Pontifícia Universidade Católica do Rio de Janeiro

Marcela Torno de Azeredo Lopes

Análise de Confiabilidade de Estruturas Aplicada ao Projeto de Reforço à Força Cortante de Vigas em Concreto Armado com Compósitos de Fibras de Carbono

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de Concentração: Estruturas.

Orientadoras: Marta de Souza Lima Velasco Cláudia Ribeiro Eboli

> Rio de Janeiro Abril de 2007

Pontifícia Universidade Católica do Rio de Janeiro

Marcela Torno de Azeredo Lopes

Análise de Confiabilidade de Estruturas Aplicada ao Projeto de Reforço à Força Cortante de Vigas em Concreto Armado com Compósitos de Fibras de Carbono

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Marta de Souza Lima Velasco, D.Sc.

Orientadora

Departamento de Engenharia Civil - PUC-Rio

Cláudia Ribeiro Eboli

Co-orientadora

Universidade Federal do Rio de Janeiro

Sofia Maria Carrato Diniz

Universidade Federal de Minas Gerais

Sérgio Hampshire de Carvalho Santos

Universidade Federal do Rio de Janeiro

Luiz Eloy Vaz

Universidade Federal do Rio de Janeiro

Ricardo Amorim Einsfeld

Universidade do Estado do Rio de Janeiro

Raul Rosas e Silva

Departamento de Engenharia Civil - PUC-Rio

José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 13 de abril de 2007.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e dos orientadores.

Marcela Torno de Azeredo Lopes

Graduou-se em Engenharia Civil pela FOA (Fundação Oswaldo Aranha). Mestre em Estrutruas pela UFF (Universidade Federal Fluminense). Na PUC-Rio desenvolveu sua tese de doutorado com ênfase em Concreto Armado e Confiabilidade de Estruturas.

Ficha Catalográfica

Lopes, Marcela Torno de Azeredo

Análise de confiabilidade de estruturas aplicada ao projeto de reforço à força cortante de vigas em concreto armado com compósitos de fibras de carbono / Marcela Torno de Azeredo Lopes; orientadoras: Marta de Souza Lima Velasco, Cláudia Ribeiro Eboli. – 2007.

209 f.: il.; 30 cm

Tese (Doutorado em Engenharia Civil)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia

Engenharia Civil – Teses. 2. Concreto armado.
Força cortante. 4. Compósitos de fibras de carbono. 5. Confiabilidade de estruturas. I. Velasco, Marta de Souza Lima. II. Eboli, Cláudia Ribeiro. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Este trabalho é dedicado aos meus queridos pais, Vera Lúcia e Marcelo Vaz, pelo amor incondicional, apoio constante e confiança, imprescindíveis para minha formação.

Agradecimentos

À minha orientadora Marta de Souza Lima Velasco, pelos conhecimentos transmitidos, disponibilidade, incentivo e principalmente pela amizade desenvolvida ao longo destes anos.

À minha co-orientadora Cláudia Ribeiro Eboli, pelos conhecimentos transmitidos, apoio e confiança constante.

Aos professores que participaram da banca examinadora, especialmente ao Prof. Luiz Eloy Vaz pelos ensinamentos e colaboração ao longo deste trabalho.

Ao Prof. Plácido Barbosa, pela imensa confiança, apoio e disponibilidade.

Ao Prof. Emil de Souza Sanchez Filho, pelos ensinamentos e principalmente por ter sido a pessoa responsável pelo início de toda esta jornada com minha ida para Juiz de Fora em abril de 2000.

Ao meu namorado Rodrigo Abalem, pelo amor, incentivo, confiança e apoio constante durante a execução deste trabalho.

À minha família e familiares pela presença constante, carinho e confiança. Em especial ao meu irmão Raphael Torno e à minha avó Zilda Azevedo.

Aos colegas Paola, Bianca, Júlio, Flávio, Renato, Marcos, Anderson e Ramires pelo companheirismo. Em especial ao colega Alex Fabiano pela disponibilidade e colaboração ao longo deste trabalho.

Às minhas queridas amigas e também colegas Christiana Niskier e Marcélia Gomes Machado pelo carinho, companheirismo e contribuição.

Às funcionárias Ana Roxo e Rita de Cássia, pela atenção e paciência ao longo destes anos.

Ao CNPq e a PUC-Rio pelo apoio financeiro.

À Deus pela família espetacular que tenho, pelos amigos que conquistei e por me iluminar e me dar força em todas as etapas da minha vida.

Resumo

Lopes, Marcela Torno de Azeredo; Velasco, Marta de Souza Lima; Eboli, Cláudia Ribeiro. Análise de Confiabilidade de Estruturas Aplicada ao Projeto de Reforço à Força Cortante de Vigas em Concreto Armado com Compósitos de Fibras de Carbono. Rio de Janeiro, 2007. 209p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A análise de confiabilidade aplicada ao projeto de estruturas é uma ferramenta que permite avaliar a probabilidade de falha da estrutura para um certo modo de comportamento e a sensibilidade deste projeto em relação às variáveis consideradas. Neste trabalho a análise de confiabilidade é aplicada ao projeto de reforço à força cortante com compósitos de fibras de carbono de vigas em concreto armado. Inicialmente, modelos e prescrições normativas para verificar a capacidade resistente do reforço à força cortante são implementados em MathCad. Os resultados teóricos são comparados com os obtidos de programas experimentais realizados por diversos pesquisadores. Posteriormente, um programa de confiabilidade de estruturas é implementado em liguagem C onde é utilizado o método FORM "First Order Reliability Method". Este programa permite: avaliar a confiabilidade à força cortante de seções de vigas de concreto armado reforçadas ou não e dimensionar a taxa geométrica de reforço para um valor estabelecido de índice de confiabilidade de referência e este valor segue recomendações do Eurocode EN1990 (2001). As taxas geométricas de reforço são dimensionadas por dois enfoques: o semiprobabilístico, prática corrente de projetos, e o probabilístico, projeto baseado em confiabilidade. Os resultados obtidos são comparados. No enfoque probabilístico, as taxas geométricas de reforço são calculadas estabelecendo que o valor do índice de confiabilidade equivalente, avaliado utilizando formulação de sistemas em série, seja maior ou igual ao valor do índice de confiabilidade de referência. Os valores dos índices de confiabilidade, considerando ou não a formulação de sistemas em série, das probabilidades de falha e dos fatores de importância das variáveis aleatórias são obtidos para a seção sem e com reforço. As coordenadas dos pontos de projeto e os coeficientes parciais de segurança são obtidos para a seção reforçada.

Palayras-chave

Concreto armado, força cortante, compósitos de fibras de carbono, confiabilidade de estruturas.

Abstract

Lopes, Marcela Torno de Azeredo; Velasco, Marta de Souza Lima; Eboli, Cláudia Ribeiro. Structural Reliability Analysis Application to the Design of Carbon Fibres Reinforced Polymer Shear Strengthening of Reinforced Concrete Beams. Rio de Janeiro, 2007. 209p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Structural reliability analysis provides a prediction of the structural probability of failure against some behavior mode and the design sensibility with respect to the random variables evaluated at the design point. In this research the reliability analysis is applied to design the carbon fibres reinforced polymer shear strengthening of reinforced concrete beams. First, models and code recommendations, available in literature, to verify the shear strengthening are implemented in MathCad. Further, a structural reliability-based software, using the First Order Reliability Method (FORM), is implemented in C programming language. This software provides the evaluation of the shear reliability of reinforced concrete beams cross-sections, either strengthened or not by CFRP, and the shear reinforcement ratio for a target reliability index. The target reliability index is established as defined by Eurocode EN 1990 (2001). The random variables probabilistic models are based upon code's recommendations available in specialized literature. The shear reinforcement ratio is designed by two approaches: semi-probabilistic, as the current design practice, and the probabilistic, reliability-based design. The results are compared. In the probabilistic approach, the shear reinforcement ratio design aims to obtain a series system reliability index value larger than a predefined target value. The reliability index values, their corresponding failure probabilities and the percentages of total uncertainty associated to which random variable arise from reliability-based design, developed for either strengthened or not reinforced concrete beams cross-sections. For the strengthened cross-sections, the design point and the partial safety factors are also obtained.

Keywords

Reinforced concrete, shear, carbon fibre reinforced polymer, structural reliability.

Sumário

1. Introdução	32
1.1. Considerações Gerais	32
1.2. Objetivos	33
1.3. Organização do Trabalho	34
2. Considerações sobre o Reforço para Avaliação da Resistência à Força Co	
	36
2.1. Introdução	36
2.2. Modelos Semi-Empíricos	40
2.2.1. Estudos de TRIANTAFILLOU (1998 e 2000)	40
2.2.2. Estudos de KHALIFA e NANNI (2002)	45
2.2.3. Estudos de ADHIKARY et alii (2003)	49
2.2.4. Estudos de CHEN e TENG (2003 a,b)	50
2.3. Prescrições Normativas	56
2.3.1. Prescrições do Bulletin 14 fib (2001)	56
2.3.2. Prescrições do ACI 440 (2001)	57
2.4. Análise dos Resultados Experimentais Disponíveis na Bibliografia	60
3. Confiabilidade de Estruturas	70
3.1. Introdução	70
3.2. Conceitos Fundamentais sobre Confiabilidade de Estruturas	73
3.2.1. Função de Estado e Probabilidade de Falha	73
3.2.2. Problema Básico de Confiabilidade	74
3.2.3. Definição do Índice de Confiabilidade Beta	76
3.2.4. Método FORM (First Order Reliability Method)	78
3.2.4.1. Transformação de Nataf	80
3.2.4.2. Pesquisa do Ponto de Projeto	81
3.2.4.3. Medidas de Sensibilidade	82
3.2.4.4. Calibração de Coeficientes Parciais de Segurança	83
3.2.5. Confiabilidade de Sistemas Estruturais	84
3.3. Revisão Bibliográfica	89

4. Formulação do Problema	93
4.1. Introdução	93
4.2. Programa Implementado	94
4.2.1. Dados de Entrada Necessários	94
4.2.2. Definição das Opções de Análise e Dados de Saída	95
4.2.3. Índice de Confiabilidade de Referência	99
4.2.4. Funções de Estado Implementadas	101
4.2.4.1. Seção de Concreto Armado	101
4.2.4.2. Seção de Concreto Armado Reforçada com CFRP	103
5. Exemplos de Aplicação	106
5.1. Introdução	106
5.2. Primeiro Exemplo	108
5.2.1. Modelos Probabilísticos das Resistências e das Solicitações	108
5.2.2. Resultados	111
5.3. Segundo Exemplo	113
5.3.1. Resultados	113
5.4. Terceiro Exemplo	116
5.4.1. Considerações e Modelos Probabilísticos dos Fatores de Modelagem	116
5.4.2. Resultados	117
5.5. Quarto Exemplo	119
5.5.1. Resultados	119
5.6. Quinto Exemplo	120
5.6.1. Considerações	120
5.6.2. Modelo Probabilístico da Resistência à Tração do Compósito	122
5.6.3. Resultados	124
5.7. Sexto Exemplo	149
5.7.1. Considerações	149
5.7.2. Modelos Probabilísticos da Resistência do Concreto à Compressão	
e das Solicitações	150
5.7.3. Resultados	151
6. Conclusões e Propostas para Trabalhos Futuros	154
6.1. Conclusões	154
6.2. Propostas para Trabalhos Futuros	158

7 Referências Bibliográficas	160
Anexo A Rotinas para Obter a Parcela à Força Cortante Resistida pelo FRP	168
A.1. Introdução	168
A.2. Rotinas elaboradas segundo TRIANTAFILLOU e ANTONOPOULOS	
(2000)	168
A.2.1. Rotina Teórica	168
A.2.2. Rotina de Cálculo	169
A.3. Rotina elaborada segundo KHALIFA e NANNI (2002)	170
A.4. Rotina elaborada segundo ADHIKARY et alii (2003)	171
A.5. Rotinas elaboradas segundo CHEN e TENG (2003 a, b)	172
A.5.1. Rotina Teórica	172
A.5.2. Rotina de Cálculo	173
A.6. Rotina elaborada segundo o Bulletin 14 da fib (2001)	175
A.7. Rotina elaborada segundo o ACI 440 (2001)	176
Anexo B Revisão Bibliográfica dos Programas Experimentais	177
B.1. Introdução	177
B.2. Programa Experimental de CHAALLAL et alii (1998)	177
B.3. Programa Experimental de KHALIFA et alii (1999)	178
B.4. Programa Experimental de KHALIFA e NANNI (2000)	179
B.5. Programa Experimental de KHALIFA e NANNI (2002)	179
B.6. Programa Experimental de DENIAUD e CHENG (2001)	180
B.7. Programa Experimental de ADHIKARY et alii (2003)	181
B.8. Programa Experimental de BEBER (2003)	182
B.9. Programa Experimental de DIAGANA et alii (2003)	183
B.9. Programa Experimental de CAROLIN e TÄLJSTEN (2005)	184
Anexo C Parâmetros Utilizados nos Programas Experimentais	187
C.1. Introdução	187
C.2. Parâmetros Geométricos e Mecânicos dos Programas Experimentais	187
Anexo D Resumo sobre Teoria da Probabilidade	197
D.1. Introdução	197
D.2. Função Densidade de Probabilidades (PDF) e Função de Distribuição	

Cumulativa (CDF)	197
D.3. Propriedades Estatísticas de Variáveis Aleatórias Contínuas	199
D.4. Distribuições de Probabilidades	200
D.4.1. Distribuição Normal ou Gaussiana	200
D.4.1.1. Soma ou Diferença de Variáveis Aleatórias Normais	201
D.4.2. Outras Distribuições	202
D.4.2.1. Função Densidade de Probabilidades Bidimensional Normal	203
D.4.2.2. Função Densidade Probabilidades M-Dimensional Normal Padrão	203
D.4.3. Distribuições Normais Equivalentes	203
D.4.4. Coeficientes de Correlações Equivalentes	204
D.4.4.1. Decomposição de Choleski da Matriz dos Coeficientes de Correlações	
Equivalentes	209

Lista de Figuras

Figura 2.12 – Gráfico $R = \varepsilon_{fe} / \varepsilon_{fu} \times \rho_f E_f$; adaptada de KHALIFA et alii (1998).
47
Figura 2.13 – Largura efetiva do FRP48
Figura 2.14 - Esquema de reforço à força cortante; adaptada de TENG et alii
(2002)51
Figura 2.15 - Relação entre w_f e s_f para o reforço contínuo; adaptada de
TENG et alii (2002)51
Figura 2.16 - Efeito da localização na efetividade do estribo de FRP; adaptada
de TENG et alii (2002)55
Figura 2.17 - Gráficos de $V_{f,exp}$ x $V_{f,teo}$, com $V_{f,teo}$ obtido pelas rotinas de
TRIANTAFILLOU e ANTONOPOULOS (2000)65
Figura 2.18 - Gráficos de $V_{f,exp}$ x $V_{f,teo}$, com $V_{f,teo}$ obtido pelas rotinas de
KHALIFA e NANNI (2002)65
Figura 2.19 - Gráficos de $V_{f,exp}$ x $V_{f,teo}$, com $V_{f,teo}$ obtido pelas rotinas de
ADHIKARY et alii (2003)65
Figura 2.20 – Gráficos de $V_{f,exp}$ x $V_{f,teo}$, com $V_{f,teo}$ obtido pelas rotinas de
CHEN e TENG (2003 a, b)
Figura 2.21 – Gráficos de $V_{f,exp}$ x $V_{f,teo}$, com $V_{f,teo}$ obtido pelas rotinas do
Bulletin 14 da <i>fib</i> (2001)66
Figura 2.22 – Gráficos de $V_{f,exp} \times V_{f,teo}$, com $V_{f,teo}$ obtido pelas rotinas do
ACI 440 (2001)
Figura 3.1 – Definição do domínio de falha; adaptada de MELCHERS (2002)74
Figura 3.2 – Problema básico de confiabilidade
MELCHERS (2002)
Figura 3.4 – Probabilidade de Falha; adaptada de MELCHERS (2002)77
Figura 3.5 – Transformação do espaço original para o espaço reduzido (Normal
Padrão) ; adaptada de CHOI e YOUN (2001)79
Figura 3.6 – Aproximação do Método FORM para superfícies Côncavas e
Convexas79
Figura 3.7 - Representação gráfica da busca do ponto de projeto pelo enfoque
RIA para um problema com duas variáveis; adaptada de CHOI e YOUN
(2001)

Figura 3.8 – (a) Sistemas em serie e (b) Sistemas em paralelo, dentro da analise
de confiabilidade de estruturas; adaptada de LIMA e SAGRILO (2002) 85
Figura 3.9 - Significado do coeficiente de correlação entre dois modos de falha
adaptada de SØRENSEN (2004)88
Figura 4.1 - Fluxograma esquemático das opções de análise implementadas no
programa de confiabilidade de estruturas98
Figura 5.1 - Propriedades geométricas e mecânicas utilizadas nos exemplos
107
Figura 5.2 – Gráfico coeficiente de variação de V_q x índices de confiabilidade
115
Figura 5.3 – Gráfico coeficiente de variação de V_q x fatores de importância da
variáveis aleatórias (caso 1): (a) para função de estado que avalia o
esmagamento da biela, (b) para função de estado que avalia a tração
diagonal115
Figura 5.4 - Desenho esquemático do tipo de execução do reforço considerado
nos exemplos12 ²
Figura 5.5 - Retas tensão x deformação dos compósitos constituídos pelos
tecidos de fibras de carbono Wabo®MBrace123
Figura 5.6 - Gráfico taxa geométrica do reforço x índices de confiabilidade para
o Caso 2a do quinto exemplo, utilizando o tecido Wabo®MBrace CF-130
considerando os fatores de modelagem132
Figura 5.7 - Gráfico taxa geométrica do reforço x índices de confiabilidade para
o Caso 2a do quinto exemplo, utilizando o tecido Wabo®MBrace CF-530
considerando os fatores de modelagem132
Figura 5.8 – Gráfico taxa geométrica do reforço x índice de confiabilidade β
para o Caso 1b do quinto exemplo, utilizando o tecido Wabo®MBrace CF
130133
Figura 5.9 – Gráfico taxa geométrica do reforço x índice de confiabilidade β
para o Caso 1b do quinto exemplo, utilizando o tecido Wabo®MBrace CF
530133
Figura 5.10 – Gráfico taxa geométrica do reforço x índice de confiabilidade β_4
variando a quantidade de camadas de reforço, para o Caso 1b do quinto
exemplo, utilizando o tecido Wabo®MBrace CF-130, sem considerar o
fatores de modelagem

Figura 5.11 – Gráfico taxa geométrica do reforço x índice de confiabilidade β_4
variando a quantidade de camadas de reforço, para o Caso 1b do quinto
exemplo, utilizando o tecido Wabo®MBrace CF-130, considerando os
fatores de modelagem134
Figura 5.12 – Gráfico taxa geométrica do reforço x índice de confiabilidade β_4 ,
variando a quantidade de camadas de reforço, para o Caso 1b do quinto
exemplo, utilizando o tecido Wabo®MBrace CF-530, sem considerar os
fatores de modelagem135
Figura 5.13 – Gráfico taxa geométrica do reforço x índice de confiabilidade β_2
variando a quantidade de camadas de reforço, para o Caso 1b do quinto
exemplo, utilizando o tecido Wabo®MBrace CF-530, considerando os
fatores de modelagem135
Figura 5.14 - Gráfico representando a importância de cada variável aleatória
para o modo de falha avaliado em G_3 , para o Caso 1b apresentado na
Tabela 5.38139
Figura 5.15 - Gráfico representando a importância de cada variável aleatória
para o modo de falha avaliado em G4, para o Caso 1b apresentado na
Tabela 5.39141
Figura 5.16 – Gráfico resistência característica do concreto à compressão x taxa
geométrica do reforço, do sexto exemplo151
Figura 5.17 - Gráfico resistência característica do concreto à compressão x
índices de confiabilidade (β_2 , β_3 e β_4), do sexto exemplo152
Figura 5.18 - Gráfico resistência característica do concreto à compressão x
índices de confiabilidade (β_3 – fib e β_4 – fib), do sexto exemplo para o tecido
Wabo®MBrace CF-530153
Figura C.1 – Altura efetiva do FRP187
Figura D.1 - (a) Função Densidade de Probabilidades (PDF) e (b) Função de
Distribuição Cumulativa (CDF)198

Lista de Tabelas

Tabela 2.1 - Comparações teórico-experimentais das vigas que tiveram o
reforço executado com tecido de CFRP colado apenas nas laterais de sua
seção transversal, com $\beta = 45^{\circ}$ 62
Tabela 2.2 - Comparações teórico-experimentais das vigas que tiveram o
reforço executado com tecido de CFRP colado apenas nas laterais de sua
seção transversal, com $\beta = 90^{\circ}$ 62
Tabela 2.3 - Comparações teórico-experimentais das vigas que tiveram o
reforço executado com tecido de CFRP colado envolvendo em forma de U
sua seção transversal, com $\beta = 45^{\circ}$ 63
Tabela 2.4 - Comparações teórico-experimentais das vigas que tiveram o
reforço executado com tecido de CFRP colado envolvendo em forma de U
sua seção transversal, com $\beta = 90^{\circ}$ 63
Tabela 2.5 - Comparações teórico-experimentais das vigas que tiveram o
reforço executado com tecido de CFRP colado envolvendo completamente
sua seção transversal, com $\beta = 45^{\circ}$ 64
Tabela 2.6 - Comparações teórico-experimentais das vigas que tiveram o
reforço executado com tecido de CFRP colado envolvendo completamente
sua seção transversal, com $\beta = 90^{\circ}$ 64
Tabela 2.7 - Comparações teórico-experimentais das vigas que tiveram o
reforço executado com tecido de CFRP64
Tabela 2.8 - Comparações teórico-experimentais das vigas que tiveram o
reforço executado com lâmina de CFRP colado apenas nas laterais de sua
seção transversal, com $\beta = 45^{\circ}$ 65
Tabela 2.9 - Comparações teórico-experimentais das vigas que tiveram o
reforço executado com lâmina de CFRP colado apenas nas laterais de sua
seção transversal, com $\beta = 90^{\circ}$ 65
Tabela 2.10 - Comparações teórico-experimentais das vigas que tiveram o
reforço executado com lâmina de CFRP65
Tabela 2.11 - Análise da Tabela 2.2, sem as vigas nomeadas de BT5, 290 e
39068

Tabela 2.12 – Análise da Tabela 2.4, sem as vigas nomeadas de BT2, BT4,
T6S4C90, C-1, PU1 e PU2
Tabela 4.1 – Classes de conseqüências
Tabela 4.2 – Relação entre probabilidade de falha p_f e índice de confiabilidade β
Tabela 4.3 – Valores dos índices de confiabilidade de referência dados em
função da classe de confiabilidade e do período de retorno
Tabela 5.1 – Proporções de carga permanente e acidental em relação à carga
total108
Tabela 5.2 – Modelos probabilísticos das resistências do concreto e do aço e das
solicitações permanente e acidental109
Tabela 5.3 – Desvio Padrão a ser adotado em função da condição de preparo do
concreto110
Tabela 5.4 – Índices de confiabilidade e probabilidades de falha do primeiro
exemplo para os modos de colapso112
Tabela 5.5 - Índice de confiabilidade equivalente e probabilidade de falha do
primeiro exemplo para sistema em série113
Tabela 5.6 - Fatores de importância das variáveis aleatórias do primeiro
exemplo para os modos de colapso113
Tabela 5.7 - Índices de confiabilidade e probabilidades de falha do segundo
exemplo para os modos de colapso, com $CoV_Vq = 10\%114$
Tabela 5.8 - Índice de confiabilidade e probabilidade de falha do segundo
exemplo para sistema em série, com CoV_Vq = 10%115
Tabela 5.9 – Fatores de importância das variáveis aleatórias do segundo
exemplo para os modos de colapso, com $CoV_{-}Vq = 10\%$
Tabela 5.10 – Fatores de importância das variáveis aleatórias do segundo
exemplo para os modos de colapso, supondo distribuição Normal e CoV =
10% para cargas permanentes e acidentais117
Tabela 5.11 – Modelo probabilístico do fator de modelagem da resistência118
Tabela 5.12 – Índices de confiabilidade e probabilidades de falha do terceiro
exemplo para os modos de colapso119
Tabela 5.13 – Índice de confiabilidade e probabilidade de falha do terceiro
exemplo para sistema em série119
Tabela 5.14 – Fatores de importância das variáveis aleatórias do terceiro
exemplo para os modos de colapso

Tabela 5.15 – Indices de confiabilidade e probabilidades de falha do quarto
exemplo para os modos de colapso120
Tabela 5.16 - Índice de confiabilidade e probabilidade de falha do quarto
exemplo para sistema em série120
Tabela 5.17 – Acréscimos de cargas acidentais121
Tabela 5.18 - Alterações nos modelos probabilísticos das cargas acidentais e
nas combinações de cargas devido aos acréscimos de carga acidental121
Tabela 5.19 - Índices de confiabilidade e probabilidades de falha para os
acréscimos de carga do quinto exemplo, para duas situações: I - sem
considerar os fatores de modelagem e II - considerando os fatores de
modelagem122
Tabela 5.20 - Valores médio e característico da resistência à tração última e
valores do módulo de elasticidade longitudinal dos compósitos constituídos
pelos tecidos de fibras de carbono Wabo®MBrace124
Tabela 5.21 - Modelos probabilísticos das resistências à tração dos compósitos
constituídos pelos tecidos de fibras de carbono Wabo®MBrace125
Tabela 5.22 - Taxas geométricas de reforço obtidas para o quinto exemplo,
utilizando o tecido unidirecional de fibras de carbono Wabo®MBrace CF-
130127
Tabela 5.23 - Taxas geométricas de reforço obtidas para o quinto exemplo,
utilizando o tecido unidirecional de fibras de carbono Wabo®MBrace CF-
530127
Tabela 5.24 – Índices de confiabilidade e probabilidades de falha obtidos para as
taxas geométricas de reforço dimensionadas pelo projeto corrente
utilizando o tecido Wabo®MBrace CF-130128
Tabela 5.25 – Índices de confiabilidade e probabilidades de falha obtidos para as
taxas geométricas de reforço dimensionadas pelo projeto corrente,
utilizando o tecido Wabo®MBrace CF-530128
Tabela 5.26 – Índices de confiabilidade e probabilidades de falha do quinto
exemplo, utilizando o tecido Wabo®MBrace CF-130, sem considerar os
fatores de modelagem129
Tabela 5.27 – Índice de confiabilidade equivalente e probabilidade de falha do
quinto exemplo para sistema em série, utilizando o tecido Wabo®MBrace
CF-130 sem considerar os fatores de modelagem 129

rabeia 5.28 – Indices de conhabilidade e probabilidades de faina do quinto
exemplo, utilizando o tecido Wabo®MBrace CF-130, considerando os
fatores de modelagem130
Tabela 5.29 - Índice de confiabilidade equivalente e probabilidade de falha do
quinto exemplo para sistema em série, utilizando o tecido Wabo®MBrace
CF-130, considerando os fatores de modelagem130
Tabela 5.30 - Índices de confiabilidade e probabilidades de falha do quinto
exemplo, utilizando o tecido Wabo®MBrace CF-530, sem considerar os
fatores de modelagem130
Tabela 5.31 - Índice de confiabilidade equivalente e probabilidade de falha do
quinto exemplo para sistema em série, utilizando o tecido Wabo®MBrace
CF-530, sem considerar os fatores de modelagem131
Tabela 5.32 – Índices de confiabilidade (β_3 e b_4) e probabilidades de falha do
quinto exemplo, utilizando o tecido Wabo®MBrace CF-530, considerando
os fatores de modelagem131
Tabela 5.33 – Índice de confiabilidade equivalente e probabilidade de falha do
quinto exemplo para sistema em série, utilizando o tecido Wabo®MBrace
CF-530, considerando os fatores de modelagem131
Tabela 5.34 – Deformação específica efetiva do reforço
Tabela 5.35 – Número de camada de compósito necessária para o reforço137
Tabela 5.36 – Fatores de importância das variáveis aleatórias do quinto exemplo
para os modos de falha, utilizando o tecido Wabo®MBrace CF-130, sem
considerar os fatores de modelagem139
Tabela 5.37 – Fatores de importância das variáveis aleatórias do quinto exemplo
para os modos de falha, utilizando o tecido Wabo®MBrace CF-130,
considerando os fatores de modelagem140
Tabela 5.38 – Fatores de importância das variáveis aleatórias do quinto exemplo
para os modos de falha, utilizando o tecido Wabo®MBrace CF-530, sem
considerar os fatores de modelagem140
Tabela 5.39 – Fatores de importância das variáveis aleatórias do quinto exemplo
para os modos de falha, utilizando o tecido Wabo®MBrace CF-530
considerando os fatores de modelagem141
Tabela 5 40 – Número de camada de compósito necessária para o reforco 144

Tabela 5.41 - Coordenadas do ponto de projeto do quinto exemplo para os
modos de falha, utilizando o tecido Wabo®MBrace CF-130, sem considerar
os fatores de modelagem144
Tabela 5.42 - Coordenadas do ponto de projeto do quinto exemplo para os
modos de falha, utilizando o tecido Wabo®MBrace CF-130, considerando
os fatores de modelagem145
Tabela 5.43 - Coordenadas do ponto de projeto do quinto exemplo para os
modos de falha, utilizando o tecido Wabo®MBrace CF-530, sem considerar
os fatores de modelagem146
Tabela 5.44 - Coordenadas do ponto de projeto do quinto exemplo para os
modos de falha, utilizando o tecido Wabo®MBrace CF-530, considerando
os fatores de modelagem147
Tabela 5.45 – Fatores parciais de segurança do quinto exemplo para o modo de
falha preponderante, utilizando o tecido Wabo®MBrace CF-130, sem
considerar os fatores de modelagem148
Tabela 5.46 – Fatores parciais de segurança do quinto exemplo para o modo de
falha preponderante, utilizando o tecido Wabo®MBrace CF-130
considerando os fatores de modelagem148
Tabela 5.47 – Fatores parciais de segurança do quinto exemplo para o modo de
falha preponderante, utilizando o tecido Wabo®MBrace CF-530, sem
considerar os fatores de modelagem149
Tabela 5.48 – Fatores parciais de segurança do quinto exemplo para o modo de
falha preponderante, utilizando o tecido Wabo®MBrace CF-530
considerando os fatores de modelagem149
Tabela 5.49 – Valores de V_c , V_{Rd3} e V_{Sd} , para variações de f_{ck}
Tabela 5.50 – Acréscimos de cargas acidentais, para variações de f_{ck} 151
Tabela 5.51 - Modelos probabilísticos da resistência do concreto à compressão
e das solicitações, para variações de f _{ck} 151
Tabela C.1 – Parâmetros Geométricos e Mecânicos dos Programas
Experimentais188
Tabela D.1 – Caracterização de Algumas Distribuição de Probabilidades 199
Tabela D.2 – Coeficientes de Correlações Equivalentes

Lista de Símbolos

Romanos

а	Parâmetro da distribuição Uniforme
a	Distância do ponto de aplicação de uma carga concentrada ao centro do apoio
A_f	Área de FRP
$A_{\scriptscriptstyle \mathbb{S}}$	Área de amadura longitudinal de aço
A_{sw}	Área de amadura transversal de aço
b	Parâmetro da distribuição Uniforme
b_w	Largura da seção transversal da viga
С	Valor da confiabilidade da estrutura
CoV	Coeficiente de variação
$COV_{(X_{ij})}$	Covariância
d	Altura útil da viga
D_f	Fator de distribuição da tensão
d_f	Altura efetiva do FRP
d_{fb}	Distância entre a face comprimida da viga e a extremidade inferior do FRP
d_{ft}	Distância entre a face comprimida da viga e a extremidade superior do FRP
E_f	Módulo de elasticidade do FRP
E_{fG}	Módulo de elasticidade do FRP expresso em MPa
E _s	Módulo de elasticidade do aço
F	Fator que transforma coeficientes de correlações em coeficientes de correlações equivalentes
f_{cd}	Resistência de cálculo do concreto a compressão

f _{cj}	Resistência média do concreto à compressão, prevista para a idade de j dias
ck	Resistência característica do concreto à compressão
f cm	Resistência média do concreto à compressão (cilindro padrão)
ctd	Resistência de cálculo do concreto à tração direta
f ctk,inf	Resistência característica inferior do concreto à tração
f _{ctm}	Resistência média do concreto à tração
f _f	Tensão última do FRP
f fe	Tensão efetiva do FRP
f _{fk}	Valor característico da resistência à tração última do CFRP
f _{fm}	Valor médio da resistência à tração última do CFRP
f' _C	Resistência característica do concreto à compressão
f _m	Resistência média dos materiais
f_R	Função densidade de probabilidade marginal da resitência
f _{RS}	Função densidade de probabilidades conjunta
f _S	Função densidade de probabilidade marginal da solicitação
f_y	Tensão de escoamento à tração do aço
f _{yk}	Resistência característica de escoamento do aço
f _{yw}	Resistência de escoamento da armadura transversal de aço
f ywd	Resistência de cálculo de escoamento da armadura transversal de aço
$f_X(X)$	Função densidade de probabilidades conjunta
$F_X()$	Função de distribuição cumulativa
G_2	Função de estado relativa à ruína das diagonais comprimidas de concreto
G ₂	Para seção de concreto armado – Função de estado relativa à ruína

	por tração diagonal. Para seção reforçada – Função de estado relativa à ruína por tração diagonal devido à ruptura do reforço
G_4	Função de estado relativa à ruína por tração diagonal devido ao descolamento do reforço
G(X)	Função de estado no espaço original X
G(Y)	Função de estado no espaço reduzido Y
h	Altura da viga
h_{fe}	Altura efetiva do FRP
J	Jacobiano da transformação de Nataf
j	Número de modos de ruptura (funções de estado) possíveis no problema
k	Coeficiente de redução
k	Parâmetro das distribuições Tipo II Máximo e Tipo III Mínimo (Weibull)
<i>k</i> ₁	Coeficiente de modificação que leva em consideração a resistência do concreto
<i>k</i> ₂	Coeficiente de modificação que leva em consideração o tipo de execução do reforço
k_g	Proporção de carga permanente
k_q	Proporção de carga acidental
k_{v}	Coeficiente de redução devido à colagem
L	Matriz triangular inferior obtida a partir da decomposição de Choleski da matriz dos coeficientes de correlações equivalentes das variáveis \boldsymbol{X}
I _a	Comprimento de ancoragem do reforço
L _e	Comprimento de ancoragem efetivo
L _{máx}	Comprimento de aderência máximo
m	Vetor com as médias normais equivalentes das variáveis aleatórias \boldsymbol{X}
P_i	Termo de primeira ordem da probabilidade de falha de um sistema em série

D ik	Termo de segunda ordem da probabilidade de falha de um sistema em série
D ikl	Termo de terceira ordem da probabilidade de falha de um sistema em série
O_f	Probabilidade de falha
0 _{f2}	Probabilidade de falha referente ao esmagamento das bielas de compressão
o _{f 3}	Para seção de concreto armado – Probabilidade de falha referente à tração diagonal. Para seção reforçada – Probabilidade de falha referente à tração diagonal devido à ruptura do reforço
O _{f 4}	Probabilidade de falha referente à tração diagonal devido ao descolamento do reforço
$\mathcal{O}_f^{\mathbb{S}}$	Probabilidade de falha de um sistema em série
O_f^p	Probabilidade de falha de um sistema em paralelo
O _{f ,série}	Probabilidade de falha obtida considerando a formulação de sistema em série
7	Coeficiente de redução
R_ <i>b</i>	Coeficiente de redução utilizado no caso do colapso da viga ser controlado pelo descolamento do compósito
₹_/	Coeficiente de redução utilizado no caso do colapso da viga ser controlado pela ruptura do compósito
R_ <i>r</i>	Coeficiente de redução utilizado no caso da deformação específica efetiva do FRP ser limitada pela deformação máxima
R(X)	Resistência do elemento
5	Espaçamento entre as armaduras transversais de aço
S_d	Desvio padrão da dosagem do concreto, tabelado na NBR 12655 (1996) de acordo com a condição de preparo do concreto
S_f	Espaçamento de eixo a eixo entre estribos de FRP
f máx	Espaçamento máximo de eixo a eixo entre estribos de FRP
S _{nom}	Valor característico da resistência de escoamento do aço
S(X)	Solicitação imposta ao elemento

t_f	Espessura de FRP
t_s	Espessura da mesa de uma viga T
и	Parâmetro da distribuição Tipo I Máximo (Gumbel) e Tipo I Mínimo
V	Parâmetro das distribuições Tipo II Máximo e Tipo III Mínimo (Weibull)
Var(X)	Variância de uma variável aleatória
V_c	Parcela da força cortante resistida pelo concreto
V_{cd}	Valor de projeto da parcela da força cortante resistida pelo concreto
V_f	Parcela da força cortante resistida pelo FRP
V_{fd}	Valor de projeto da parcela da força cortante resistida pelo FRP
V_{fde}	Valor de projeto da parcela da força cortante resistida pelo FRP permitida
$V_{f,d}$	Parcela de força cortante resistida pelo FRP, limitada pelo descolamento do compósito
$V_{f,exp}$	Valor da parcela de força cortante resistida pelo FRP obtida a partir de programas experimentais
$V_{f,r}$	Parcela de força cortante resistida pelo FRP, limitada pela ruptura do compósito
$V_{f,teo}$	Valor da parcela de força cortante resistida pelo FRP obtida a partir de modelos semi-empíricos ou de prescrições normativas
V_g	Força cortante proveniente do carregamento permanente
V_{gk}	Força cortante característica proveniente do carregamento permanente
V_n	Força cortante nominal
V_q	Força cortante proveniente do carregamento acidental
V_{qk}	Força cortante característica proveniente do carregamento acidental
V _{qk,inicial}	Força cortante característica proveniente do carregamento acidental inicial (antes do acréscimo de carga)
$V_{qk, extit{final}}$	Força cortante característica proveniente do carregamento acidental final (depois do acréscimo de carga)

V_{Rd1}	Valor de projeto da parcela da força cortante resistida pelo concreto
V_{Rd2}	Valor de projeto da força cortante resistida pelas bielas comprimidas
V_{Rd3}	Força cortante resistente de cálculo
$V_{Rd,max}$	Valor de projeto da força cortante resistida pelas bielas comprimidas
V_{S}	Força cortante solicitante
V_{Sd}	Força cortante solicitante de cálculo
V_{sw}	Parcela da força cortante resistida pela armadura transversal de aço
V_{swd}	Valor de projeto da parcela da força cortante resistida pela armadura transversal
V_u	Força cortante solicitante
W_f	Largura do estribo de FRP
w _{fe}	Largura efetiva do FRP dada em função do tipo de execução do reforço
Χ	Vetor das variáveis básicas
(x*) _i	Valor da variável aleatória <i>i</i> no ponto de projeto
$(x^k)_i$	Valor característico da variável aleatória usado no projeto
у	Variável reduzida
y *	Ponto de projeto no espaço das variáveis reduzidas Y
z_b	Coordenada da extremidade inferior
\boldsymbol{z}_t	Coordenada da extremidade superior

Gregos

α	longitudinal da viga
α	Coeficiente de redução
α	Parâmetro das distribuições Tipo I Máximo (Gumbel) e Tipo I Mínimo
α_i	Co-seno diretor entre o vetor normal à superfície de falha no ponto de projeto y^* e o eixo da variável reduzida Y_i

α^i , α^k	Vetores dos co-senos diretores nos pontos de projeto y^{\star} associados aos modos de ruptura
$\alpha_{\sf v}$	Fator de efetividade do concreto
$\alpha(y^K)$	Vetor unitário normal à superfície de falha no ponto y
β	Ângulo de inclinação entre a orientação das fibras do FRP e o eixo longitudinal da viga
β	Índice de confiabilidade
eta_2	Índice de confiabilidade referente ao esmagamento das bielas de compressão
eta_3	Para seção de concreto armado – Índice de confiabilidade referente à tração diagonal. Para seção reforçada – Índice de confiabilidade referente à tração diagonal devido à ruptura do reforço
eta_4	Índice de confiabilidade referente à tração diagonal devido ao descolamento do reforço
$eta_{ ext{e,s\'erie}}$	Índice de confiabilidade equivalente obtido considerando a formulação se sistemas em série
eta_{L}	Coeficiente que traduz o comprimento de ancoragem efetivo
β_t	Índice de confiabilidade alvo (target)
β_r	Índice de confiabilidade de referência
β_{W}	Coeficiente relacionado à largura do FRP
Δ	Relação entre $V_{f,teo}$ e $V_{f,exp}$
ΔV_{qk}	Acréscimo de carga acidental
$\nabla_x G(X)$	Gradiente da função de estado no espaço original $ X $ avaliado no ponto $ y^K $
$\nabla_y G(Y)$	Gradiente da função de estado no espaço reduzido Y avaliado no ponto y^K
$\nabla_y G(y^*)_i$	Componente do gradiente da função de estado no espaço reduzido
δ_X	Coeficiente de variação de uma variável aleatória
$\mathcal{E}_{ extit{fde}}$	Deformação específica efetiva de cálculo do FRP

$arepsilon_{ ext{fe}}$	Deformação específica efetiva do FRP
$arepsilon_{ extit{fe1}}$	Deformação específica efetiva do reforço correspondente ao colapso da viga por descolamento do reforço
ε_{fe2}	Parcela de acréscimo da deformação específica efetiva do reforço devido à adição de um sistema de ancoragem
\mathcal{E}_{fe} _b	Deformação específica efetiva do reforço correspondente ao colapso da viga por descolamento do reforço
$arepsilon_{fe}$ _r	Deformação específica efetiva do reforço correspondente ao colapso da viga por ruptura do reforço
$\varepsilon_{ extit{fke}}$	Valor característico da deformação específica efetiva do FRP
$arepsilon_{ extit{fu}}$	Deformação específica última do FRP
ε _{máx}	Deformação específica máxima, ou limite, do FRP
$\Phi($ $)$	Função de distribuição cumulativa da variável normal padrão
$\Phi(\cdot,\rho)$	Função de distribuição cumulativa bidimensional normal padrão
ϕ	Coeficiente de redução da resistência
$\phi(y)$	Função densidade de probabilidade da variável normal padrão
ϕ_R	Fator de modelagem das resistências
$\phi_{\mathbb{S}}$	Fator de modelagem dos efeitos das cargas
Γ	Matriz inversa da matriz <i>L</i>
Γ()	Função Gamma
γ_c	Fator de segurança do concreto
γ_f	Fator de segurança parcial do FRP
γ_{fb}	Fator de segurança parcial do FRP aplicado quando a ruptura é dominada pelo descolamento
$\gamma_{\it ff}$	Fator de segurança parcial do FRP aplicado quando a ruptura é dominada pela ruptura do compósito
γ_{fl}	Fator de segurança parcial do FRP aplicado quando o valor característico de sua deformação específica efetiva é limitado pela deformação específica máxima
γ_g	Fator de ponderação das cargas provenientes do carregamento

Fator de ponderação das cargas provenientes do carregamento γ_q acidental Fator de segurança do aço γ_s $\varphi(.,\rho_{ik})$ Função densidade de probabilidades bidimensional padrão $\varphi_m(;\rho)$ Função densidade de probabilidades m-dimensional normal padrão λ Comprimento de aderência máximo normalizado λ Parâmetro da distribuição Lognormal $\mu_{f_{v}}$ Valor médio da resistência de escoamento do aço Valor médio de uma variável aleatória μ_X μ_X^N Média da variável aleatória normal equivalente no ponto x θ Inclinação das bielas de compressão ρ Matriz de correlação Taxa geométrica de FRP ρ_f Taxa geométrica de reforço máxima $\rho_{f,max}$ Taxa geométrica de reforço mínima $\rho_{f,min}$ Coeficiente de correlação entre dois modos de ruptura (duas funções ρ_{ik} de estado) ρ_I Taxa geométrica de armadura longitudinal $\rho_{X_{ii}}$ Coeficiente de correlação $\rho_{X_{ii}}^{E}$ Coeficiente de correlação entre variáveis normais equivalentes Matriz diagonal contendo os desvios padrões normais equivalentes das variáveis aleatórias X $\sigma_{f_{\epsilon}}$ Desvio padrão da resistência à tração última do CFRP $\sigma_{f m\acute{a}x}$ Tensão máxima no FRP

 $\sigma_{f \max_b}$ Tensão máxima no FRP, limitada pelo descolamento do compósito

permanente

$\sigma_{ extit{f max_r}}$	Tensão máxima no FRP, limitada pela ruptura do compósito
$\sigma_{f_{_{yw}}}$	Desvio padrão da resistência de escoamento do aço
σ_{R}	Parâmetro da distribuição Rayleigh
σ_X	Desvio padrão
σ_X^2	Variância
σ_X^N	Desvio padrão da variável aleatória normal equivalente no ponto x^*
τ	Parâmetro da distribuição Rayleigh
ζ	Parâmetro da distribuição Lognormal
ψ_f	Coeficiente de redução adicional, dado em função do tipo de execução do reforço
5	Relação entre a coordenada superior e inferior do FRP

Lista de Abreviaturas

PUC-Rio Pontifícia Universidade Católica do Rio de Janeiro

CFRP Carbon Fibre Reinforced Polymer (Polímero Armado com

Fibras de Carbono)

FRP Fibre Reinforced Polymer (Polímero Armado com Fibras)

AFRP Aramid Fibre Reinforced Polymer (Polímero Armado com

Fibras de Aramida)

GFRP Glass Fibre Reinforced Polymer (Polímero Armado com Fibras

de Vidro)

fib Federation Internationale du Beton

ACI American Concrete Institute

JCSS Joint Committee on Structural Safety

PDF Probability Density Function (Função Densidade de

Probabilidades)

CDF Cumulative Distribution Function (Função de Distribuição

Cumulativa)

FORM First Order Reliability Method

RIA Reliability Index Approach

PMA Performance Measure Approach

RBDO Reliability-Based Design Optimization