

Anilton Coelho da Costa Júnior

Determinação de platina proveniente de substâncias antineoplásicas em urina por GF AAS e HR-CS F AAS

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Química da PUC-Rio.

Orientador: Prof. Dr. Reinaldo Calixto de Campos Co-orientador: Prof. Dr. Aderval Severino Luna

> Rio de Janeiro Agosto de 2007

Anilton Coelho da Costa Júnior

Determinação de platina proveniente de substâncias antineoplásicas em urina por GF AAS e HR-CS F AAS

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Química da PUC - Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Dr. Reinaldo Calixto de Campos
Orientador PUC – Rio

Prof. Dr. Aderval Severino Luna Departamento de Química – UERJ

Prof. Dr. Josino Moreira da Costa ENSP – Fiocruz

Prof. Dr. Ricardo Queiroz Aucélio Departamento de Química – PUC-Rio

Prof. José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 17 de agosto de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Anilton Coelho da Costa Júnior

Graduou-se em Licenciatura em Química pela Universidade do Estado do Rio de Janeiro (2005). Atualmente é professor substituto do Centro Federal de Educação Tecnológica de Química de Nilópolis/RJ.

Ficha Catalográfica

Costa Júnior, Anilton Coelho da

Determinação de platina proveniente de substâncias antineoplásicas em urina por GF AAS e HR-CS F AAS / Anilton Coelho da Costa Júnior; orientador: Reinaldo Calixto de Campos; coorientador: Aderval Severino Luna. – 2007.

111 f.: il.; 30 cm

Dissertação (Mestrado em Química)— Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia

CDD: 540

Ao meu querido Deus, pela vida e energia de todos os dias. Aos meus tão amados pais Anilton e Nilzabete, e à minha querida irmã Lúcia, por formarem uma família sempre unida no amor, mesmo que à distância, em todos os momentos de nossas vidas.

Agradecimentos

Aos professores Dr. Reinaldo Calixto de Campos e Dr. Aderval Severino Luna, por suas dedicações e orientações.

A todos os meus familiares pelo constante apoio.

Aos meus amigos, especialmente Mariela e Cláudio, que tanto me estimularam e ajudaram.

A todos aqueles que contribuíram para este trabalho, principalmente os que forneceram amostras de urina livres de platina, pela fundamental colaboração.

Aos professores, funcionários e colegas do Departamento de Química da PUC-Rio, pelas colaborações.

Aos professores da Comissão Examinadora.

Ao técnico Rodrigo, pelo constante apoio no labortatório de AAS.

À Capes, FAPERJ, CNPq e FINEP pela ajuda financeira.

Resumo

Costa Junior, Anilton Coelho da; Campos, Reinaldo Calixto de; Luna, Aderval Severino. Estudo da determinação de platina proveniente de compostos oncolíticos em urina por técnicas óticas de espectrometria atômica. Rio de Janeiro, 2007. 111p. Dissertação de Mestrado - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Devido à sua capacidade de inibição do processo de divisão celular, complexos de platina têm sido empregados na quimioterapia do câncer desde o final da década de 60, sendo a cisplatina e a carboplatina as formas mais utilizadas. Estudos farmacocinéticos e a estimativa da quantidade de platina acumulada no organismo durante o tratamento quimioterápico ou devido à exposição ao metal têm sido alvo de grande interesse. Logo, são necessários métodos analíticos adequados para o monitoramento de platina em amostras clínicas, apropriados para essas diferentes substâncias. No presente trabalho, foram desenvolvidos procedimentos analíticos rápidos, simples e exatos para determinação direta de platina, na forma de cisplatina e carboplatina, em urina humana, utilizando a espectrometria atômica. No caso da absorção atômica em forno de grafite, o programa de temperatura, o volume de amostra e a concentração do diluente (HNO₃) foram definidos por um planejamento composto central. Nas condições otimizadas, os resultados obtidos pelo procedimento proposto não apresentaram diferenças estatisticamente significativas daqueles obtidos por procedimentos comparativos independentes, na análise de amostras de urina de paciente submetido ao tratamento com cisplatina. A calibração foi realizada por adição de analito, com PtCl₂. Com a adição de NaCl ao meio diluente, os efeitos multiplicativos de matriz puderam ser contornados, permitindo a calibração externa com soluções de calibração preparadas no mesmo meio que o branco, utilizando sais inorgânicos de platina. Melhor sensibilidade também foi obtida, e recuperações de 98±4% foram observadas para os vários níveis de concentração estudados, assim como coeficientes de variação de 1 a 10%, tanto para a cis como para a carboplatina. O limite de detecção (n=10, k=3) foi de 4 µg L⁻¹ de Pt na amostra original. A espectrometria de absorção atômica com fonte contínua de alta resolução na chama (HR-CS F AAS) também foi estudada. As condições da chama foram definidas por um planejamento multivariado D-optimal, tomando-se como resposta a soma dos coeficientes angulares das curvas de adição de analito em três urinas diferentes, assim como o desvio padrão relativo dessas inclinações. O limite de detecção foi de 55 µg L⁻¹ (n=10, k=3), na amostra original, em Pt, cerca de uma ordem de grandeza melhor do que aquele obtido utilizando-se um equipamento de fonte de linhas. Calibração externa, com soluções de calibração em urina livre de Pt, utilizando sal inorgânico de platina (PtCl₂), foi possível, e os resultados obtidos por HR-CS F AAS não se mostraram significativamente diferentes daqueles encontrados por procedimentos comparativos independentes.

Palavras-chave

Urina, platina, GFAAS, HR-CS F AAS, cisplatina, carboplatina.

Abstract

Costa Junior, Anilton Coelho da; Campos, Reinaldo Calixto de; Luna, Aderval Severino. **Determination of platinum derived from anti-cancer drugs in urine samples by atomic absorption spectrometry.** Rio de Janeiro, 2007. 111p. Dissertação de Mestrado - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Platinum coordination compounds have been used in cancer chemotherapy since the late 1960s. Cisplatin and carboplatin are the most common platinum based drugs used in cancer treatment. Pharmacokinetics investigations, the determination of the body burden during the treatment as well as the baseline levels of platinum in humans has attracted great interest. Thus, accurate analytical methods for fast and easy platinum monitoring in clinical samples are necessary. In the present work, atomic spectrometric methods for the direct determination of platinum as cisplatin and carboplatin in human urine were investigated. In relation to Graphite Furnace Atomic Absorption Spectrometry the optimum temperature program, sample volume and diluent concentration were defined by a central composite design optimization. Analyte addition with PtCl₂ was used for calibration, and no statistically significant difference was observed between the results obtained by the proposed and comparative procedures in the analysis of a set of urine samples. Multiplicative matrix effects were overcome by adding NaCl to the diluent solution. External calibration with PtCl₂ in blank matched medium was then possible. The recoveries were 100±1%, and the coefficient of variation ranged from 1 to 10%. The limit of detection (LOD) was 4 ug L⁻¹ of Pt in the original urine sample. High resolution continuous source flame atomic absorption spectrometry was also investigated. The flame conditions were optimized by a multivariate D-optimal design, taking as response the sum of the analyte addition calibration slopes and their standard deviation. The LOD was 55 μg L⁻¹ (n=10, k=3), in the original sample. Matrix matched external calibration with PtCl₂, was possible, and the results obtained by the proposed procedure were also in good agreement with those obtained by independent comparative procedures.

Keywords

Urine, platinum, GFAAS, HR-CS AAS, cisplatinum, carboplatinum.

Sumário

1 Introdução	17
1.1. Monitoramento Biológico	20
1.1.1. Análise de urina: monitoramento biológico	20
1.2. Pré-tratamento de amostra: determinação de platina em amostras	
clínicas	22
1.3. Técnicas instrumentais utilizadas na determinação de platina total	
em amostras biológicas	23
1.3.1. Espectrometria de massas com fonte de plasma indutivamente	
acoplado (ICP MS)	24
1.3.2. Espectrometria de emissão atômica com fonte de plasma	
indutivamente acoplado (ICP OES)	25
1.3.3. Ativação por Nêutrons (NAA)	25
1.3.4. Voltametria Adsortiva (AV)	26
1.3.5. Espectrometria de Absorção Atômica (AAS)	27
1.3.6 Espectrometria de Absorção Atômica de Alta Resolução	
com Fonte Contínua (HR-CS AAS)	29
1.3.6.1 Instrumentação	29
1.3.6.2 Correção de Fundo	32
1.4 Outras Técnicas	34
2 Objetivos	35
	00
3 Parte experimental	36
3.1. Equipamentos	36
3.2. Soluções, Reagente e Materiais	37
4 Procedimentos	38
4.1. Amostragem e estocagem de amostras	38
4.2. Metodologia	38
4.2.1. Otimização multivariada nos estudos com GF AAS	38
4.2.2. Procedimentos de calibração nos estudos com GF AAS	39

4.2.3. Estudos de exatidão em GF AAS	40
4.2.4. Efeito do uso da solução mista de NaCl e HCl nos estudos	
com GF AAS	40
4.2.5. Efeito da concentração do ácido nos estudos com CS-HR F AAS	40
4.2.6. Otimização multivariada das condições da chama e da	
altura do queimador nos estudos com CS-HR F AAS	41
4.2.7. Procedimentos de calibração nos estudos com CS-HR F AAS	41
4.2.8. Estudos de exatidão	41
5 Resultados e discussões	42
5.1. Estudos com GF AAS	42
5.1.1. Otimização multivariada	42
5.1.2. Procedimentos de calibração	73
5.1.3. Linearidade e limite de detecção	77
5.1.4. Estudos de exatidão	79
5.1.5. Efeito do uso da solução mista de NaCl e HCl	81
5.1.5.1. Estudos de calibração	81
5.1.5.2. Estudos de recuperação	82
5.1.5.3. Parâmetros analíticos de mérito	84
5.2. Determinação de Pt por espectrometria de absorção atômica	
de alta resolução com fonte contínua na chama	86
5.2.1. Efeito da concentração do ácido	86
5.2.2. Otimização multivariada	88
5.2.3. Procedimentos de calibração	97
5.2.4. Parâmetros analíticos de mérito	98
5.2.5. Estudos de exatidão	101
6 Conclusões	102
7 Referencias hibliográficas	104

Lista de Tabelas

Tabela 1 - Variáveis estudadas com os respectivos níveis no	
planejamento fatorial fracionário 2 ⁷⁻²	42
Tabela 2 - Combinação entre as variáveis e os respectivos	
resultados de absorvância, para a medida de 200 μg L-1 de Pt	
em urina, no planejamento fatorial fracionário 2 ⁷⁻²	43
Tabela 3 - Estimativa dos efeitos e coeficientes para o planejamento	
fatorial fracionário 2 ⁷⁻²	45
Tabela 4 - ANOVA para o planejamento fatorial fracionário 2 ⁷⁻²	47
Tabela 5 - Variáveis estudadas com os respectivos níveis no	
planejamento fatorial completo 2 ⁴⁻⁰	48
Tabela 6 - Combinações entre as variáveis e os respectivos	
resultados de absorbância no planejamento 2 ⁴⁻⁰	49
Tabela 7 - Estimativa dos efeitos e coeficientes para o planejamento	
fatorial completo 2 ⁴⁻⁰	52
Tabela 8 - ANOVA para o planejamento fatorial completo 2 ⁴⁻⁰	53
Tabela 9 - Variáveis estudadas com os respectivos níveis no terceiro	
experimento	55
Tabela 10 - Combinações entre as variáveis e os respectivos	
resultados de absorvância no terceiro planejamento	56
Tabela 11 - Estimativa dos efeitos e coeficientes para o terceiro	
planejamento	59
Tabela 12 - ANOVA para o terceiro planejamento	61
Tabela 13 - Variáveis estudadas com os respectivos níveis no	
planejamento composto central	62
Tabela 14 - Combinações entre as variáveis e os respectivos	
resultados de absorvância no planejamento composto central	62
Tabela 15 - Estimativa dos efeitos e coeficientes para o planejamento	
composto central	65
Tabela 16 - ANOVA para o planejamento composto central	66
Tabela 17 - Coeficientes de regressão para o planejamento	
composto central	67
Tabela 18 - Faixa dos valores estudados e o valor crítico	72
Tabela 19 - Programa de temperatura otimizado	73

Tabela 20 - Inclinações das curvas de adição de analito (μg L ⁻¹ s ⁻¹)	
em urina e razões de inclinação entre estas curvas e a curva	
aquosa (m _{amostra} /m _{aq})	76
Tabela 21. Inclinações das curvas de adição de analito (μg L ⁻¹ s ⁻¹)	
em urina e razões de inclinação entre estas curvas e a curva	
aquosa (m _{meio} /m _{aq}), utilizando Triton X-100	76
Tabela 22. Análise da variância para o ajuste do modelo linear	
aos dados que geraram a figura 17	78
Tabela 23. Concentrações de platina total (mg L ⁻¹) em amostras de urina	
de um paciente submetido ao tratamento quimioterápico com cisplatina,	
determinadas pela metodologia desenvolvida neste trabalho e por	
metodologias comparativas	80
Tabela 24. Análise da variância para o ajuste do modelo linear aos	
dados que geraram a figura 20	85
Tabela 25. Variáveis estudadas com os respectivos níveis na primeira	
rodada do planejamento D-optimal	88
Tabela 26. Combinações entre as variáveis e os respectivos resultados de	
absorbância na primeira rodada do planejamento d-optimal	88
Tabela 27. ANOVA para a primeira rodada de experimentos do planejamento	
D-optimal tomando-se a soma das inclinações das curvas de adição de	
analito em urina como resposta e ajustando o modelo linear	89
Tabela 28. ANOVA para a primeira rodada de experimentos do	
planejamento D-optimal tomando-se o desvio padrão das inclinações	
das curvas de adição de analito em urina como resposta e ajustando	
o modelo linear	90
Tabela 29. Variáveis estudadas com os respectivos níveis na segunda	
rodada do planejamento D-optimal	91
Tabela 30. Combinações entre as variáveis e os respectivos resultados de	
absorbância na segunda rodada do planejamento D-optimal	92
Tabela 31. ANOVA para a segunda rodada de experimentos do	
planejamento D-optimal tomando-se a soma das inclinações das curvas de	
adição de analito em urina como resposta e ajustando o modelo quadrático	93
Tabela 32. ANOVA para a segunda rodada de experimentos do	
planejamento D-optimal tomando-se o RSD% das inclinações das	
curvas de adição de analito em urina como resposta e ajustando	
o modelo quadrático	94

Tabela 33. Análise da variância para o ajuste do modelo linear aos dados	
da variação da absorvância com a concentração de platina em urina	
utilizando o equipamento de HR-CS AAS	100
Tabela 34. Análise da variância para o ajuste do modelo linear aos dados	
da variação da absorvância com a concentração de platina em urina	
utilizando o equipamento de LS AAS	100
Tabela 35. Concentrações de platina total (mg L ⁻¹) em amostras de urina	
de um paciente submetido ao tratamento quimioterápico com cisplatina	
determinadas pela metodologia desenvolvida neste trabalho e pelas	
metodologias comparativas	101

Lista de Figuras

Figura 1. Fórmula estrutural da cisplatina	17
Figura 2. Fórmula estrutural dos análogos de platina de 2ª geração:	
carboplatina (a), oxaliplatina (b) e nedaplatina (c)	18
Figura 3. Representação esquemática de um HR-CS AAS.	30
Figura 4. "The Dream of the spectrochemist – to look under the line"	32
Figura 5. Diagrama de Pareto no planejamento fatorial fracionado 2 ⁷⁻²	46
Figura 6. Diagrama de Pareto no planejamento fatorial completo 2 ⁴⁻⁰	54
Figura 7. Comparação das curvas de nível: (a) curva de nível	
referente ao segundo planejamento e (b) curva de nível referente	
ao terceiro planejamento	60
Figura 8. Diagrama de Pareto para o planejamento composto central	67
Figura 9. Valores observados x valores previstos	68
Figura 10. Valores previstos x resíduos.	69
Figura 11. Valores observados x resíduos.	69
Figura 12. Superfície de Resposta: (a) BxC, E fixado no valor crítico;	
(b) BxE, C fixado no valor crítico e (c) CxE, B fixado no valor crítico	71
Figura 13. Perfil dos valores previstos/otimizados e da desejabilidade	
para o planejamento composto central	72
Figura 14. Curvas de calibração de platina na forma de Pt ²⁺ em água	
(♦) e em urina com solução de HNO₃ (■). Condições de análise	
conforme tabela 19	74
Figura 15. Curvas de adição de analito em urina, com Pt na forma de	
PtCl₂ (♦), carboplatina (■) e cisplatina (△). Condições de análise	
conforme tabela 19	75
Figura 16. Curvas de adição de analito em diferentes amostras de urina,	
com a platina adicionada na forma de Pt²+; (♦) urina 1, (■) urina 2,	
(▲) urina 3, (x) urina 4, (*) urina 5, (♦) urina 6 , (▷) urina 7, (-) urina 8,	
() urina 9 e (▲) urina 10. Condições de análise conforme tabela 19.	75
Figura 17: Variação da absorvância integrada com a concentração	
de platina (na forma de Pt²+) em urina, utilizando GF AAS, nas condições	
descritas na tabela 19 (y = 0.3064 , $R^2 = 0.994$)	78

Figura 18. Curvas analíticas de platina em solução aquosa de NaCl	
0,15 mol L ⁻¹ e HCl 0,20 mol L ⁻¹ e em diferentes amostras de urina diluídas	
1+1 com NaCl 0,30 mol L⁻¹ + HCl 0,40 mol L⁻¹: (♦) PtCl₂ em solução	
aquosa; (■) PtCl₂ na urina 1; (▲) PtCl₂ na urina 2, (x) PtCl₂ na urina 3,	
(□) PtCl ₂ na urina 4, (♦) PtCl ₂ na urina 5, (+) PtCl ₂ na urina 6, (-) PtCl ₂	
na urina 7, () PtCl₂ na urina 8, (•) PtCl₂ na urina 9, (■) PtCl₂ na urina 10,	
(▲) cisplatina na urina 1, (x) cisplatina na urina 2, (□) cisplatina na urina 3,	
(*) cisplatina na urina 4, (+) cisplatina na urina 5, (-) cisplatina na urina 6,	
() cisplatina na urina 7, (■) cisplatina na urina 8, (▲) cisplatina na urina 9,	
(x) cisplatina na urina 10, (□) carboplatina na urina 1, (♦) carboplatina na	
urina 2, (+) carboplatina na urina 3, (-) carboplatina na urina 4,	
() carboplatina na urina 5, (■) carboplatina na urina 6, (▲) carboplatina na	
urina 7, (x) carboplatina na urina 8, (□) carboplatina na urina 9 e	
(♦) carboplatina na urina	82
Figura 19. Relação entre as concentrações recuperada e de fortificação,	
para níveis entre 100 e 800 μ g L ⁻¹ de Pt (y = 0,993x, R ² = 0,999)	83
Figura 20. Faixa linear de platina em solução contendo NaCl 0,3 mol L ⁻¹	
$(y = 0.00064x, R^2 = 0.955)$	84
Figura 21. Curvas de calibração de platina inorgânica em água (♦)	
e em diferentes amostras de urina: urina 1 (■), urina 2 (△) e urina 3 (x);	
diluente HCl 1% v/v	87
Figura 22. Curvas de calibração de platina inorgânica em água (♦) e em	
diferentes amostras de urina: urina 1 (■), urina 2 (△) e urina 3 (x);	
diluente HCl 2% v/v	87
Figura 23. Gráfico de desejabilidade para a primeira rodado do	
planejamento D-optimal	91
Figura 24. Curva de nível da soma das inclinações das curvas de adição de	
analito em função da vazão de acetileno e da altura do queimador para a	
segunda rodada de experimentos do planejamento D-optimal	95
Figura 25. Curva de nível da soma das inclinações das curvas de adição de	
analito em função da vazão de acetileno e da altura do queimador para a	
segunda rodada de experimentos do planejamento D-optimal	95
Figura 26. Gráfico de desejabilidade para a segunda rodada de	
experimentos do planejamento D-optimal	96
Figura 27. Curvas de calibração de platina inorgânica solução de	

HCl 1% v/v (♦) e em urina diluída 1+1 com HCl 2% (■)	97
Figura 28. Curvas analíticas das três espécies de platina em diferentes	
amostras de urina. (♦) PtCl₂ na urina 1 (■) PtCl₂ na urina 2, (△) PtCl₂	
na urina 3, (x) $PtCl_2$ na urina 4, (\square) $PtCl_2$ na urina 5, (\blacklozenge) $PtCl_2$ na urina 6,	
(+) PtCl₂ na urina 7, (-) PtCl₂ na urina 8, () PtCl₂ na urina 9, (•) PtCl₂	
na urina 10, (■) cisplatina na urina 1, (▲) cisplatina na urina 2, (ҳ) cisplatina	
na urina 3, (□) cisplatina na urina 4, (♦) cisplatina na urina 5, (+) cisplatina	
na urina 6, (-) cisplatina na urina 7, () cisplatina na urina 8, (■) cisplatina	
na urina 9, (▲) cisplatina na urina 10, (x) carboplatina na urina 1,	
(□) carboplatina na urina 2, (♦) carboplatina na urina 3, (+) carboplatina	
na urina 4, (-) carboplatina na urina 5, () carboplatina na urina 6,	
(■) carboplatina na urina 7, (▲) carboplatina na urina 8, (x) carboplatina	
na urina 9 e (□) carboplatina na urina 10	98
Figura 29. Variação da absorvância com a concentração de platina	
(na forma de Pt²+) em urina utilizando: HR-CS AAS (■) e LS AAS (♦)	99