
- T_w Força de tração no reforço mobilizada pela conexão com a face
- *u* Poropressão
- *Y* Altura de elevação a partir da base do muro
- y_j Altura de elevação do reforço j

- *z* Profundidade abaixo do topo do muro
- z_e Profundidade do lugar geométrico dos pontos de tração máxima.

Gregos

- α Coeficiente de descarregamento de Duncan e Seed (1986)
- β Ângulo de talude no método de Jewell (1991)
- ε_a Deformação axial
- Φ_{local} Fator de rigidez local
- Φ_{fb} Fator de inclinação da face
- Φ_{fs} Fator de rigidez da face
- ϕ Ângulo de atrito do solo
- $\Delta \sigma_{v}$ Acréscimos de tensão vertical de pico induzida pela compactação
- $\Delta \sigma_h$ Acréscimos de tensão horizontal de pico induzida pela compactação
- $\Delta \sigma_{h,r}$ Acréscimos de tensão horizontal residual induzida pela compactação
 - γ Peso específico do solo
 - γ_{rz} Peso específico traz do muro
 - φ Inclinação da reta tangente à superfície de ruptura
 - κ_s Rigidez cortante
 - κ_n Rigidez normal
 - *k* Parâmetro adimensional do módulo de Young para carregamento
 - k_{ur} Parâmetro adimensional do módulo de Young para descarregamento e recarregamento
 - $_{V}$ Coeficiente de Poisson
 - V_o Coeficiente de Poisson durante o carregamento

- V_{un} Coeficiente de Poisson durante o descarregamento
- θ Inclinação da superfície de ruptura
- $\sigma_{\scriptscriptstyle ave}$ Tensão horizontal média do solo
- σ_h Tensão horizontal
- σ_v Tensão vertical
- $\sigma_{\rm ref}$ Tensão de referencia para a rigidez
- σ_z Tensão vertical no solo à profundidade z
- $\sigma_{zc,i}$ Máxima tensão vertical induzida pela compactação
- $\sigma_{\rm xp,i}$ Tensão horizontal induzida pela compactação
- $\sigma_{zc}^{'}$ Tensão horizontal de equilíbrio no carregamento
- σ'_{xr} Tensão horizontal de equilíbrio no descarregamento
- ω Inclinação do talude no método de Ehrlich e Mitchell (1994)
- Ψ Ângulo de dilatância
- ζ Ângulo de orientação do reforço sobre a superfície de ruptura