

Ana Luiza de Andrade Rocha

Estudo Microanalítico da Precipitação de Micro e Nanopartículas Magnéticas em Ligas Diluídas de Cu-Co

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Engenharia Metalúrgica e de Materiais pelo Programa de Pós-graduação em Engenharia Metalurgia do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio.

Orientador: Ivan Guillermo Solórzano-Naranjo

Rio de Janeiro Abril de 2007

ANA LUIZA DE ANDRADE ROCHA

Estudo Microanalítico da Precipitação de Micro e Nanopartículas Magnéticas em Ligas Diluídas de Cu-Co

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Engenharia Metalúrgica e de Materiais pelo Programa de Pós-Graduação em Engenharia Metalúrgica do Departamento de Ciência dos Materiais e Metalurgia da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Ivan Guillermo Solórzano-Naranjo

Orientador Departamento de Ciência dos Materiais e Metalurgia – PUC - Rio

Prof. Roberto Ribeiro de Avillez Departamento de Ciência dos Materiais e Metalurgia – PUC - Rio

Profa. Ivani de S. Bott

Departamento de Ciência dos Materiais e Metalurgia - PUC - Rio

Prof. André Luiz Pinto

Instituto Militar de Engenharia - IME

Prof. Ruben Rosenthal

Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF

Prof. José Eugenio Leal

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico da PUC-Rio

Rio de Janeiro, 20 de abril de 2007.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem a autorização da universidade, do autor e do orientador.

Ana Luiza de Andrade Rocha

Engenheira Metalúrgica formada pela Universidade Estadual do Norte Fluminense (UENF), com Mestrado em Ciência dos Materiais na PUC-Rio e estágio de doutorado-sanduíche na Arizona State University, EUA. Participou de diversos congressos e possui publicações na área de microscopia eletrônica.

Ficha Catalográfica

Rocha, Ana Luiza de Andrade

Estudo microanalítico da precipitação de micro e nanopartículas magnéticas em ligas diluídas de Cu-Co / Ana Luiza de Andrade Rocha ; orientador: Guillermo Solórzano. – 2007.

120 f. : il. ; 30 cm

Tese (Doutorado em Ciência dos Materiais e Metalurgia)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007. Inclui bibliografia

1. Metalurgia – Teses. 2. Ligas Cu-Co; nanopartículas. 3. Precipitação. 4. Microscopia eletrônica de transmissão. I. Solórzano, Guillermo. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Ciência dos Materiais e Metalurgia. III. Título.

CDD: 669

Agradecimentos

Ao professor e orientador Guillermo Solórzano pelo estímulo e oportunidade de realizar este trabalho.

Ao professor David Smith da Arizona State University que proporcionou acesso ao "John M. Cowley Center for High Resolution Electron Microscopy" e muito contribuiu para a realização deste trabalho através do projeto CIAM. Agradeço também a Prof. Molly McCartney e aos colegas David Cullen e Virgil Soloman da Arizona State University, pela ajuda com alguns procedimentos experimentais.

A colega do DCMM Daniela Werneck pela ajuda na síntese da liga nanométrica.

Ao professor Roberto Avillez pela ajuda com aspectos termodinânicos tratados neste trabalho.

A professora Elisa Saitovitch e Yutao Xing, ambos do CBPF, pela realização de medidas magnéticas.

Aos funcionários do DCMM, em especial a Luzinete, pelo inestimável apoio técnico e amizade durante todo o doutorado.

Aos colegas do DCMM pela amizade e incentivo constante.

Aos meus pais, pelo apoio e carinho em todos os momentos.

Ao CNPq e a Capes pelo suporte financeiro.

Resumo

Rocha, Ana Luiza; Solórzano, Guillermo. **Estudo microanalítico da precipitação de micro e nanopartículas magnéticas em ligas diluídas de Cu-Co.** Rio de Janeiro, 2007. 120p. Tese de Doutorado – Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

Os processos de decomposição isotérmica em ligas diluídas Cu-Co foram investigados por microscopia eletrônica analítica de transmissão com espectroscopia EDS e EELS. A precipitação de partículas ferromagnéticas de Co na matriz de Cu foi revelada por uma variedade de modalidades: contraste de difração e microscopia eletrônica de alta resolução em MET, campo escuro anular em STEM, imagem de energia filtrada e holografia de elétrons. Partículas esféricas coerentes variando entre 10 e 40 nm em diâmetro foram consistentemente observadas desde os primeiros estágios de precipitação. Durante envelhecimento, os precipitados crescem monotonicamente, a energia de desajuste entre o precipitado de Co e a matriz de Cu aumenta significativamente o que, ocasionalmente, resulta na perda de coerência da interface. A precipitação homogênea de partículas incoerentes foi resultado de um duplo tratamento térmico, formando cristais maiores e facetados. No modo de decomposição heterogênea, foi estudada a cinética de precipitação descontínua que desenvolve colônias de partículas em forma de bastonetes regularmente espaçadas e alinhadas perpendicularmente em relação ao contorno de grão. Estes bastonetes perdem estabilidade formando cadeias alinhadas de partículas esféricas. Foi calculada a difusividade intergranular com valores duas ordens de grandeza mais elevadas que a difusividade na matriz neste sistema. Medidas magnéticas indicam a transição de fase do estado superparamagnético para ferromagnético e que a temperatura de transição aumenta com o teor de Co na liga.

Palavras-chave

Ligas Cu-Co; nanopartículas; precipitação; microscopia eletrônica de transmissão

Abstract

Rocha, Ana Luiza; Solórzano, Guillermo. **Microanalytical study of magnetic micro and nanoparticles precipitated in dilute Cu-Co alloys.** Rio de Janeiro, 2007. 120p. Doctoral Thesis – Departament of Materials Science and Metallurgy, Pontifical Catholic University of Rio de Janeiro.

The isothermal decomposition processes of dilute Cu-Co bulk alloys have been investigated by means of analytical transmission electron microscopy. The precipitation of ferromagnetic Co particles in non-magnetic Cu matrix after aging treatments was revealed by a variety of electron-microscopy techniques: TEM diffraction contrast, high resolution electron microscopy, annular dark field STEM, energy filtered imaging and electron holography. Homogeneous spherical particles ranging from 10 to 40 nm in diameter were consistently observed from the early stages of precipitation. Precipitates grow monotonic upon aging, the lattice misfit energy between Co particles and Cu matrix increases significantly, which can further result in coherency loss of the precipitate/matrix. The precipitation of homogeneous incoherent particles was a result of double aging treatment, forming well developed and faceted crystals. In the heterogeneous decomposition mode, the kinetics of discontinuous precipitation colonies consisting of regularly-spaced rod-like particles aligned perpendicular to the grain boundary reaction front was studied. Upon further growth, these rods break down into chains of aligned particles. Intergranular diffusion models of lamellar discontinuous precipitation were found to be inadequate to apply in this alloy system. However, calculated grain boundary diffusivity indicated values two orders of magnitude higher than lattice diffusivity in this system. Magnetic measurements indicate a phase transformation from super paramagnetic to ferromagnetic, and the temperature of this transformation increases with the alloy Co composition.

Keywords

Cu-Co alloys; nanoparticles; precipitation; transmission electron microscopy

Sumário

1. Introdução	18
2. Revisão Bibliográfica	20
2.1. Precipitação Homogênea	.20
2.1.1. Variação da energia livre associada com a formação do núcleo	.21
2.1.2. O papel das interfaces na nucleação no estado sólido	.24
2.1.3. Anisotropia da energia superficial e teorema Gibbs-Wulff	. 29
2.2. Precipitação Heterogênea	.32
2.2.1. O fenômeno da precipitação descontínua	.32
2.2.2. Mecanismos de iniciação e crescimento da precipitação descontínua	.35
2.2.3. Modelos cinéticos para precipitação descontínua	.38
2.3. Comportamento Magnético	42
2.3.1. O sistema Cu-Co	.43
2.4. Microscopia Eletrônica de Transmissão	46
2.4.1. Fundamentos do MET	46
2.4.2. Microanálise no MET/STEM	53
2.4.3. Holografia de elétrons	56
3. Procedimento Experimental	. 59
3.1. Material Utilizado	59
3.2. Tratamentos Térmicos	60
3.3. Ensaios Magnéticos	62
3.4. Ensaios de Microdureza	62
3.5. Análise Metalográfica no MO e MEV	63
3.6. Preparação de amostras para Microscopia Eletrônica de Trasmissão	.63
3.7. Estudos por MO/MET	65
3.8. Estudos por MET	65
4. Resultados e Discussão	67
4.1. Aspectos Estruturais /Morfológicos	67

4.1.1. Estrutura policristalina da solução sólida	67
4.1.2. Precipitação homogênea	68
4.1.3. Precipitação heterogênea	81
4.2. Microanálise	91
4.3. Aspectos termodinâmicos e cinéticos da precipitação descontínua	101
4.4. Holografia de elétrons	
4.5. Propriedades magnéticas	106
4.6. Caracterização da liga Cu-Co produzida por rota química	109
5. Conclusões	114
6. Sugestões para Trabalhos Futuros	116
7. Referências Bibliográficas	117

Lista de Figuras

Figura 2.1 - Variação da energia livre durante precipitação. A força motriz para	
nucleação dos primeiros precipitados é $\Delta G_n = \Delta G_v V_m$. ΔG_o é o decréscimo total em	
energia livre quando a precipitação é completa e o equilíbrio é alcançado	21
Figura 2.2 – Gráfico da energia livre em função do raio do precipitado	23
Figura 2.3 – Gráfico da energia livre em função da temperatura	24
Figura 2.4 – O desajuste da rede em duas direções (δ_1 e δ_2) pode ser acomodado	
por discordâncias com espaçamento $D_1 = b_1/\delta_1 e D_2 = b_2/\delta_2$	26
Figura 2.5 – Tipos de interfaces: a) coerente b) semicoerente e c)	
incoerente	28
Figura 2.6 – Possíveis morfologias para precipitados no contorno de grão:	
interfaces incoerentes curvadas suavemente e interfaces coerentes e semicoerentes	
planares	28
Figura 2.7 – O modelo de ligações quebradas para energia superficial	29
Figura 2.8 – Variação da energia superficial em função do ângulo θ da Fig. 2.7	30
Figura 2.9 – (a) Uma possível seção $(1\overline{1}0)$ a partir do gráfico γ de um cristal CFC.	
O comprimento AO representa a energia livre do plano superficial cuja normal é	
horizontal a direção AO. Assim OB = $\gamma_{(001)}$, OC = $\gamma_{(111)}$, etc. (b) a morfologia de	
equilíbrio em três dimensões mostrando {100} (faces quadradas) e {111} (faces	
hexagonais)	31
Figura 2.10 – Parte de um diagrama de fases genérico, apresentando a transição	
sofrida durante a precipitação descontínua, indo da região monofásica α_o para a	
bifásica $\alpha + \beta$.	33
Figura 2.11 – Esquema dos tipos de morfologias desenvolvidas na precipitação	
descontínua: (a) lamelar e (b) bastonetes. O vetor o indica a direção e o sentindo da	
velocidade de crescimento	33
Figura 2.12 – Perfil de concentração de soluto à frente da interface entre a região	
transformada (à esquerda da linha vertical) e a não transformada (à direita da	
linha): (a) reação controlada por difusão via contorno de grão (interfacial); e (b)	
reação controlada por difusão pela rede (volumétrica)	34

Figura 2.13 – Mecanismo de Tu e Turnbull [24] para a iniciação da precipitação	
descontínua a partir de um contorno de grão inicialmente ocupado	36
Figura 2.14 – Mecanismo de Fournelle e Clark [25] para a precipitação descontínua	
a partir de um contorno de grão inicialmente não ocupado	36
Figura 2.15 - Mecanismo de Solórzano e Lopez [26] para a iniciação da	
precipitação descontínua a partir de um contorno de grão inicialmente não	
ocupado	37
Figura 2.16 – Diagrama de fases Cu-Co	43
Figura 2.17 - Mecanismo de contraste massa-espessura em uma imagem campo	
claro. As áreas mais espessas ou de maior massa (mais escuras) irão espalhar mais	
elétrons fora do eixo do que as regiões menos espessas ou de menor massa (mais	
claras)	47
Figura 2.18 - Esquema geral apresentado duas operações básicas do sistema de	
imagem do MET involvendo: (a) a projeção da figura de difração na tela; e (b)	
projeção da imagem na tela	48
Figura 2.19 - Comparação do uso de uma abertura objetiva no MET para	
selecionar: (a) elétrons transmitidos ou (b) elétrons difratados formando uma	
imagem em campo claro e campo escuro respectivamente. No modo METV utiliza-	
se: (c) um detector de eixo ou (d) um detector anular para executar operações	
equivalentes as descritas para MET	51
Figura 2.20 - O contraste de fase é causado pelo padrão de interferência após o	
espalhamento incoerente dos elétrons	52
Figura 2.21 – Padrão de interferência mostrando os diferentes tipos de franjas	
moiré. Note que o espaçamento pode ser calculado mesmo sem que as posições	
atômicas sejam resolvidas na imagem: (a) translacional, (b) rotacional e (c)	
mista	53
Figura 2.22 – Interface EDS/MET mostrando a detecção de raios-X desejáveis	
(interação feixe-amostra) e indesejáveis (provenientes de regiões do	
microscópio)	55
Figura 2.23 – Caminhos da radiação por um prisma magnético apresentando a ação	
das lentes focalizadoras num plano normal ao espectrômetro	56
Figura 2.24 – Ilustração esquemática da configuração do microscópio para	
holografia "off-axis". Uma fonte de emissão de campo produz um feixe de elétrons	

coerente incidente na amostra. Biprisma eletrostático abaixo da amostra causa sobreposição da onda do vácuo (referência) sobre a onda do objeto. Direita: fotografia do microscópio eletrônico Philips CM-200 equipado com fonte de emissão de campo, minilentes Lorentz abaixo da lente objetiva possibilitando observação de amostras magnéticas em campo livre, um biprisma eletrostático e uma camera CCD para gravação dos hologramas...... 58 Figura 3.1 – Pastilhas Cu-Co após tratamento de solubilização e Figura 3.2 - Esquema do tratamento de solubilização + têmpera + Figura 4.1 - Micrografia ótica (DIC) da liga Cu-2,9%Co solubilizada a Figura 4.2 – Micrografia ótica (DIC) da liga Cu-2,9%Co laminada (80% em Figura 4.3 - Imagem em MEV de elétrons retroespalhados da estrutura policristalina na liga Cu-1%Co solubilizada e envelhecida a 500°C durante 10 Figura 4.4 – Imagem em elétrons secundários da microestrutura na liga Cu-3,9%Co, envelhecida a 500°C durante 10 minutos apresentando efeitos Figura 4.5 – Micrografia MET de precipitados coerentes em uma liga Cu-2,9%Co envelhecida a 500°C por 5 minutos e correspondente figura de difração Figura 4.6 – Micrografias de MET em campo escuro de precipitados coerentes em uma liga Cu-2,9%Co envelhecida a 650°C durante 30 minutos: (a) orientação dos precipitados ao longo de um contorno de dobramento; e (b) abundante precipitação homogênea de pequenas partículas esféricas com contraste de deformação...... 71 Figura 4.7 – (a) Imagem em campo claro de partículas coerentes apresentando contraste de deformação em uma amostra Cu-3,9%Co envelhecida por 30 minutos a 500°C; e (b) esquema da deformação dos planos de uma partícula esférica Figura 4.8 – Microdureza Vickers x composição da liga (% Co) para amostras

Figura 4.9 – Micrografia em campo escuro da liga 3,9%Co envelhecida por 5	
minutos a 700°C apresentando precipitação homogênea de partículas coerentes e	
semicoerentes. As partículas semicoerentes estão em destaque. Figura de difração	
ao longo do eixo de zona [110] inserida	74
Figura 4.10 – Imagens de MET em campo escuro, evidenciando as partículas semicoerentes onde o desajuste é acomodado: (a) pela matriz; e (b) por discordâncias interfaciais.	74
Figura 4.11 – Diâmetros das partículas coerentes calculados para diferentes temperaturas e tempos de envelhecimento na precipitação homogênea da liga Cu- 3,9%Co	75
Figura 4.12 – (a) Diagrama de fases do sistema Cu-Co; (b) representação esquemática da linha solvus apresentando diferentes limites de solubilidade para a liga 1%Co e 2,9%Co; e (c) representação esquemática dos tratamentos térmicos: (1) 900°C: formação dos precipitados de equilíbrio, e (2) a 500°C: crescimento dos	/3
precipitados	77
Figura 4.13 – Par campo claro/ campo escuro em MET do produto de precipitação da liga Cu-2,9%Co desenvolvido a partir de dois estágios de envelhecimento: 900°C durante 1 hora seguido de outro tratamento a 500°C durante 30 minutos.	78
Figura 4.14 – Par campo claro/ campo escuro em MET do produto de precipitação	
da liga Cu-1,7%Co desenvolvido a partir de dois estágios de envelhecimento: 900°C durante 1 hora seguido de outro tratamento a 500°C durante 10 minutos	78
Figura 4.15 – Par campo claro/ campo escuro em MET apresentando o produto de precipitação homogênea da liga Cu-2,9%Co: partículas facetadas e pequenos precipitados coerentes desenvolvidos após dois estágios de envelhecimento: 900°C durante 30 minutos seguido de 600°C por 10 minutos.	79
Eigura 4.16 – Par de imagens campo claro/ campo escuro em MET mostrando uma	17
partícula incoerente com as extremidadas arredondadas e circundada por pequenos	
precipitados coerentes na liga Cu-2,9%Co	80
Figura 4.17 – Imagem de MET de alta resolução por contraste de fase revelando	
uma estrutura não homogênea após envelhecimento a 900ºC durante 30 minutos em	
uma liga Cu-2,9%Co	81

Figura 4.18 – (a) Imagem no microscópio ótico da liga Cu-2,9%Co envelhecida a 500°C por 5 minutos onde é observada a formação de colônias de precipitação descontínua em alguns contornos de grão e; (b) detalhe da migração do contorno de Figura 4.19 - Imagem em MO da precipitação descontínua na liga Cu-2,9%Co Figura 4.20 – Micrografia MEV apresentando produtos de precipitação descontínua na liga Cu-3,9%Co envelhecida a 500⁰C durante 30 minutos. O υ indica a direção Figura 4.21 - Imagens FIB da liga Cu-3,9%Co envelhecida a 500°C durante 5 minutos apresentado o desenvolvimento de uma colônia de precipitação descontínua no contorno de grão. Diferentes ângulos de inclinação foram utilizados Figura 4.22 – Imagem MET em campo claro: (a) Precipitação descontínua na liga Cu-3,9%Co envelhecida a 700°C durante 5 minutos onde é observada a formação de partículas com morfologia de bastonete; e (b) detalhe das partículas Figura 4.23 – (a) Micrografia em campo escuro de uma liga Cu-2,9%Co envelhecida a 700°C durante 30 minutos mostrando os modos de decomposição heterogênea (contínuo e descontínuo); (b) campo claro. Figura de difração de área selecionada: (c) matriz e (d) produto da precipitação descontínua; (e) imagem em escuro a partir de um vetor de difração originado campo da Figura 4.24 – Imagem de TEM (a) campo claro/ (b) campo escuro apresentando produto de precipitação descontínua em uma liga Cu-2,9%Co após envelhecimento a 650°C durante 5 minutos; e imagem de TEM (c) campo claro/ (d) campo escuro, com uma reflexão do precipitado, evidenciando a morfologia de precipitação Figura 4.25 – Par de micrografias campo claro/ campo escuro apresentando o processo de perda de estabilidade do produto de precipitação descontínua em uma liga Cu-2,9%Co envelhecida a 650°C durante 5 minutos; e (c) representação Figura 4.26 - Imagens do processo de "esferoidização" do produto de precipitação

descontínua: (a) Liga Cu-3,9%Co envelhecida a 700°C durante 30 minutos; e (b)	
liga Cu-3,9%Co envelhecida a 650°C durante 5 minutos	91
Figura 4.27 - Imagem STEM (campo escuro anular) de precipitados coerente na	
matriz de Cu; e (b) perfil composicional EELS ao longo da linha no precipitado	
estabelecendo sua composição rica em Co	92
Figura 4.28 – Imagem em campo escuro anular de uma liga Cu-3,9%Co	
envelhecida durante 30 minutos a 500°C; e (b) perfil EDS ao longo de uma	
partícula (microanálise ponto a ponto)	93
Figura 4.29 - Imagem em campo escuro anular de uma liga Cu-3,9%Co	
envelhecida durante 10 minutos a 500°C; e (b) perfil EDS ao longo de uma	
partícula	93
Figura 4.30 – (a) Imagem de MET em campo claro; e (b) mapeamento elementar de	
Co das partículas coerentes. Liga Cu-3,9%Co envelhecida a 700°C durante 30	
minutos	94
Figura 4.31 - (a) Imagem de STEM (campo escuro anular); e (b) mapeamento	
elementar de Co das partículas coerentes. Liga Cu-3,9%Co envelhecida a 500°C	
durante 30 minutos	95
Figura 4.32 - Precipitados incoerentes na liga Cu-3,9%Co submetida a duplo	
envelhecimento: (a) campo escuro anular com o feixe de elétron focalizado na	
partícula; (b) mesma imagem, feixe de elétrons focalizado na matriz; (c) espectro	
EDS do precipitado; e (d) espectro EDS da matriz	96
Figura 4.33 - Imagem METV campo claro e mapas de composição de uma	
partícula precipitada na liga Cu-2,9%Co envelhecida a 500°C durante 10 minutos.	
A presença de O é observada principalmente nos precipitados facetados de	
Co	97
Figura 4.34 - Imagem METV campo claro e mapas de composição da liga Cu-	
2,9%Co envelhecida a 500°C durante 30 minutos	98
Figura 4.35 - Microestrutura da precipitação descontínua na liga Cu-3,9%Co	
envelhecida a 500°C durante 5 minutos e preparada por FIB: (a) imagem MET em	
campo claro, baixo aumento; (b) espectro EELS apresentando pico característico de	
Co; (c) detalhe da precipitação descontínua; e (d) mapeamento elementar de	
Co	99
Figura 4.36 – (a) Imagem em campo claro da liga Cu-3,9%Co envelhecida a 700° C	

durante 10 minutos; e (b) mapeamento elementar para o produto de precipitação Figura 4.37 – (a) Holograma experimental de uma partícula de Co apresentando contraste de deformação. Amostra envelhecida a 500°C durante 10 minutos; e (b) informação da fase recuperada usando o método de transformada de Fourier...... 104 Figura 4.38 – (a) Holograma experimental de partículas de Co na matriz de Cu. Amostra envelhecida a 500°C durante 10 minutos; e (b) informação da fase recuperada pelo método de Fourier usando o sistema de cores para representação.... 104 Figura 4.39 - (a) Imagem em campo claro; (b) holograma experimental de uma partícula de Co na amostra envelhecida a 500°C durante 10 minutos; (c) informação da fase recuperada usando o método de transformada de Fourier e (d) Figura 4.40 - Magnetização x campo externo a temperatura ambiente (300K) e resfriada (5K) das ligas Cu-1%Co; Cu-1,7%Co e Cu-2,9%Co...... 107 Figura 4.41 – Curvas de magnetização x temperatura (K) para campo magnético aplicado de 2000Oe (FC) e sem a aplicação de um campo magnético (ZFC) para as Figura 4.42 - Par de imagens campo claro/ campo escuro em MET apresentando domínios em uma liga Cu-2,9%Co. Figura de difração de área selecionada inserida. 108 Figura 4.43 - Par de micrografias campo claro/ campo escuro em MET da microestrutura formada após síntese da liga Cu-2%Co apresentando aglomeração de pequenas partículas e correspondente figura de difração...... 109 Figura 4.44 – Par de micrografias campo claro/ campo escuro em MET de algumas partículas onde é possível observar a nanoestrutura formada com franjas de Figura 4.45 - Par de micrografías campo claro/ campo escuro da amostra solubilizada onde é observada a formação de pequenos cristais e correspondente figura de difração...... 110 Figura 4.46 - Par de micrografías campo claro/ campo escuro apresentando o desenvolvimento de cristais de Cu-Co com interfaces bem definidas...... 111 Figura 4.47 - (a) Micrografia em campo claro da amostra envelhecida apresentando

precipitação homogênea (indicado pela seta); e (b) imagem em campo escuro

evidenciando a estrutura de partícula arredondada	111
Figura 4.48 – Imagem METV campo claro/ campo escuro e mapas de composição	
da interface na liga nanoestruturada Cu-2%Co envelhecida a 500°C durante 30	
minutos	112

Lista de Tabelas

Tabela 3.1 – Tratamentos térmicos utilizados no estudo das ligas Cu-Co	61
Tabela 4.2 - Valores calculados de S (espaçamento entre bastonetes), v	
(velocidade de crescimento), d (deslocamento do contorno de grão) e D	
(difusividade intergranular)	102