2 Modelagem 2D do veículo como corpo rígido

Na modelagem 2D do sistema sem suspensão consideram-se o chassi e as rodas do veículo como um único corpo rígido, tendo a sua inércia concentrada no seu centro de massa. Na ausência de deslizamento, as forças de atrito entre as rodas e o solo são calculadas pela razão entre o torque de entrada em cada roda (T_i) e o raio da roda (r). Outra consideração é que as rodas e o terreno são rígidos, ou seja, não se deformam.

2.1. Coordenadas Generalizadas

Para que a localização do veículo fique totalmente determinada no plano é necessário o conhecimento de três coordenadas independentes, as coordenadas generalizadas do sistema. Neste problema, as coordenadas generalizadas para o caso sem restrição serão: $x_c,y_c \in \alpha$.

onde

 x_c = coordenada x do centro de massa do sistema em relação a uma base inercial;

 y_c = coordenada y do centro de massa do sistema em relação a uma base inercial;

 α = ângulo de rotação do veículo em torno do eixo z (perpendicular ao plano).

2.2. Ângulos de Contato e Curva de Centros

Para o problema aqui analisado é fundamental o conhecimento da direção das forças de atrito (Fat's) entre as rodas e o solo. Pois, diferentemente de terrenos planos, em terrenos acidentados nem sempre a direção das Fat's é paralela ao chassi do veículo.

A direção de atuação da força de atrito, entre uma roda i e o solo, é a mesma da tangente à curva do perfil do terreno no ponto de contato entre a roda e o solo. Assim, o ângulo entre essa tangente e o eixo das abscissas (x) define a

direção da força de atrito entre a roda i e o solo, sendo esse ângulo denominado de ângulo de contato (γ i) entre a roda i do veículo e o solo. A Fig. 8 mostra as coordenadas generalizadas, os pontos e ângulos de contato do veículo.

Figura 8 - Coordenadas generalizadas (xc,yc, α), ângulos de contato (γ 1 e γ 2) e pontos de contato (P₁ e P₂).

Contudo, para calcular os ângulos de contato é necessário primeiramente conhecer as coordenadas dos pontos de contato (P_i). Para encontrar essas coordenadas pode-se proceder de duas maneiras:

- calcular a partir das coordenadas generalizadas (x_c,y_c,α) as coordenadas do centro da roda i, C_i = (x_{ci}, y_{ci}). Em seguida calcular o ponto de interseção entre uma circunferência de raio (r) centrada em C_i com a curva do perfil do terreno, que será o ponto de contato P_i.
- calcular para cada ponto de uma discretização do perfil do terreno (P_i) as coordenadas (x_{cc},y_{cc}) que o centro de uma roda i qualquer do veículo deveria ter para que P_i fosse um ponto de contato entre o solo e a roda i (Fig. 9). Assim, conhecendo-se o centro da roda (C_i) pode-se chegar de uma maneira direta ao conhecimento de P_i. O conjunto gerado por todos os pontos (x_{cc},y_{cc}) irá gerar uma curva, que será chamada curva de centros.

Figura 9 - Ponto da curva de centros (x_{cc},y_{cc}) associado ao ponto de contato Pi=(xi,yi).

A metodologia aqui empregada utiliza o cálculo da curva de centros, pois este método resulta em menor número de operações necessárias para a obtenção dos pontos de contato, portanto é menos caro computacionalmente.

2.3. Cinemática Direta

O problema da cinemática direta pode ser enunciado da seguinte forma: "Dados a posição, velocidade e aceleração das coordenadas generalizadas do sistema, qual será a posição, velocidade e aceleração dos centros das rodas?"

A metodologia escolhida para a resolução do problema da cinemática direta foi a seguinte: primeiro se calculam as coordenadas dos centros das rodas (\mathbf{x}_{ci} , \mathbf{y}_{ci}), em seguida deriva-se (\mathbf{x}_{ci} , \mathbf{y}_{ci}) em relação ao tempo e encontram-se as velocidades dos centros das rodas ($[\dot{x}_{ci} \quad \dot{y}_{ci}]^T$), e por último deriva-se uma segunda vez as coordenadas dos centros das rodas em relação ao tempo para encontrar as acelerações dos mesmos ($[\ddot{x}_{ci} \quad \ddot{y}_{ci}]^T$).Aplicando essa abordagem ao sistema, temse:

Figura 10 - Características geométricas do veículo.

2.3.1. Coordenadas dos centros das rodas (x_{ci} ,y_{ci}):

De acordo com a Figura 10 acima, as coordenadas dos centros das rodas podem ser escritas como:

2.3.1.1. Coordenadas do centro da roda 1 (x_{c1} ,y_{c1}).

$$x_{c1} = x_c - L_1 \cdot \cos \alpha + h_1 \cdot \sin \alpha \tag{1}$$

$$y_{c1} = y_c - L_1 \cdot \sin \alpha - h_1 \cdot \cos \alpha \tag{2}$$

2.3.1.2. Coordenadas do centro da roda 2 (x_{c2} ,y_{c2}).

$$x_{c2} = x_c + L_2 \cdot \cos \alpha + h_2 \cdot \sin \alpha \tag{3}$$

 $y_{c2} = y_c + L_2 \cdot \operatorname{sen} \alpha - h_2 \cdot \cos \alpha \tag{4}$

onde

 h_1 = distância transversal ao chassi do veículo entre o centro da roda 1 e o centro de massa do veículo (CM), constante para essa modelagem sem suspensão;

 h_2 = distância transversal ao chassi do veículo entre o centro da roda 2 e o CM, também constante;

 L_1 = distância longitudinal ao chassi do veículo entre o centro da roda 1 e o CM;

L₂ = distância longitudinal ao chassi do veículo entre o centro da roda 2 e o CM;

2.3.2. Velocidades dos centros das rodas ($[\dot{x}_{ci} \quad \dot{y}_{ci}]^T$):

2.3.2.1. Velocidade do centro da roda 1.

Derivando-se em relação ao tempo as equações (1) e (2) acima, resulta em:

$$\dot{x}_{c1} = \dot{x}_{c} + (L_1 \cdot sen\alpha + h_1 \cdot \cos\alpha) \cdot \dot{\alpha}$$
(5)

$$\dot{y}_{c1} = \dot{y}_{c} - (L_1 \cdot \cos\alpha - h_1 \cdot sen\alpha) \cdot \dot{\alpha}$$
(6)

2.3.2.2. Velocidade do centro da roda 2.

Derivando-se em relação ao tempo as equações (3) e (4) acima, resulta em:

$$\dot{x}_{c2} = \dot{x}_c - (L_2 \cdot \operatorname{sen} \alpha - h_2 \cdot \cos \alpha) \cdot \dot{\alpha}$$
⁽⁷⁾

$$\dot{y}_{c2} = \dot{y}_{c} + (L_2 \cdot \cos \alpha + h_2 \cdot \sin \alpha) \cdot \dot{\alpha}$$
(8)

2.3.3.

Acelerações das rodas ($\begin{bmatrix} \ddot{x}_{ci} & \ddot{y}_{ci} \end{bmatrix}^T$):

2.3.3.1. Aceleração do centro da roda 1.

Para se calcular a aceleração da roda 1 calcula-se a derivada temporal das equações (5) e (6) acima, resultando em:

$$\ddot{x}_{c1} = \ddot{x}_c + (L_1 \cdot sen\alpha + h_1 \cdot \cos\alpha) \cdot \ddot{\alpha} + (L_1 \cdot \cos\alpha - h_1 \cdot sen\alpha) \cdot \dot{\alpha}^2 \qquad (9)$$

$$\ddot{y}_{c1} = \ddot{y}_{c} - (L_{1} \cdot \cos \alpha - h_{1} \cdot sen\alpha) \cdot \ddot{\alpha} + (L_{1} \cdot sen\alpha + h_{1} \cdot \cos \alpha) \cdot \dot{\alpha}^{2}$$
(10)

2.3.3.2. Aceleração do centro da roda 2.

Tomando a derivada temporal das equações (7) e (8) acima, tem-se:

$$\ddot{x}_{c2} = \ddot{x}_{c} - (L_2 \cdot \operatorname{sen} \alpha - h_2 \cdot \cos \alpha) \cdot \ddot{\alpha} - (L_2 \cdot \cos \alpha + h_2 \cdot \operatorname{sen} \alpha) \cdot \dot{\alpha}^2 \quad (11)$$

$$\ddot{y}_{c2} = \ddot{y}_{c} + (L_2 \cdot \cos \alpha + h_2 \cdot \sin \alpha) \cdot \ddot{\alpha} - (L_2 \cdot \sin \alpha - h_2 \cdot \cos \alpha) \cdot \dot{\alpha}^2 \quad (12)$$

2.4. Cinemática Inversa

O problema da cinemática inversa pode ser enunciado da seguinte forma: "Dadas as coordenadas (x_{ci} , y_{ci}) dos centros das rodas e suas velocidades $V_1 \in V_2$, quais serão as coordenadas ($[x_c \ y_c \ \alpha]^T$) e as velocidades generalizadas ($[\dot{x}_c \ \dot{y}_c \ \dot{\alpha}]^T$) do sistema?"

A Fig. 11 ilustra as coordenadas do centro da roda 1 e da roda 2, C_1 e C_2 respectivamente, e as velocidades das mesmas (V_1 e V_2).

Figura 11 - Direção das velocidades do centro das rodas 1 e 2 ($V_1 e V_2$, respectivamente).

2.4.1. Cálculo das coordenadas generalizadas ($[x_c \quad y_c \quad \alpha]^T$):

Para encontrar as coordenadas generalizadas $(\begin{bmatrix} x_c & y_c & \alpha \end{bmatrix}^T)$ do sistema a partir das coordenadas dos centros das rodas $(x_{c1},y_{c1}) \in (x_{c2},y_{c2})$, procede-se da seguinte forma:

i) Primeiramente calcula-se o ângulo de rotação do veículo (α). Subtraindo a Eq. (1) da Eq. (3) e a Eq. (2) da Eq. (4), obtém-se as seguintes equações:

$$(x_{c1} - x_{c2}) = -(L_1 + L_2) \cdot \cos \alpha + (h_1 - h_2) \cdot \sin \alpha$$
(13)

$$(y_{c1} - y_{c2}) = -(L_1 + L_2) \cdot \operatorname{sen} \alpha - (h_1 - h_2) \cdot \cos \alpha \tag{14}$$

Multiplicando a Eq. (13) por $(L_1 + L_2)$ e somando-se a equação resultante da Eq. (14) multiplicada por $(h_1 - h_2)$, resulta:

$$(x_{c1} - x_{c2}) \cdot (L_1 + L_2) + (y_{c1} - y_{c2}) \cdot (h_1 - h_2) = -[(L_1 + L_2)^2 + (h_1 - h_2)^2] \cdot \cos \alpha$$
(15)

$$\cos \alpha = -\frac{(x_{c1} - x_{c2}) \cdot (L_1 + L_2) + (y_{c1} - y_{c2}) \cdot (h_1 - h_2)}{[(L_1 + L_2)^2 + (h_1 - h_2)^2]}$$
(16)

$$\alpha = \pm a \cos \left(-\frac{(x_{c1} - x_{c2}) \cdot (L_1 + L_2) + (y_{c1} - y_{c2}) \cdot (h_1 - h_2)}{[(L_1 + L_2)^2 + (h_1 - h_2)^2]} \right)$$
(17)

O sinal de α na Eq. (17) acima é dado pelo sinal de (y_{c2}-y_{c1}). Desta forma o ângulo α será dado por:

$$\alpha = sign(y_{c2} - y_{c1}) \cdot a\cos\left(-\frac{(x_{c1} - x_{c2}) \cdot (L_1 + L_2) + (y_{c1} - y_{c2}) \cdot (h_1 - h_2)}{[(L_1 + L_2)^2 + (h_1 - h_2)^2]}\right) (18)$$

onde $sign(x) \equiv \frac{x}{|x|}$ para $x \neq 0$ e $sign(0) \equiv 0$.

ii) Em seguida através das Equações (1) e (2), ou (3) e (4), calculam-se as coordenadas (x_c, y_c) .

Assim, utilizando-se as Equações (1) e (2), obtém-se os seguintes valores para $x_c e y_c$:

$$x_c = x_{c1} + L_1 \cdot \cos \alpha - h_1 \cdot \sin \alpha \tag{19}$$

$$y_c = y_{c1} + L_1 \cdot \operatorname{sen} \alpha + h_1 \cdot \cos \alpha \tag{20}$$

2.4.2. Cálculo das velocidades generalizadas ($\begin{bmatrix} \dot{x}_c & \dot{y}_c & \dot{\alpha} \end{bmatrix}^T$):

As velocidades generalizadas são calculadas a partir das velocidades do centro das rodas 1 e 2, V_1 e V_2 respectivamente. Calculando as componentes das velocidades V_1 e V_2 nas direções t e n (direção paralela ao chassi do veículo e direção normal a este, respectivamente) conforme a Fig. 12, resulta em:

Figura 12 - Velocidades \bm{V}_1 e \bm{V}_2 e suas componentes na direção de \bm{t} e $\bm{n}.$

2.4.2.1. Velocidade angular ($\dot{\alpha}$)

i) Velocidades ao longo de t:

$$V_1^t = V_1 \cdot \cos(\gamma_1 - \alpha) \tag{21}$$

$$V_2^t = V_2 \cdot \cos(\gamma_2 - \alpha) \tag{22}$$

Como o sistema é modelado como um corpo rígido V_2^t pode ser calculada em função de V_1^t da seguinte forma:

$$V_2' = V_1' + (h_2 - h_1) \cdot \dot{\alpha}$$
⁽²³⁾

ii) Velocidades ao longo de n:

$$V_1^n = V_1 \cdot sen(\gamma_1 - \alpha) \tag{24}$$

$$V_2^n = V_2 \cdot sen(\gamma_2 - \alpha) \tag{25}$$

E V_2^n pode ser calculada a partir de V_1^n do seguinte modo:

$$V_2^n = V_1^n + (L_1 + L_2) \cdot \dot{\alpha}$$
(26)

Resultando no seguinte valor para $\dot{\alpha}$:

$$\dot{\alpha} = \frac{V_2^n - V_1^n}{L_1 + L_2} \tag{27}$$

Substituindo-se os valores das velocidades $V_2^n e V_1^n$ dados em (24) e (25) na Eq. (27) acima obtém-se:

$$\dot{\alpha} = \frac{V_2 \cdot sen(\gamma_2 - \alpha) - V_1 \cdot sen(\gamma_1 - \alpha)}{L_1 + L_2}$$
(28)

2.4.2.2. Velocidade linear do Centro de Massa (\dot{x}_c , \dot{y}_c)

Com o valor de $\dot{\alpha}$ dado pela Eq. (28), pode-se calcular as velocidades \dot{x}_c e \dot{y}_c através das Equações (5) e (6), ou (7) e (8). Utilizando-se as Equações (5) e (6), chega-se aos seguintes valores para \dot{x}_c e \dot{y}_c :

$$\dot{x}_c = \dot{x}_{c1} - (L_1 \cdot \operatorname{sen} \alpha + h_1 \cdot \cos \alpha) \cdot \dot{\alpha}$$
⁽²⁹⁾

$$\dot{y}_{c} = \dot{y}_{c1} + (L_{1} \cdot \cos \alpha - h_{1} \cdot \sin \alpha) \cdot \dot{\alpha}$$
(30)

onde

$$\dot{x}_{c1} = V_1 \cdot \cos \gamma_1 \tag{31}$$

$$\dot{y}_{c1} = V_1 \cdot \operatorname{sen} \gamma_1 \tag{32}$$

2.5. Análise Estática

A análise estática visa calcular a força de atrito Fat_i que deve agir no ponto de contato entre cada roda i (com i = 1,2) e o solo a fim de manter o sistema em equilíbrio.

Para obter o equilíbrio do sistema, o somatório das forças agindo sobre o mesmo deve ser nulo e também o momento resultante em qualquer um dos pontos do veículo deve ser igual à zero. A Fig. 13 ilustra as forças agindo no sistema, que são as seguintes: forças de atrito (Fat₁ e Fat₂), forças normais (N₁ e N₂) e força peso (P).

Figura 13 - Forças agindo no veículo.

Assim, aplicando as condições de equilíbrio ao sistema resultam as seguintes equações:

i) Somatório das forças na direção x e y igual a zero.

$$\sum F_x = 0$$

$$Fat_1 \cdot \cos(\gamma_1) + Fat_2 \cdot \cos(\gamma_2) - N_1 \cdot sen(\gamma_1) - N_2 \cdot sen(\gamma_2) = 0 \quad (33)$$

$$N_1 \cdot sen(\gamma_1) + N_2 \cdot sen(\gamma_2) = Fat_1 \cdot \cos(\gamma_1) + Fat_2 \cdot \cos(\gamma_2)$$
(34)

ii) Somatório dos momentos nos pontos de contato igual a zero.

Tomando o somatório de momentos em relação aos pontos de contato $P_1=(x_1,y_1)$ e $P_2=(x_2,y_2)$ igual a zero, resulta nas seguintes equações:

$$\sum M_{P_1} = 0$$

$$(Fat_{2} \cdot sen(\gamma_{2}) + N_{2} \cdot \cos(\gamma_{2})) \cdot (x_{2} - x_{1}) - (Fat_{2} \cdot \cos(\gamma_{2}) - N_{2} \cdot sen(\gamma_{2})) \cdot (y_{2} - y_{1}) - P \cdot (x_{c} - x_{1}) = 0$$
(35)

$$[(x_{2} - x_{1}) \cdot \cos(\gamma_{2}) + (y_{2} - y_{1}) \cdot sen(\gamma_{2})] \cdot N_{2} = P \cdot (x_{c} - x_{1}) -[(x_{2} - x_{1}) \cdot sen(\gamma_{2}) - (y_{2} - y_{1}) \cdot \cos(\gamma_{2})] \cdot Fat_{2}$$
(36)

Definindo:

$$d_{N_2,1} \equiv (x_2 - x_1) \cdot \cos(\gamma_2) + (y_2 - y_1) \cdot sen(\gamma_2)$$
(37)

$$d_{Fat_{2},1} \equiv (x_{2} - x_{1}) \cdot sen(\gamma_{2}) - (y_{2} - y_{1}) \cdot \cos(\gamma_{2})$$
(38)

Resulta em:

$$N_{2} = \frac{(x_{c} - x_{1}) \cdot P - d_{Fat_{2},1} \cdot Fat_{2}}{d_{N_{2},1}}$$
(39)

$$\sum M_{P_2} = 0$$

- (Fat_1 \cdot sen(\(\gamma_1\)) + N_1 \cdot \cos(\(\gamma_1\))) \cdot (x_2 - x_1) + (Fat_1 \cdot \cos(\(\gamma_1\)))
- N_1 \cdot sen(\(\gamma_1\))) \cdot (y_2 - y_1) - P \cdot (x_c - x_2) = 0 (40)

$$[(x_2 - x_1) \cdot \cos(\gamma_1) + (y_2 - y_1) \cdot sen(\gamma_1)] \cdot N_1 = P \cdot (x_2 - x_c) -[(x_2 - x_1) \cdot sen(\gamma_1) - (y_2 - y_1) \cdot \cos(\gamma_1)] \cdot Fat_1$$
(41)

Definindo ainda:

$$d_{N_{1},2} \equiv (x_{2} - x_{1}) \cdot \cos(\gamma_{1}) + (y_{2} - y_{1}) \cdot sen(\gamma_{1})$$
(42)

$$d_{Fat_{1},2} \equiv (x_{2} - x_{1}) \cdot sen(\gamma_{1}) - (y_{2} - y_{1}) \cdot \cos(\gamma_{1})$$
(43)

Resulta em:

$$N_{1} = \frac{(x_{2} - x_{c}) \cdot P - d_{Fat_{1},2} \cdot Fat_{1}}{d_{N_{1},2}}$$
(44)

As Equações (34),(39) e (44) formam um sistema de equações linearmente independentes e podem ser escritas como:

$$N_1 \cdot sen(\gamma_1) + N_2 \cdot sen(\gamma_2) = Fat_1 \cdot \cos(\gamma_1) + Fat_2 \cdot \cos(\gamma_2)$$
(45)

$$N_1 = e_1 - S_1 \cdot Fat_1 \tag{46}$$

$$N_2 = e_2 - S_2 \cdot Fat_2 \tag{47}$$

onde definem-se:

$$e_1 = \frac{(x_2 - x_c) \cdot P}{d_{N_1, 2}}$$
(48)

$$e_2 \equiv \frac{(x_c - x_1) \cdot P}{d_{N_2, 1}}$$
(49)

$$S_1 = \frac{d_{Fat_{1,2}}}{d_{N_{1,2}}}$$
(50)

$$S_2 \equiv \frac{d_{Fat_{2,1}}}{d_{N_{2,1}}}$$
(51)

As incógnitas do problema estático são Fat₁, Fat₂, N₁ e N₂. Sendo que as forças Fat₁ e Fat₂ podem ser controladas através dos torques transmitidos às rodas pelos motores do veículo, e as forças normais N₁ e N₂ são dependentes desses torques em um terreno genérico.

Como o sistema em questão apresenta quatro incógnitas e apenas três equações linearmente independentes, o mesmo é sobredeterminado. Assim, este sistema apresenta um grau de liberdade para a escolha de Fat₁ ou Fat₂, o qual pode ser utilizado para otimizar alguma característica do sistema.

2.5.1. Otimização do Sistema para o caso Estático

No presente trabalho, escolheu-se otimizar as seguintes características do sistema:

- a) Minimizar a possibilidade de deslizamento das rodas;
- b) Minimizar o consumo de potência.

Sendo que irá se buscar minimizar a possibilidade de deslizamento das rodas em terrenos mais acidentados e íngremes e minimizar o consumo de potência em terrenos suaves. Para isso, serão calculadas as forças de atrito de cada roda, a fim de se obter a otimização desejada do sistema, para o caso quaseestático.

 a) Cálculo das forças de atrito para minimizar a possibilidade de deslizamento das rodas.

Para minimizar a possibilidade de deslizamento das rodas, deseja-se conhecer as forças de atrito (Fat's) que devem agir sobre o sistema de modo que a razão entre o módulo da força de atrito e a força normal em cada roda seja mínima.

Antes de se calcular as razões ótimas entre as forças de atrito e as suas correspondentes forcas normais, deve-se encontrar os possíveis valores que as forças de atrito devem assumir para que sejam respeitadas as seguintes condições:

i) |*Fat*₁| ≤ *F*_{sat1} e |*Fat*₂| ≤ *F*_{sat2}, restrição referente à força de saturação dos motores, onde Fsat₁ e Fsat₂ são as máximas forças de atrito que podem ser obtidas pelos torques do motor da roda 1 e da roda 2, respectivamente;
ii) N₁ > 0 e N₂ > 0, condição de não descolamento entre as rodas e o terreno;

iii) $|Fat_1| \le \mu \cdot N_1$ e $|Fat_2| \le \mu \cdot N_2$, condição de não deslizamento (sendo μ o coeficiente de atrito estático).

Além das três condições acima, existe ainda mais uma equação de restrição para garantir que o sistema esteja em equilíbrio estático. Essa equação é obtida substituindo os valores de N₁ e N₂, dados pelas Equações (46) e (47), na Eq. (45) resultando em:

$$a_1 \cdot Fat_1 + a_2 \cdot Fat_2 = a \tag{52}$$

Definindo:

$$a_1 \equiv [\cos(\gamma_1) + S_1 \cdot sen(\gamma_1)] \cdot e_1 \tag{53}$$

$$a_2 \equiv [\cos(\gamma_2) + S_2 \cdot sen(\gamma_2)] \cdot e_2$$
(54)

$$a \equiv e_1 \cdot sen(\gamma_1) + e_2 \cdot sen(\gamma_2) \tag{55}$$

Com as condições (i) a (iii) e a Eq. (54) obtém-se um conjunto $I=\{(Fat_1,Fat_2)\}$ dos possíveis valores das forças Fat_1 e Fat_2.

O ponto (Fat₁, Fat₂) que irá gerar razões $|Fat_i|/N_i$ (i =1,2) o mais longe possível da situação de deslizamento será um dos pontos da fronteira de **I** ou o ponto em que a razão do módulo da força de atrito pela respectiva força normal deve ser igual nas duas rodas (prova no Apêndice A). Assim para encontrar esse último ponto deve-se ter:

$$\frac{|Fat_1|}{N_1} = \frac{|Fat_2|}{N_2} , \text{ com } N_1, N_2 > 0$$
(56)

que resulta, nas seguintes possibilidades:

i)
$$\frac{Fat_1}{N_1} = \frac{Fat_2}{N_2} = \lambda$$
(57)

ii)
$$\frac{Fat_1}{N_1} = -\frac{Fat_2}{N_2} \Longrightarrow \frac{Fat_1}{N_1} = \lambda \quad , \frac{Fat_2}{N_2} = -\lambda.$$
(58)

 $\operatorname{com} \lambda \in \mathfrak{R}$.

Pode-se escrever (57) e (58) de uma forma compacta, como segue:

$$Fat_1 = \lambda \cdot N_1 \tag{59}$$

$$Fat_2 = \pm \lambda \cdot N_2 \tag{60}$$

Substituindo os valores de N_1 e N_2 dados pelas Equações (46) e (47) nas Equações (58) e (59) resulta nos seguintes valores para as forças de atrito:

$$Fat_1 = \lambda \cdot (e_1 - S_1 \cdot Fat_1) \tag{61}$$

$$Fat_1 = \frac{\lambda \cdot e_1}{(1 + \lambda \cdot S_1)} \tag{62}$$

$$Fat_2 = \pm \lambda \cdot (e_2 - S_2 \cdot Fat_2) \tag{63}$$

$$Fat_2 = \frac{\pm \lambda \cdot e_2}{(1 \pm \lambda \cdot S_2)} \tag{64}$$

Substituindo (62) e (64) na Eq. (52), resulta o seguinte:

$$a_1 \cdot \frac{\lambda \cdot e_1}{(1 + \lambda \cdot S_1)} \pm a_2 \cdot \frac{\lambda \cdot e_2}{(1 \pm \lambda \cdot S_2)} = a$$
(65)

A Eq. (65) acima, dará origem a duas equações do segundo grau, a saber:

$$(a_{1} \cdot e_{1} \cdot S_{2} + a_{2} \cdot e_{2} \cdot S_{1} - a \cdot S_{1} \cdot S_{2}) \cdot \lambda^{2} + (a_{1} \cdot e_{1} + a_{2} \cdot e_{2} - a \cdot S_{1} - a \cdot S_{2}) \cdot \lambda - a = 0$$
(66)

$$(-a_1 \cdot e_1 \cdot S_2 - a_2 \cdot e_2 \cdot S_1 + a \cdot S_1 \cdot S_2) \cdot \lambda^2$$

+
$$(a_1 \cdot e_1 - a_2 \cdot e_2 - a \cdot S_1 + a \cdot S_2) \cdot \lambda - a = 0$$
(67)

A equação que dará a solução do problema será a que apresentar raízes reais.

Após obter a equação verdadeira do problema e resolvê-la, haverá dois valores candidatos a solução do mesmo, as raízes da equação do segundo grau $\lambda' e \lambda''$. Sendo que a solução do problema será a raiz que resulta em normais positivas.

b) Cálculo das forças de atrito para minimizar a potência consumida.

Na abordagem do problema aqui utilizada, considera-se que o veículo é acionado por motores elétricos como no Robô Ambiental Híbrido. Além disso, considera-se potência consumida apenas a potência dissipada por efeito joule na resistência do motor, uma vez que nesta análise quase-estática o trabalho mecânico é desprezível comparado com a energia elétrica dissipada. Para motores de corrente contínua esta potência é dada por:

$$Pot = R \cdot I_c^2 \tag{68}$$

onde

R = resistência do motor dada em ohm;

 I_c = corrente elétrica do motor dada em ampére.

Assim, a potência total consumida pelos dois motores, será:

$$P_{total} = Pot_1 + Pot_2 \tag{69}$$

com:

$$Pot_1 = R_1 \cdot I_{c1}^2 \tag{70}$$

$$Pot_2 = R_2 \cdot I_{c2}^2 \tag{71}$$

Considerando que os motores sejam iguais, resulta que $R_1 = R_2 = R$, e a Eq. (69) pode ser escrita da seguinte forma:

$$P_{total} = R \cdot (I_{c1}^2 + I_{c2}^2) \tag{72}$$

Em motores de corrente contínua o torque entregue ao eixo é proporcional a corrente elétrica do motor, assim:

$$T = K_m \cdot I_c \tag{73}$$

onde

T = torque no eixo do motor em N.m;

K_m = constante de proporcionalidade do motor em N.m/A;

Como o sistema está em equilíbrio estático, o torque em cada roda deve ser igual à força de atrito, agindo entre tal roda e o solo, multiplicada pelo raio da roda. Assim, têm-se:

$$T_1 = Fat_1 \cdot r \tag{74}$$

$$T_2 = Fat_2 \cdot r \tag{75}$$

Substituindo o valor do torque dado pela Eq. (73) nas Equações (74) e (75) acima, resulta em:

$$Fat_1 \cdot r = K_m \cdot I_1 \Longrightarrow I_1 = \frac{Fat_1 \cdot r}{K_m}$$
(76)

$$Fat_2 \cdot r = K_m \cdot I_2 \Longrightarrow I_2 = \frac{Fat_2 \cdot r}{K_m}$$
(77)

Substituindo os valores das correntes I_1 e I_2 , dados nas Equações (76) e (77), na Eq. (69) da potência total, obtêm-se:

$$P_{total} = R \cdot \left[\left(\frac{Fat_1 \cdot r}{K_m} \right)^2 + \left(\frac{Fat_2 \cdot r}{K_m} \right)^2 \right]$$
(78)

$$P_{total} = \frac{R \cdot r^2}{K_m^2} \cdot (Fat_1^2 + Fat_2^2)$$
(79)

Definindo-se:

$$\frac{R \cdot r^2}{K_m^2} \equiv K_{pot} \tag{80}$$

A Eq. (79) acima resulta em:

$$P_{total} = K_{pot} \cdot (Fat_1^2 + Fat_2^2) \tag{81}$$

Assim, de acordo com a Eq. (81), para minimizar a potência total consumida precisa-se minimizar:

$$W(Fat_1, Fat_2) = Fat_1^2 + Fat_2^2$$
 (82)

sujeita as restrições (i) a (iii), anteriormente mencionadas, e a restrição de equilíbrio estático dada pela Eq. (52).:

As restrições (i) a (iii) irão gerar uma região fechada $D \in \Re^2$ (Fig. 14) de pontos (Fat₁,Fat₂), que serão os candidatos a mínimo do problema .

Figura 14 - Região de pontos (Fat₁,Fat₂) candidatos a mínimo do problema.

Desta forma, o problema de minimização da potência consumida será o de encontrar o mínimo de uma função, neste caso W, em um domínio fechado (D), sujeito à restrição dada pela Eq, (52).

De acordo com Demidovitch [16] os pontos críticos do problema (que são candidatos a mínimo de W) serão:

a) Os pontos em que dW é nula.

$$dW(Fat_1, Fat_2) = 0 \Longrightarrow \frac{\partial W}{\partial Fat_1} \cdot dFat_1 + \frac{\partial W}{\partial Fat_2} \cdot dFat_2 = 0$$
(83)

onde pela Eq. (82),

$$\frac{\partial W}{\partial Fat_1} = 2 \cdot Fat_1 \tag{84}$$

$$\frac{\partial W}{\partial Fat_2} = 2 \cdot Fat_2 \tag{85}$$

e assim

$$2 \cdot Fat_1 \cdot dFat_1 + 2 \cdot Fat_2 \cdot dFat_2 = 0 \tag{86}$$

Contudo, dFat₁ e dFat₂ não são independentes, sendo que estão relacionados através da Eq. (52), da seguinte forma:

$$a_1 \cdot dFat_1 + a_2 \cdot dFat_2 = 0 \Longrightarrow dFat_2 = -\frac{a_1}{a_2} \cdot dFat_1$$
(87)

Substituindo o valor de dFat₂ dado pela Eq. (87) na Eq. (86), resulta em:

$$2 \cdot Fat_1 \cdot dFat_1 + 2 \cdot Fat_2 \cdot \left(-\frac{a_1}{a_2} \cdot dFat_1\right) = 0$$
(88)

$$\left(Fat_1 - \frac{a_1}{a_2} \cdot Fat_2\right) \cdot dFat_1 = 0$$
(89)

$$Fat_1 - \frac{a_1}{a_2} \cdot Fat_2 = 0 \tag{90}$$

Juntando-se a Eq. (90) com a Eq. (52) pode-se calcular o ponto crítico $P_0=(Fat_1^o, Fat_2^o)$, sendo $Fat_1^o e Fat_2^o$ dados pelos seguintes valores:

$$Fat_1^{o} = \frac{a \cdot a_1}{(a_1^2 + a_2^2)}$$
(91)

$$Fat_{2}^{o} = \frac{a \cdot a_{2}}{(a_{1}^{2} + a_{2}^{2})}$$
(92)

Se P_o pertencer ao conjunto resultante da interseção entre D e a reta dada pela Eq. (52) (no plano Fat₁ x Fat₂), então P_o será um candidato a ponto de mínimo.

b) Pontos da fronteira

Os outros pontos candidatos serão os pontos P₁ e P₂ das fronteiras do domínio D', dado pela interseção do conjunto D com o conjunto $R' = \{(Fat_1, Fat_2) \in \Re^2 / a_1 \cdot Fat_1 + a_2 \cdot Fat_2 = a\}$, ou seja, $D' = D \cap R'$.

Assim, D' será um segmento de reta no plano Fat_1xFat_2 com pontos extremos P₁ e P₂ (Fig. 15).

Figura 15 - Região D` com os pontos extremos P1 e P2.

Após calcular todos os pontos críticos do problema, verifica-se qual deles minimiza a função W, sendo este o ponto desejado.

Portanto, conforme visto acima, pode-se no problema estático associado a este sistema encontrar valores apropriados das forças de atrito (Fat₁ e Fat₂) que otimizem uma dada característica do mesmo. Sendo que, no presente caso, optou-se por calcular as forças de atrito que mantêm o veículo o mais longe possível do deslizamento em terrenos muito acidentados ou as que minimizam o consumo de potência em terrenos suaves.

No entanto, podem-se unir essas duas condições de otimização em uma única função, sendo que neste caso haverá a necessidade de se introduzir pesos para ponderar cada uma das características em questão.

As técnicas de controle aqui introduzidas serão generalizadas no Capítulo 4, quando serão incluídos efeitos dinâmicos e de suspensões flexíveis.

2.6. Análise Dinâmica

A análise dinâmica do sistema tem por objetivo calcular as acelerações do mesmo e por conseguinte as suas variáveis de estado $(x_c, y_c, \alpha, \dot{x}_c, \dot{y}_c, \dot{\alpha})$.

Para o cálculo dinâmico, foram utilizadas as equações de Newton-Euler . Essas equações representam os princípios que enunciam o seguinte: a soma das forças agindo sobre o sistema deve igualar o produto de sua massa pela aceleração do seu centro de gravidade, e o somatório dos momentos em relação ao centro de gravidade é igual ao momento de inércia de massa do corpo em relação a este ponto vezes a aceleração angular do corpo. As forças externas agindo no veículo são as mesmas mostradas na Fig. 13.

Assim, aplicando as equações de Newton-Euler ao sistema da Fig. 13, resulta:

$$\sum F_{x} = m \cdot \ddot{x}_{c}$$

$$n \cdot \ddot{x}_{c} = Fat_{1} \cdot \cos \gamma_{1} + Fat_{2} \cdot \cos \gamma_{2} - N_{1} \cdot sen \gamma_{1} - N_{2} \cdot sen \gamma_{2} \qquad (93)$$

$$\sum F_{x} = m \cdot \ddot{y}_{c}$$

$$m \cdot \ddot{y}_{c} = Fat_{1} \cdot sen \gamma_{1} + Fat_{2} \cdot sen \gamma_{2} + N_{1} \cdot \cos \gamma_{1} + N_{2} \cdot \cos \gamma_{2} - P \qquad (94)$$

$$\sum M_{CM} = I \cdot \ddot{\alpha}$$

$$I \cdot \ddot{\alpha} = d_{Fat_{1}} \cdot Fat_{1} + d_{Fat_{2}} \cdot Fat_{2} - d_{N_{1}} \cdot N_{1} - d_{N_{2}} \cdot N_{2} \qquad (95)$$

onde

ł

 N_i = força normal na roda i;

 $Fat_i = força de atrito entre a roda i e o solo;$

 \ddot{x}_c = aceleração linear do centro de gravidade do veículo na direção x;

 \ddot{y}_c = aceleração linear do centro de gravidade do veículo na direção y;

 $\ddot{\alpha}$ = aceleração angular do veículo ao longo do eixo z;

 x_i = coordenada x do ponto de contato entre a roda i e o terreno;

 y_i = coordenada y do ponto de contato entre a roda i e o terreno;

$$d_{Fat_1} = (y_c - y_1) \cdot \cos \gamma_1 - (x_c - x_1) \cdot sen\gamma_1$$
(96)

$$d_{Fat_2} = (y_c - y_2) \cdot \cos \gamma_2 - (x_c - x_2) \cdot \operatorname{sen} \gamma_2 \tag{97}$$

$$d_{N_1} = (y_c - y_1) \cdot sen\gamma_1 + (x_c - x_1) \cdot \cos\gamma_1 \tag{98}$$

$$d_{N_2} = (y_c - y_2) \cdot sen\gamma_2 + (x_c - x_2) \cdot \cos\gamma_2$$
(99)

As Equações (93) a (95) resultam no seguinte sistema:

$$m \cdot \ddot{x}_{c} = Fat_{1} \cdot \cos \gamma_{1} + Fat_{2} \cdot \cos \gamma_{2} - N_{1} \cdot sen \gamma_{1} - N_{2} \cdot sen \gamma_{2} \quad (100)$$

$$m \cdot \ddot{y}_c = Fat_1 \cdot sen\gamma_1 + Fat_2 \cdot sen\gamma_2 + N_1 \cdot \cos\gamma_1 + N_2 \cdot \cos\gamma_2 - P \tag{101}$$

$$I \cdot \ddot{\alpha} = d_{Fat_1} \cdot Fat_1 + d_{Fat_2} \cdot Fat_2 - d_{N_1} \cdot N_1 - d_{N_2} \cdot N_2$$
(102)

Assumindo-se que Fat₁ e Fat₂ foram especificados, o sistema de equações acima possui cinco incógnitas $(N_1, N_2, \ddot{x}_c, \ddot{y}_c, \ddot{\alpha})$ e somente três equações, resultando que o mesmo possui infinitas soluções. Contudo, em um dado instante de tempo t é necessário que haja uma única quina $(N_1, N_2, \ddot{x}_c, \ddot{y}_c, \ddot{\alpha})$ que seja solução deste sistema de equações e por conseqüência do problema dinâmico, para que se possa calcular o estado do sistema em qualquer tempo t*>t.

Desta forma, são necessárias mais duas equações para que o problema dinâmico associado ao movimento do veículo tenha uma única solução. Essas duas equações adicionais serão derivadas das restrições que devem ser impostas ao movimento do veículo.

2.6.1. Equações de Restrição

As equações de restrições surgem da necessidade de se restringir as possíveis opções de movimento para o veículo. Uma condição que deve ser respeitada é a de não interpenetração entre as rodas do veículo e o solo, pois ambos são considerados corpos rígidos. Para garantir esta restrição é necessário, sempre que uma dada roda i estiver em contato com o solo ($N_i >0$), que o movimento da mesma seja restrito a uma dada trajetória dependente do perfil do terreno. Essa trajetória será dada pela curva de centros, definida no item 2.2.

Desta forma, sempre que uma roda i estiver em contato com o terreno o seu centro deverá pertencer à curva de centros, ou seja:

$$x_{ci} = x_{cc_i} \tag{103}$$

$$y_{ci} = y_{cc_i} \tag{104}$$

onde

 (x_{ci}, y_{ci}) = coordenadas cartesianas do centro geométrico da roda i;

 (x_{cc_i}, y_{cc_i}) = coordenadas cartesianas de um ponto pertencente à curva de centros.

Para os perfis de terrenos considerados nesta dissertação, os pontos da curva de centros, através de um apropriado tratamento matemático, serão da seguinte forma: $(x_{cc},g(x_{cc}))$, ou seja, a coordenada y_{cc} do mesmo será função de x_{cc} ($y_{cc}=g(x_{cc})$). Assim, as Equações (103) e (104) acima podem ser condensadas em uma única equação:

$$y_{ci} = g(x_{ci}) \tag{105}$$

Logo, para garantir que as duas rodas do veículo estejam em contato com o terreno basta que as seguintes igualdades sejam verdadeiras:

$$y_{c1} = g(x_{c1}) \tag{106}$$

$$y_{c2} = g(x_{c2}) \tag{107}$$

Derivando em relação ao tempo as Equações (106) e (107), obtêm-se as restrições referentes às velocidades dos centros das rodas.

$$\frac{dy_{ci}}{dt} = \frac{dg(x_{ci})}{dx} \cdot \frac{dx}{dt}\Big|_{x_{ci}}$$
(108)

$$\dot{y}_{c1} = g'(x_{c1}) \cdot \dot{x}_{c1} \tag{109}$$

$$\dot{y}_{c2} = g'(x_{c2}) \cdot \dot{x}_{c2} \tag{110}$$

Derivando-se uma segunda vez as restrições (106) e (107), em relação ao tempo, obtêm-se as acelerações dos centros das rodas. A segunda derivada temporal da coordenada y_{ci} do centro de uma roda i é dada como abaixo:

$$\frac{d^{2} y_{ci}}{dt^{2}} = \frac{dg(x_{ci})}{dx} \cdot \frac{d^{2} x}{dt^{2}} \bigg|_{x_{ci}} + \frac{d^{2} g(x_{ci})}{dx^{2}} \cdot \left(\frac{dx}{dt}\bigg|_{x_{ci}}\right)^{2}$$
(111)

Assim, as acelerações das rodas 1 e 2 devem ser:

$$\ddot{y}_{c1} = g'_1 \cdot \ddot{x}_{c1} + g''_1 \cdot \dot{x}_{c1}^2$$
(112)

$$\ddot{y}_{c2} = g'_2 \cdot \ddot{x}_{c2} + g''_2 \cdot \dot{x}_{c2}^2$$
(113)

onde

$$g_1' = g'(x_{c1}) \tag{114}$$

$$g_2' = g'(x_{c2}) \tag{115}$$

$$g_1'' = g''(x_{c1}) \tag{116}$$

$$g_2'' = g''(x_{c2}) \tag{117}$$

Substituindo as Equações (9) e (10) na Eq. (112), encontra-se:

$$\ddot{y}_{c} - (L_{1} \cdot \cos \alpha - h_{1} \cdot sen\alpha) \cdot \ddot{\alpha} + (L_{1} \cdot sen\alpha + h_{1} \cdot \cos \alpha) \cdot \dot{\alpha}^{2} =$$

$$g_{1}' \cdot [\ddot{x}_{c} + (L_{1} \cdot sen\alpha + h_{1} \cdot \cos \alpha) \cdot \ddot{\alpha} + (L_{1} \cdot \cos \alpha - h_{1} \cdot sen\alpha) \cdot \dot{\alpha}^{2}] + g_{1}'' \cdot \dot{x}_{c1}^{2}$$
(118)

Rearranjando os termos da equação acima, resulta em:

$$g_{1}' \cdot \ddot{x}_{c} - \ddot{y}_{c} + [(\cos\alpha + g_{1}' \cdot sen\alpha) \cdot L_{1} - (sen\alpha - g_{1}' \cdot \cos\alpha) \cdot h_{1}] \cdot \ddot{\alpha} = g_{1}'' \cdot \dot{x}_{c1}^{2} + [(\cos\alpha + g_{1}' \cdot sen\alpha) \cdot h_{1} + (sen\alpha - g_{1}' \cdot \cos\alpha) \cdot L_{1}] \cdot \dot{\alpha}^{2}$$
(119)

Substituindo as Equações (11) e (12) na Eq. (1138), encontra-se:

$$\ddot{y}_{c} + (L_{2} \cdot \cos \alpha + h_{2} \cdot sen\alpha) \cdot \ddot{\alpha} - (L_{2} \cdot sen\alpha - h_{2} \cdot \cos \alpha) \cdot \dot{\alpha}^{2} = g_{2}' \cdot [\ddot{x}_{c} - (L_{2} \cdot sen\alpha - h_{2} \cdot \cos \alpha) \cdot \ddot{\alpha} - (L_{2} \cdot \cos \alpha + h_{2} \cdot sen\alpha) \cdot \dot{\alpha}^{2}] + g_{2}'' \cdot \dot{x}_{c2}^{2}$$
(120)

Rearranjando os termos da equação acima, resulta em:

$$g_{2}' \cdot \ddot{x}_{c} - \ddot{y}_{c} - [(\cos\alpha + g_{2}' \cdot sen\alpha) \cdot L_{2} + (sen\alpha - g_{2}' \cdot \cos\alpha) \cdot h_{2}] \cdot \ddot{\alpha} = -g_{2}'' \cdot \dot{x}_{c2}^{2} - [(sen\alpha - g_{2}' \cdot \cos\alpha) \cdot L_{2} - (\cos\alpha + g_{2}' \cdot sen\alpha) \cdot h_{2}] \cdot \dot{\alpha}^{2}$$

$$(121)$$

Definindo:

$$E_1 \equiv (\cos\alpha + g_1' \cdot sen\alpha) \cdot L_1 - (sen\alpha - g_1' \cdot \cos\alpha) \cdot h_1$$
(122)

$$E_2 \equiv (\cos\alpha + g'_2 \cdot sen\alpha) \cdot L_2 + (sen\alpha - g'_2 \cdot \cos\alpha) \cdot h_2$$
(123)

$$A_{1} \equiv [(\cos\alpha + g_{1}' \cdot sen\alpha) \cdot h_{1} + (sen\alpha - g_{1}' \cdot \cos\alpha) \cdot L_{1}] \cdot \dot{\alpha}^{2} - g_{1}'' \cdot \dot{x}_{c1}^{2}$$
(124)

$$A_2 \equiv -[(\operatorname{sen}\alpha - g_2' \cdot \cos\alpha) \cdot L_2 - (\cos\alpha + g_2' \cdot \operatorname{sen}\alpha) \cdot h_2] \cdot \dot{\alpha}^2 - g_2'' \cdot \dot{x}_{c2}^{\ 2} (125)$$

as Equações (119) e (121), resultam em:

$$g_1' \cdot \ddot{x}_c - \ddot{y}_c + E_1 \cdot \ddot{\alpha} = A_1 \tag{126}$$

$$g_2' \cdot \ddot{x}_c - \ddot{y}_c + E_2 \cdot \ddot{\alpha} = A_2 \tag{127}$$

As Equações (126) e (127) são as equações de restrições para as acelerações do centro de gravidade do sistema. As mesmas podem ser escritas de uma maneira matricial da seguinte forma:

$$\overline{C} \cdot \overline{X} = \underline{A} \tag{128}$$

onde

$$\overline{C} = \begin{bmatrix} g_1' & -1 & E_1 \\ g_2' & -1 & E_2 \end{bmatrix}$$
(129)

$$\vec{\tilde{X}} = \begin{bmatrix} \ddot{x}_c & \ddot{y}_c & \ddot{\alpha} \end{bmatrix}^T$$
(130)

$$\underline{A} = \begin{bmatrix} A_1 & A_2 \end{bmatrix}^T \tag{131}$$

Para que o sistema dado pelas Equações (100) a (102) tenha solução as equações de restrição (126) e (127) devem ser linearmente independentes (L.I.), sendo que isso ocorrerá se o posto da matriz de coeficientes das acelerações (\overline{C}) for igual a dois (Anton [17]). Assim deve-se ter:

$$posto(\overline{C}) = 2 \Longrightarrow posto\left(\begin{bmatrix} g_1' & -1 & E_1 \\ g_2' & -1 & E_2 \end{bmatrix}\right) = 2$$
(132)

A menos de alguns casos especiais, regiões da curva do perfil do terreno em que o raio de curvatura é menor que o raio da roda e pontos da mesma que não possuem derivada, de um modo geral pode-se considerar que $g'_i = \tan \gamma_i$. Desta forma \overline{C} pode ser escrito da seguinte forma:

$$\overline{C} = \begin{bmatrix} \tan \gamma_1 & -1 & E_1 \\ \tan \gamma_2 & -1 & E_2 \end{bmatrix}$$
(133)

Logo, sempre que $\tan \gamma_1 \neq \tan \gamma_2$ o posto de \overline{C} será igual a dois e por conseqüência as Equações (126) e (127) serão L.I. Como os ângulos de contatos pertencem ao intervalo real $]-\pi/2;\pi/2[$, para que $\tan \gamma_1 \neq \tan \gamma_2$ basta que $\gamma_1 \neq \gamma_2$. Assim, sempre que os ângulos de contato forem diferentes, as restrições (126) e (127) serão L.I.

Quando $\tan \gamma_1 = \tan \gamma_2$ ($\gamma_1 = \gamma_2$, o que seria verificado, por exemplo, em um terreno plano), busca-se uma nova equação de restrição da seguinte forma.

De acordo com as Equações (23) e (27), tem-se o seguinte:

$$(h_2 - h_1) \cdot \dot{\alpha} = V_2^t - V_1^t \tag{134}$$

$$\dot{\alpha} = \frac{V_2^n - V_1^n}{L_1 + L_2} \tag{135}$$

Sendo que as velocidades ao longo de \mathbf{t} e de \mathbf{n} de uma roda i são dadas da seguinte forma :

$$V_i^t = \dot{x}_{ci} \cdot \cos \alpha + \dot{y}_{ci} \cdot sen\alpha \tag{136}$$

$$V_i^n = -\dot{x}_{ci} \cdot sen\alpha + \dot{y}_{ci} \cdot \cos\alpha \tag{137}$$

Substituindo (136) e (137) nas Equações (134) e (135) acima, resulta:

$$(h_1 - h_2) \cdot \dot{\alpha} = (\dot{x}_{c1} - \dot{x}_{c2}) \cdot \cos \alpha + (\dot{y}_{c1} - \dot{y}_{c2}) \cdot sen\alpha \quad (138)$$

$$\dot{\alpha} = \frac{(\dot{x}_{c1} - \dot{x}_{c2}) \cdot sen\alpha - (\dot{y}_{c1} - \dot{y}_{c2}) \cdot \cos\alpha}{L_1 + L_2}$$
(139)

Como as rodas são consideradas em contato com o solo, as Equações (109) e (110) são verificadas, e com $g'_i = \tan \gamma_i$, resulta nas seguintes relações para as velocidades das rodas:

$$\dot{y}_{c1} = \tan \gamma_1 \cdot \dot{x}_{c1} \tag{140}$$

$$\dot{y}_{c2} = \tan \gamma_2 \cdot \dot{x}_{c2} \tag{141}$$

Substituindo os valores de \dot{y}_{c1} e \dot{y}_{c2} dados pelas Equações (140) e (141) acima, respectivamente, nas Equações (138) e (139) e sendo $\gamma_1 = \gamma_2 = \gamma$, resulta no seguinte:

$$(h_1 - h_2) \cdot \dot{\alpha} = (\dot{x}_{c1} - \dot{x}_{c2}) \cdot (\cos \alpha + \tan \gamma \cdot sen\alpha)$$
(142)

$$\dot{\alpha} = \frac{(\dot{x}_{c1} - \dot{x}_{c2}) \cdot (sen\alpha - \tan\gamma \cdot \cos\alpha)}{L_1 + L_2}$$
(143)

Igualando os valores de $(\dot{x}_{c1} - \dot{x}_{c2})$ nas equações (142) e (143) acima, resulta na seguinte equação:

$$(h_1 - h_2) \cdot (sen\alpha - \tan\gamma \cdot \cos\alpha) \cdot \dot{\alpha} = (\cos\alpha + \tan\gamma \cdot sen\alpha) \cdot (L_1 + L_2) \cdot \dot{\alpha} (144)$$

$$(h_1 - h_2) \cdot \frac{(sen\alpha - \tan\gamma \cdot \cos\alpha)}{(\cos\alpha + \tan\gamma \cdot sen\alpha)} \cdot \dot{\alpha} = (L_1 + L_2) \cdot \dot{\alpha}$$
(144a)

$$(h_1 - h_2) \cdot \frac{(\tan \alpha - \tan \gamma)}{(1 + \tan \gamma \cdot \tan \alpha)} \cdot \dot{\alpha} = (L_1 + L_2) \cdot \dot{\alpha}$$
(144b)

$$(h_1 - h_2) \cdot \tan(\alpha - \gamma) \cdot \dot{\alpha} = (L_1 + L_2) \cdot \dot{\alpha}$$
(144c)

Analisando a Eq. (144c) acima se verifica que $h_1 = h_2$ ou $\alpha = \gamma \Rightarrow \dot{\alpha} = 0$.

Para $h_1 \neq h_2$ e $\alpha \neq \gamma$ e considerando-se $\dot{\alpha} \neq 0$, deve-se ter a seguinte relação:

$$\tan(\alpha - \gamma) = \frac{(L_1 + L_2)}{(h_1 - h_2)} \Longrightarrow \gamma = \alpha - a \tan\left(\frac{(L_1 + L_2)}{(h_1 - h_2)}\right)$$
(145)

No entanto, como a Eq. (144c) deve ser verdadeira para qualquer γ , a velocidade angular do sistema deve ser nula ($\dot{\alpha}$ =0). Desta forma, verifica-se que $\gamma_1 = \gamma_2 \Rightarrow \dot{\alpha} = 0$, logo nestes casos a segunda equação de restrição será:

$$\ddot{\alpha} = 0 \tag{146}$$

Portanto, as equações de restrições do sistema, considerando que as duas rodas do veículo estão em contato com o terreno, serão:

$$c_{11} \cdot \ddot{x}_c + c_{12} \ddot{y}_c + c_{13} \cdot \ddot{\alpha} = A_1 \tag{147}$$

$$c_{21} \cdot \ddot{x}_c + c_{22} \ddot{y}_c + c_{23} \cdot \ddot{\alpha} = \overline{A}_2$$
(148)

onde

$$c_{11} = g'_{1};$$

$$c_{12} = -1;$$

$$c_{13} = E_{1};$$

$$c_{21} = \begin{cases} g'_{2}, se \ \gamma_{1} \neq \gamma_{2} \\ 0, se \ \gamma_{1} = \gamma_{2} \end{cases};$$

$$c_{22} = \begin{cases} -1, se \ \gamma_{1} \neq \gamma_{2} \\ 0, se \ \gamma_{1} = \gamma_{2} \end{cases};$$

$$c_{23} = \begin{cases} E_{2}, se \ \gamma_{1} \neq \gamma_{2} \\ 1, se \ \gamma_{1} = \gamma_{2} \end{cases};$$

$$\overline{A}_{1} = A_{1};$$

$$\overline{A}_{2} = \begin{cases} A_{2}, se \ \gamma_{1} \neq \gamma_{2} \\ 0, se \ \gamma_{1} = \gamma_{2} \end{cases}.$$

As Equações (147) e (148) acima podem ser escritas de forma matricial da seguinte forma:

$$\overline{\overline{C}} \cdot \overline{\overline{X}} = \overline{\overline{A}} \tag{149}$$

com:

$$\overline{\overline{C}} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix};$$
$$\overline{A} = \begin{bmatrix} \overline{A}_1 & \overline{A}_2 \end{bmatrix}^T$$

2.6.2. Sistemas de Equações Resultantes

Unindo-se as equações (147) e (148) com as Equações (100) a (102) resulta no seguinte sistema de equações algébrico-diferenciais:

$$m \cdot \ddot{x}_{c} + N_{1} \cdot sen\gamma_{1} + N_{2} \cdot sen\gamma_{2} = Fat_{1} \cdot \cos\gamma_{1} + Fat_{2} \cdot \cos\gamma_{2}$$
(150)

$$m \cdot \ddot{y}_{c} - N_{1} \cdot \cos \gamma_{1} - N_{2} \cdot \cos \gamma_{2} = Fat_{1} \cdot sen\gamma_{1} + Fat_{2} \cdot sen\gamma_{2} - P(151)$$

$$I \cdot \ddot{\alpha} + d_{N_1} \cdot N_1 + d_{N_2} \cdot N_2 = d_{Fat_1} \cdot Fat_1 + d_{Fat_2} \cdot Fat_2$$
(152)

$$c_{11} \cdot \ddot{x}_c + c_{12} \ddot{y}_c + c_{13} \cdot \ddot{\alpha} = \overline{A_1}$$
(153)

$$c_{21} \cdot \ddot{x}_c + c_{22} \ddot{y}_c + c_{23} \cdot \ddot{\alpha} = A_2 \tag{154}$$

Que pode ser escrito matricialmente da seguinte forma:

$$M \cdot \ddot{\vec{X}} + A \cdot \vec{N} = B \cdot \vec{F}_{at} + \vec{u}$$
(155)

$$\stackrel{=}{C} \cdot \ddot{\vec{X}} = \vec{A}$$
(156)

onde

$$\vec{N} = \begin{bmatrix} N_1 & N_2 \end{bmatrix}^T;$$

$$\vec{F}_{at} = \begin{bmatrix} Fat_1 & Fat_2 \end{bmatrix}^T;$$

$$A = \begin{bmatrix} sen\gamma_1 & sen\gamma_2 \\ -\cos\gamma_1 & -\cos\gamma_2 \\ d_{N_1} & d_{N_2} \end{bmatrix};$$

$$B = \begin{bmatrix} \cos\gamma_1 & \cos\gamma_2 \\ sen\gamma_1 & sen\gamma_2 \\ d_{Fat_1} & d_{Fat_2} \end{bmatrix};$$

$$\vec{u} = \begin{bmatrix} 0 & -P & 0 \end{bmatrix}^T.$$

e M é a matriz de inércia do sistema, sendo que a mesma é diagonal positiva definida a sua inversa existe, logo da Eq. (155) tem-se:

$$\ddot{\vec{X}} = M^{-1} \cdot (B \cdot \vec{F}_{at} - A \cdot \vec{N} + \vec{u})$$
(157)

Substituindo (157) em (156), resulta:

$$\overline{\overline{C}} \cdot M^{-1} \cdot (B \cdot \overline{F}_{at} - A \cdot \overline{N} + \overline{u}) = \overline{A}$$
(158)

$$(\overline{\overline{C}} \cdot M^{-1} \cdot A) \cdot \overline{N} = (\overline{\overline{C}} \cdot M^{-1} \cdot B) \cdot \overline{F}_{at} - (\overline{\overline{C}} \cdot M^{-1} \cdot \overline{A})$$
(158a)

$$\vec{N} = (\overline{\vec{C}} \cdot M^{-1} \cdot A)^{-1} \cdot [(\overline{\vec{C}} \cdot M^{-1} \cdot B) \cdot \vec{F}_{at} - (\overline{\vec{C}} \cdot M^{-1} \cdot \overline{A})] (158b)$$

Definindo:

$$H \equiv (\overline{\overline{C}} \cdot M^{-1} \cdot A)^{-1} \cdot (\overline{\overline{C}} \cdot M^{-1} \cdot B)$$
(159)

$$\overline{U} \equiv -(\overline{\overline{C}} \cdot M^{-1} \cdot A)^{-1} \cdot (\overline{\overline{C}} \cdot M^{-1} \cdot \overline{A})$$
(160)

O valor do vetor das normais \vec{N} será dado por:

$$\vec{N} = H \cdot \vec{F}_{at} + \vec{U} \tag{161}$$

Substituindo o valor de \vec{N} dado pela Eq. (161) na Eq. (158), resulta em:

$$\vec{X} = M^{-1} \cdot [B \cdot \vec{F}_{at} - A \cdot (H \cdot \vec{F}_{at} + \overline{U}) + \vec{u}]$$
(162)

$$\ddot{\vec{X}} = M^{-1} \cdot (B - A \cdot H) \cdot \vec{F}_{at} + M^{-1} \cdot (\vec{u} - A \cdot \overline{U})$$
(162a)

Definindo:

$$G \equiv M^{-1} \cdot (B - A \cdot H) \tag{162b}$$

$$E \equiv M^{-1} \cdot (\vec{u} - A \cdot U) \tag{162c}$$

A Eq. (162a) acima fica:

$$\ddot{\vec{X}} = G \cdot \vec{F}_{at} + \overline{E}$$
(163)

Assim, através das Equações (161) e (163) acima é possível, respectivamente, calcular as forças normais e as acelerações agindo no sistema. Contudo, para se chegar a essas equações foram utilizadas as hipóteses de não deslizamento e não descolamento das rodas do veículo. No entanto, quando ocorrer deslizamento e/ou descolamento das rodas as Equações (161) e (163) acima continuarão válidas, sendo somente necessário alterar algumas matrizes que são empregadas para o cálculo das matrizes H, \overline{U} ,G e \overline{E} (como mostrado abaixo).

Se houver deslizamento em uma dada roda i, as matrizes A e B serão alteradas, sendo que a nova coluna i de cada uma delas será da seguinte forma:

$$A(:,i) = [sen\gamma_i + \mu_i * \cdot \cos\gamma_i - \cos\gamma_i + \mu_i * \cdot sen\gamma_i \quad d_{Ni} + \mu_i * \cdot d_{Fat_i}]^T (164)$$
$$B(:,i) = [0 \quad 0 \quad 0]^T$$
(165)

onde

A(:,i) – coluna i da matriz A;

B(:,i) – coluna i da matriz B.

 $\mu_i^* = -sign(Fat_i) \cdot \mu_i;$

 μ_i = coeficiente de atrito entre a roda i e o solo.

Para o caso em que somente uma roda i esteja em contato com o terreno, as matrizes A, B, $\overline{\overline{C}}$ e $\overline{\overline{A}}$ deverão ser alteradas para o seguinte:

$$A = \begin{bmatrix} sen \gamma_i & -\cos \gamma_i & d_{N_i} \end{bmatrix}^T$$
(166)

$$B = \begin{bmatrix} \cos \gamma_i & sen \gamma_i & d_{Fat_i} \end{bmatrix}^T$$
(167)

$$\overline{\overline{C}} = \begin{bmatrix} g'_i & -1 & E_i \end{bmatrix}$$
(168)

$$A = [A_i] \tag{169}$$

Já para o caso em que nenhuma roda esteja em contato com o solo, não existirão forças normais atuando sobre o veículo, e as acelerações do sistema serão dadas por:

$$\vec{\bar{X}} = M^{-1} \cdot \vec{u} \tag{170}$$

Em suma, conforme visto acima, as equações que regerão o movimento do veículo serão as seguintes:

a) Se houver ao menos uma roda em contato com o solo, as normais (normal)
 e as acelerações do sistema serão dadas por:

$$\vec{N} = H \cdot \vec{F}_{at} + \overline{U} \tag{171}$$

$$\ddot{\vec{X}} = G \cdot \vec{F}_{at} + \overline{E} \tag{172}$$

 b) Se o veículo não estiver em contato com o solo, não existirão normais, e as acelerações do sistema são calculadas da seguinte forma:

$$\vec{X} = M^{-1} \cdot \vec{u} \tag{173}$$

Assim, uma vez especificados os torques nas rodas e conhecido o perfil do terreno, podem-se obter todas as forças normais e acelerações do sistema, permitindo sua simulação, como será visto no Capítulo 5. Note que esse modelo assumiu suspensão rígida no veículo. O próximo capítulo apresenta uma formulação similar para o caso de suspensão flexível independente.