4 Otimização de Sistemas de Distribuição de Energia Elétrica por Busca Tabu

Neste capítulo são apresentados os resultados das simulações realizadas com o algoritmo desenvolvido o sistema de 32 barras [Baran & Wu, 1989]. O modelo de carga utilizado é o de potência constante e os sistemas não apresentam barras com compensação reativa capacitiva. Serão mostradas simulações com três níveis de carregamento: Leve, Pesado e Crítico. No caso do carregamento "pesado", todas as cargas ativas e reativas das duas redes foram multiplicadas por um valor denominado fator de carga (λ) de modo a simular uma proximidade do ponto de colapso da rede. Para o nível "crítico", todas as cargas ativas e reativas das redes foram multiplicadas por um valor do fator de carga λ de forma a alcançar um ponto de operação na região próxima ao carregamento máximo, que corresponde à "ponta do nariz" na curva PV. Nos casos "pesado" e "crítico", não serão consideradas restrições de operação de limite de corrente nos ramos e de tensão nas barras. Para o carregamento "leve" entende-se que o fator de carga λ é igual a 1 (rede na configuração e carregamento original). Também será feita uma análise em relação às perdas técnicas na configuração inicial e final para os três perfis de carga. Nos testes não foram considerados limites mínimo e máximo das tensões nas barras do sistema.

4.1 Sistema de Distribuição com Carregamento Leve

Os índices de estabilidade de tensão do sistema, o carregamento leve e o diagrama unifilar da rede são apresentados, respectivamente, nas Tabelas 4.1, 4.2 e na Figura 4.1. A margem de potência em todas as barras de carga é próxima de 100%, o que indica que tanto o sistema quanto cada barra isolada está com uma margem de segurança de tensão elevada e a uma grande distância do ponto de máximo carregamento. Confirmando, a distância angular β entre os vetores gradientes de potência ativa e reativa é quase perpendicular, ou seja, o ponto de operação do sistema está quase na máxima distância ao ponto de máximo carregamento. Os resultados intermediários nas iterações do processo de otimização estão mostrados na Figura 4.1 e na Tabela 4.3.

Tabela 4.1 - Índices de estabilidade de tensão no carregamento leve

2 3 4 5	(pu) 0,9972 0,9839 0,9770 0,9701 0,9531	(%) 99,9924 99,9589 99,9016 99,9354	(pu) 0,0012 0,0010 0,0014	(pu) 15,3980 2,3606	(pu) 237,0990 5,5725	(graus) 90,1616
3	0,9839 0,9770 0,9701 0,9531	99,9589 99,9016 99,9354	0,0010			
4	0,9770 0,9701 0,9531	99,9016 99,9354	0,0014	2,3606	5.5725	00.0100
	0,9701 0,9531	99,9354			5,57.25	90,9169
5	0,9531			1,4314	2,0489	91,1891
			0,0007	1,0073	1,0147	91,5204
6	0.0400	99,8938	0,0006	0,5678	0,3224	92,3438
7	0,9499	99,5467	0,0021	0,4685	0,2195	92,0844
8	0,9454	99,4405	0,0021	0,3778	0,1427	91,7346
9	0,9396	99,7874	0,0006	0,2795	0,0781	91,3047
10	0,9343	99,7321	0,0006	0,2205	0,0486	91,1016
11	0,9335	99,7635	0,0005	0,2135	0,0456	91,0768
12	0,9321	99,6782	0,0006	0,2012	0,0405	91,0212
13	0,9265	99,5889	0,0006	0,1566	0,0245	90,7647
14	0,9244	99,0611	0,0013	0,1420	0,0202	90,6577
15	0,9231	99,5710	0,0006	0,1309	0,0171	90,4761
16	0,9219	99,5137	0,0006	0,1199	0,0144	90,2637
17	0,9201	99,4235	0,0006	0,1009	0,0102	90,1748
18	0,9195	99,0395	0,0009	0,0943	0,0089	90,3791
19	0,9967	99,9798	0,0010	4,8657	23,6754	90,0108
20	0,9931	99,8545	0,0010	0,6722	0,4519	90,0785
21	0,9924	99,8157	0,0010	0,5303	0,2813	90,0881
22	0,9918	99,7435	0,0010	0,3808	0,1450	90,0442
23	0,9804	99,9213	0,0010	1,2823	1,6444	90,4864
24	0,9740	99,3026	0,0045	0,6497	0,4221	90,3941
25	0,9707	98,9606	0,0045	0,4345	0,1887	90,1853
26	0,9513	99,8810	0,0006	0,5196	0,2700	92,2938
27	0,9489	99,8671	0,0006	0,4641	0,2154	92,2552
28	0,9384	99,8103	0,0006	0,3129	0,0979	92,2444
29	0,9309	99,4809	0,0013	0,2491	0,0621	92,4017
30	0,9276	97,3893	0,0059	0,2247	0,0505	92,5078
31	0,9238	99,1620	0,0015	0,1825	0,0333	91,8407
32	0,9229	98,7480	0,0021	0,1715	0,0294	91,6019
33	0,9227	99,5826	0,0007	0,1594	0,0254	91,1969

Tabela 4.2 - Carregamento Leve

Barra	Carga Ativa P (kW)	Carga Reativa Q (kVar)
1	-	-
2	100	60
3	90	40
4	120	80
5	60	30
6	60	20
7	200	100
8	200	100
9	60	20
10	60	20
11	45	30
12	60	35
13	60	35
14	120	80
15	60	10
16	60	20
17	60	20
18	90	40
19	90	40
20	90	40
21	90	40
22	90	40
23	90	50
24	420	200
25	420	200
26	60	25
27	60	25
28	60	20
29	120	70
30	200	600
31	150	70
32	210	100
33	60	40

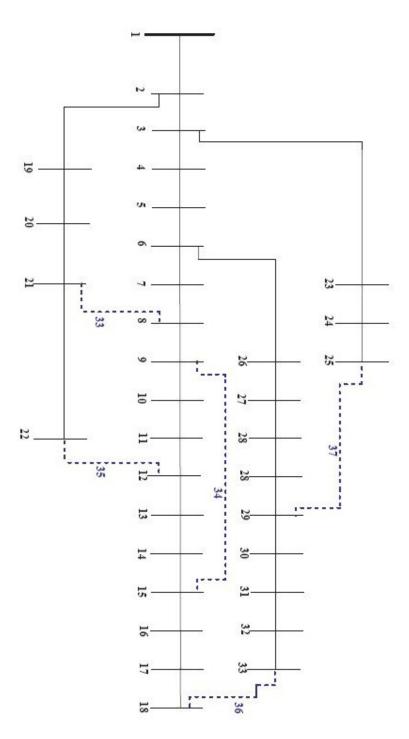


Figura 4.1 – Diagrama unifilar do sistema de distribuição

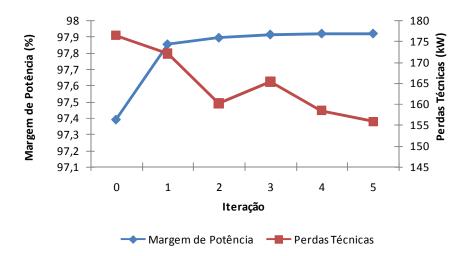


Figura 4.2 – Maximização da margem de potência no carregamento leve

Tabela 4.3 - Aumento da margem de potência no carregamento leve

Configuração	Chaves	M barra crítica (%)	Perdas	Barra
	Abertas		Técnicas	Crítica
			(kW)	
0 – Inicial	33 34 35 36 37	97,3893	176,3618	30
1	3 28 34 35 36	97,8518	172,0388	30
2	3 28 32 34 35	97,8920	160,1462	30
3	3 10 28 32 34	97,9117	165,3630	30
4	3 9 28 32 34	97,9175	158,4367	30
5	3 10 28 32 34	97,9179	155,8620	30

O diagrama unifilar da rede e o ponto de operação após a maximização da margem de potência são apresentados, respectivamente, na Figura 4.3 e na Tabela 4.3.

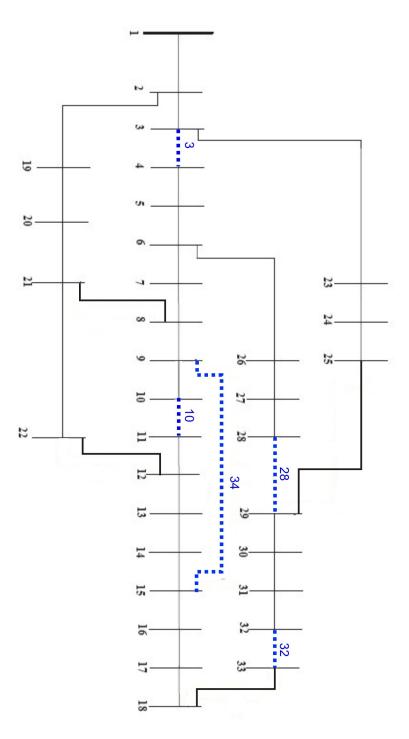


Figura 4.3 - Diagrama unifilar após o aumento da margem (Leve)

Tabela 4.4 - Índices de estabilidade de tensão carregamento leve

Barra	Tensão	М	Si	Sm	det[D'] x V _i	β
	(pu)	(%)	(pu)	(pu)	(pu)	(graus)
2	0,9970	99,9924	0,0012	15,3933	236,9524	90,1731
3	0,9894	99,9588	0,0010	2,3880	5,7024	90,5364
4	0,9354	99,1207	0,0014	0,1640	0,0269	91,2510
5	0,9358	99,6110	0,0007	0,1725	0,0297	91,4571
6	0,9373	99,6830	0,0006	0,1995	0,0398	91,9813
7	0,9386	98,9709	0,0022	0,2173	0,0472	92,0629
8	0,9421	99,0859	0,0022	0,2446	0,0598	92,2698
9	0,9410	99,6848	0,0006	0,2006	0,0403	91,3634
10	0,9405	99,6277	0,0006	0,1699	0,0289	90,6797
11	0,9423	99,7213	0,0005	0,1941	0,0377	91,4628
12	0,9425	99,6594	0,0007	0,2039	0,0416	91,7277
13	0,9355	99,5622	0,0007	0,1587	0,0252	91,6505
14	0,9329	98,9942	0,0014	0,1434	0,0206	91,6620
15	0,9311	99,5395	0,0006	0,1321	0,0174	91,5300
16	0,9293	99,4775	0,0006	0,1210	0,0147	91,3492
17	0,9263	99,3762	0,0006	0,1014	0,0103	91,0494
18	0,9253	98,9600	0,0010	0,0947	0,0090	90,8650
19	0,9940	99,9796	0,0010	4,8384	23,4104	90,2329
20	0,9678	99,8455	0,0010	0,6374	0,4063	91,7378
21	0,9604	99,8013	0,0010	0,4958	0,2458	92,2008
22	0,9549	99,7205	0,0010	0,3524	0,1242	91,8826
23	0,9820	99,9200	0,0010	1,2864	1,6549	90,9472
24	0,9674	99,2737	0,0047	0,6405	0,4102	91,7560
25	0,9561	98,8953	0,0047	0,4211	0,1773	92,1977
26	0,9370	99,6640	0,0006	0,1934	0,0374	91,8375
27	0,9367	99,6496	0,0006	0,1855	0,0344	91,6328
28	0,9362	99,5950	0,0006	0,1562	0,0244	90,8688
29	0,9511	99,5995	0,0014	0,3469	0,1203	92,2190
30	0,9479	97,9179	0,0063	0,3038	0,0922	92,2709
31	0,9445	99,2937	0,0017	0,2344	0,0549	91,5644
32	0,9438	98,9299	0,0023	0,2174	0,0472	91,3275
33	0,9249	99,2007	0,0007	0,0902	0,0081	90,6782

Os resultados da otimização mostram que na configuração inicial, a barra crítica do sistema é a barra 30 com margem de potência igual a 97,3893%. Esta margem é alta, contudo o algoritmo de otimização busca entre as configurações vizinhas alguma que apresente a margem da barra crítica maior que a da configuração corrente. No fim do processo, a barra 30 é a barra crítica em todas as configurações adotadas, e sua margem teve um aumento de 0,543%. As perdas técnicas apresentaram redução de 11,62%, mostrando que objetivo de maximização da margem de potência tem influência na diminuição das perdas técnicas e conseqüentemente na melhoria do perfil de tensão da rede, como mostra a Figura 4.4.

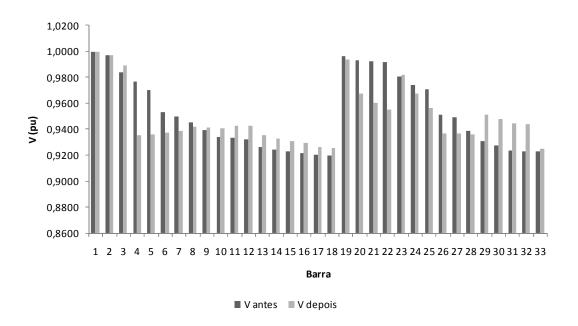


Figura 4.4 - Perfil de tensão antes e depois da reconfiguração (Leve)

Se o objetivo do algoritmo de Busca Tabu agora é minimizar as perdas técnicas, a redução é de 30%, como mostra os resultados da Tabela 4.4. Como pode ser observado a margem da barra crítica sofre oscilações durante o processo de otimização, mas o valor final é menor. Assim como no objetivo anterior, o algoritmo converge rapidamente para a solução final, como pode ser visto na Figura 4.5. O diagrama unifilar da configuração final é mostrado na Figura 4.6.

Tabela 4.5 - Redução das perdas técnicas no carregamento leve

Configuração	Chaves	M barra crítica (%)	Perdas	Barra
	Abertas		Técnicas	Crítica
			(kW)	
0 – Inicial	33 34 35 36 37	97,3893	176,3618	30
1	6 34 35 36 37	85,6721	146,7148	30
2	6 12 35 36 37	78,4729	138,5813	28
3	6 12 32 35 37	81,4402	132,5549	17
4	6 9 12 32 37	76,6625	130,2024	17
5	6 9 13 32 37	78,7742	129,6785	32
6	6 9 13 31 37	80,0553	126,8654	32
7	7 9 13 31 37	54,4290	125,1433	32
8	7 9 13 28 31	60,8381	124,5114	31
9	7 9 14 28 31	62,6804	123,4690	31

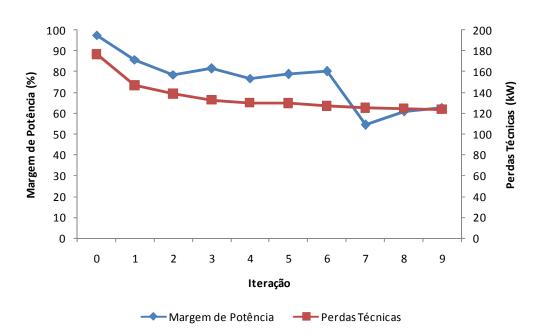


Figura 4.5 – Minimização das perdas técnicas com carregamento leve

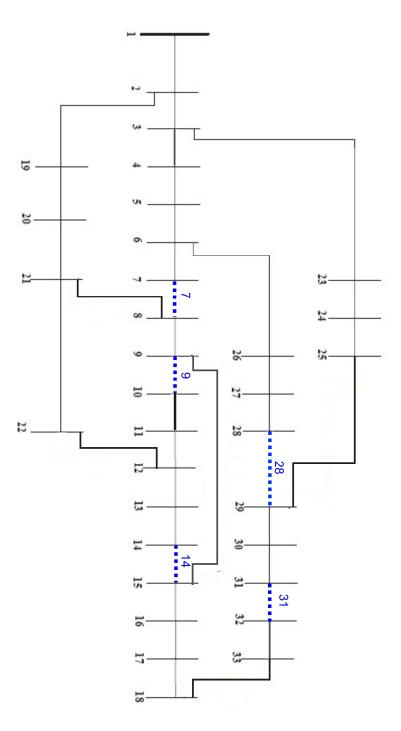


Figura 4.6 – Diagrama unifilar após a redução das perdas técnicas (Leve)

4.2 Sistema de Distribuição com Carregamento Pesado

Os índices de estabilidade de tensão do sistema com carregamento pesado são apresentados na Tabela 4.7. Observa-se que, na barra 30, o valor do ângulo β é o maior de todas as outras barras e o mais próximo de 180° . A margem de potência desta barra é a menor de todas, tornando-se novamente a barra crítica do sistema. Entretanto, o valor da distância entre a máxima potência aparente estimada e a potência injetada no ponto de operação em análise nesta barra não é o menor de todos, o que poderia levar a supor incoerência entre os resultados. No entanto, a barra que apresenta a menor margem não necessariamente deve apresentar a menor distância entre o ponto de operação em análise e o ponto de máximo carregamento. Isto pode ser explicado através de (2.55), aqui repetida para comodidade.

$$det[D'] \cdot V_i = S_m^2 - S_i^2 \tag{4.1}$$

onde,

$$S_{m}^{2} = S_{i0}^{2} - S_{is}^{2} \tag{4.2}$$

Os valores de S_m , S_{i0} , S_{is} e S_i para as barras 30, 31, 32 e 33, por exemplo, são mostrados na Tabela 4.6. Nota-se que os valores de S_{i0} e S_{is} são muito próximos, o que resulta em valores de S_m pequenos. Portanto, com o valor de S_i grande, a distância dada por (4.1) torna-se pequena. A tabela 4.8 apresenta o carregamento pesado.

Tabela 4.6 - Distância ao máximo carregamento das barras crítica e adjacentes

Barra	S _m	S _{i0}	S _{is}	S _i
30	0,1472	2,2871	2,2824	0,0159
31	0,1161	2,5384	2,5357	0,0041
32	0,1086	3,2772	3,2754	0,0057
33	0,1007	1,4113	1,4077	0,0018

Tabela 4.7 – Índices de estabilidade de tensão no carregamento pesado

Barra	Tensão	М	Si	Sm	det[D'] x V _i	β
	(pu)	(%)	(pu)	(pu)	(pu)	(graus)
2	0,9907	99,9749	0,0038	15,1634	229,9272	90,7373
3	0,9469	99,8574	0,0031	2,1586	4,6594	94,2185
4	0,9240	99,6501	0,0044	1,2570	1,5801	95,6904
5	0,9014	99,7651	0,0020	0,8496	0,7218	97,3517
6	0,8452	99,5918	0,0018	0,4321	0,1867	101,2022
7	0,8345	98,2424	0,0062	0,3504	0,1227	100,2122
8	0,8197	97,8029	0,0060	0,2753	0,0758	98,8604
9	0,8007	99,1512	0,0017	0,1969	0,0388	97,2280
10	0,7831	98,9132	0,0016	0,1504	0,0226	96,4502
11	0,7805	99,0385	0,0014	0,1449	0,0210	96,3528
12	0,7759	98,6864	0,0018	0,1354	0,0183	96,1337
13	0,7575	98,2934	0,0017	0,1017	0,0103	95,1151
14	0,7508	96,0800	0,0036	0,0912	0,0083	94,6776
15	0,7466	98,2011	0,0015	0,0833	0,0069	93,9318
16	0,7425	97,9540	0,0015	0,0757	0,0057	93,0598
17	0,7365	97,5634	0,0015	0,0631	0,0040	91,3160
18	0,7347	95,9377	0,0024	0,0588	0,0034	90,4825
19	0,9890	99,9329	0,0032	4,7875	22,9200	90,0374
20	0,9773	99,5120	0,0032	0,6508	0,4236	90,2847
21	0,9750	99,3808	0,0032	0,5118	0,2619	90,3147
22	0,9729	99,1370	0,0032	0,3664	0,1343	90,1655
23	0,9354	99,7255	0,0032	1,1576	1,3401	92,3785
24	0,9141	97,5347	0,0140	0,5692	0,3238	91,8438
25	0,9034	96,3003	0,0139	0,3749	0,1403	91,0270
26	0,8393	99,5400	0,0018	0,3914	0,1532	101,0663
27	0,8316	99,4826	0,0018	0,3447	0,1188	100,9981
28	0,7969	99,2373	0,0017	0,2181	0,0475	101,2505
29	0,7721	97,8634	0,0035	0,1657	0,0274	102,0035
30	0,7614	89,2028	0,0159	0,1472	0,0214	102,4926
31	0,7487	96,4769	0,0041	0,1161	0,0135	99,8658
32	0,7459	94,7282	0,0057	0,1086	0,0118	98,9126
33	0,7451	98,2401	0,0018	0,1007	0,0101	97,2907

Tabela 4.8 - Carregamento Pesado

Barra	Carga Ativa P (kW)	Carga Reativa Q (kVar)
1	-	-
2	330	198
3	297	132
4	396	264
5	198	99
6	198	66
7	660	330
8	660	330
9	198	66
10	198	66
11	148,5	99
12	198	115,5
13	198	115,5
14	396	264
15	198	33
16	198	66
17	198	66
18	297	132
19	297	132
20	297	132
21	297	132
22	297	132
23	297	165
24	1386	660
25	1386	660
26	198	82,5
27	198	82,5
28	198	66
29	396	231
30	660	1980
31	495	231
32	693	330
33	198	132

A Figura 4.7 e a Tabela 4.9 mostram os resultados das iterações do processo de otimização no sistema de 32 barras com fator de carga λ igual a 3,3.

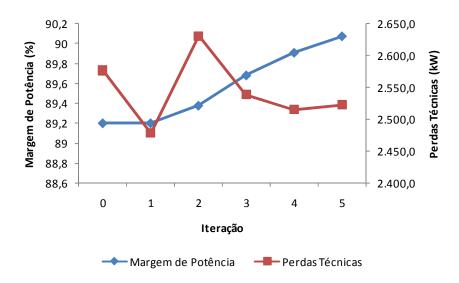


Figura 4.7 – Maximização da margem de potência com carregamento pesado

Configuração	Chaves	M barra crítica (%)	Perdas	Barra
	Abertas		Técnicas	Crítica
			(kW)	
0 - Inicial	33 34 35 36 37	89,2028	2.577,0	30
1	3 28 34 35 36	89,2028	2.478,2	30
2	3 10 28 34 36	89,3779	2.630,9	30
3	3 10 28 32 34	89,6803	2.539,1	30
4	3 11 28 32 34	89,9065	2.515,0	30
5	3 10 28 32 34	90,0713	2.522,8	30

Tabela 4.9 - Aumento da margem de potência no carregamento pesado

Observa-se na Tabela 4.9 que a margem da barra crítica (barra 30) na configuração inicial é de 89,2028%. Mostra-se através da coluna de chaves abertas que os atributos, isto é, cada chave aberta, que leva a soluções melhores são preservadas, ou seja, isto mostra a aplicação do critério de aspiração e da estratégia de configurações de elite, mostradas no capítulo 3. A margem de potência crítica final teve um aumento de 0,97% e as perdas técnicas sofreram redução de 2,1%. A Figura 4.8 mostra o perfil de tensão antes e após a reconfiguração.

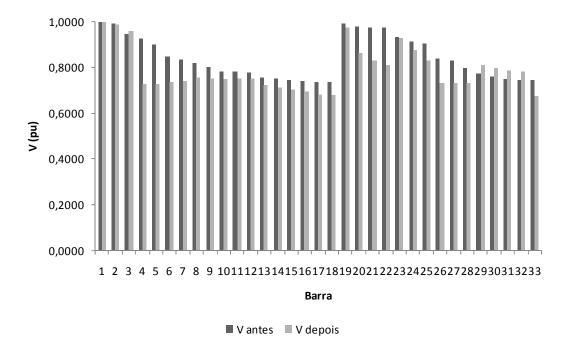


Figura 4.8 - Perfil de tensão antes e depois da reconfiguração (Pesada)

No sistema de 32 barras com carga pesada não ocorre melhoria no valor das tensões, exceto para aquelas próximas à barra crítica. Isto ocorre por que a função objetivo somente maximiza a margem de potência da barra crítica, ou seja, aumenta a distância entre o ponto de operação em análise e o ponto de máximo carregamento, evitando que a barra opere na região anormal de operação e entre em colapso de tensão Os índices de estabilidade de tensão após a reconfiguração e o diagrama unifilar da configuração final são apresentados, respectivamente, na Tabela 4.10 e na Figura 4.9.

Tabela 4.10 - Índices de estabilidade de tensão no carregamento pesado

Barra	Tensão	М	Si	Sm	det[D'] x V _i	β
	(pu)	(%)	(pu)	(pu)	(pu)	(graus)
2	0,9883	99,9744	0,0038	15,0560	226,6843	91,1494
3	0,9591	99,8540	0,0033	2,2254	4,9526	92,8250
4	0,7273	94,9401	0,0048	0,0941	0,0088	100,4846
5	0,7290	97,7661	0,0022	0,0991	0,0098	101,5989
6	0,7354	98,2013	0,0021	0,1161	0,0135	104,4082
7	0,7412	94,2369	0,0074	0,1281	0,0164	104,9269
8	0,7555	95,0307	0,0074	0,1485	0,0220	105,9882
9	0,7513	98,2758	0,0021	0,1211	0,0147	101,0898
10	0,7492	97,9626	0,0021	0,1025	0,0105	97,3308
11	0,7537	98,4716	0,0018	0,1167	0,0136	103,0188
12	0,7542	98,1320	0,0023	0,1226	0,0150	104,4969
13	0,7237	97,4311	0,0023	0,0891	0,0079	104,4096
14	0,7119	93,9476	0,0048	0,0785	0,0061	104,5339
15	0,7040	97,1746	0,0020	0,0709	0,0050	103,8583
16	0,6959	96,7350	0,0021	0,0638	0,0041	102,9037
17	0,6825	95,9826	0,0021	0,0518	0,0027	101,2869
18	0,6777	93,2411	0,0032	0,0480	0,0023	100,2458
19	0,9754	99,9295	0,0033	4,6121	21,2715	92,0750
20	0,8645	99,3265	0,0032	0,4826	0,2329	103,0714
21	0,8328	99,0742	0,0032	0,3510	0,1232	105,9017
22	0,8086	98,6333	0,0032	0,2377	0,0565	104,5493
23	0,9310	99,7022	0,0034	1,1409	1,3018	94,9346
24	0,8745	97,0084	0,0154	0,5132	0,2631	98,9683
25	0,8305	95,0596	0,0154	0,3108	0,0963	101,3200
26	0,7342	98,0886	0,0021	0,1123	0,0126	103,6378
27	0,7330	98,0031	0,0021	0,1075	0,0115	102,5351
28	0,7307	97,6883	0,0021	0,0903	0,0082	98,3878
29	0,8108	98,1371	0,0046	0,2461	0,0606	101,6078
30	0,7982	90,0713	0,0209	0,2112	0,0442	101,9743
31	0,7846	96,5434	0,0055	0,1581	0,0250	98,8516
32	0,7820	94,7405	0,0077	0,1460	0,0212	97,7820
33	0,6762	94,7855	0,0024	0,0455	0,0021	99,1638

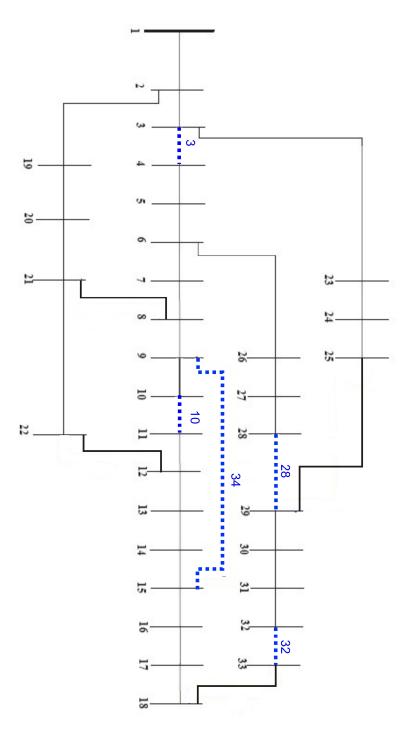


Figura 4.9 – Diagrama unifilar após o aumento da margem (Pesado)

Alterando o objetivo e minimizando as perdas técnicas, a redução chega a 41,60% enquanto que a margem da barra crítica sofreu redução de 6,94%, como pode ser visto na Tabela 4.11. Percebe-se que para este fator de carga, o algoritmo busca configurações semelhantes nos dois objetivos, sendo que para a maximização da margem de potência o algoritmo converge mais rapidamente do que na minimização das perdas técnicas, como pode ser visto na Figura 4.10.

Tabela 4.11 - Redução das perdas técnicas no carregamento pesado

Configuração	Chaves	M barra crítica	Perdas	Barra
	Abertas	(%)	Técnicas	Crítica
			(kW)	
0 – Inicial	33 34 35 36 37	89,2028	2.577,0	30
1	6 34 35 36 37	85,9747	2.571,0	30
2	6 12 35 36 37	86,1474	2.571,0	30
3	6 12 28 35 36	89,5018	2.206,5	30
4	7 12 28 35 36	89,5810	2.051,7	30
5	7 12 28 32 35	89,6616	1.982,9	30
6	7 9 12 28 32	89,8026	1.929,1	30
7	7 9 13 28 32	89,8371	1.903,3	30
8	3 11 28 32 34	85,2860	1.831,3	32
9	3 10 28 32 34	83,2054	1.796,7	32
10	3 11 28 32 34	83,0156	1.796,7	32

Observa-se na Figura 4.11 que na configuração 1 o algoritmo encontra uma solução mínima local. Entretanto, devido ao critério de aspiração utilizado, o algoritmo adota soluções não-aprimorantes da função objetivo de modo a impedir que a busca termine em um valor mínimo local e com isso o valor das perdas na configuração 2 é o mesmo que na configuração anterior. Assim a busca por novas soluções aprimorantes prossegue minimizando as perdas técnicas até encontrar a melhor solução na configuração 9. O valor das perdas técnicas na configuração 10 é igual à anterior devido ser uma solução mínima global para o objetivo de redução das perdas técnicas.

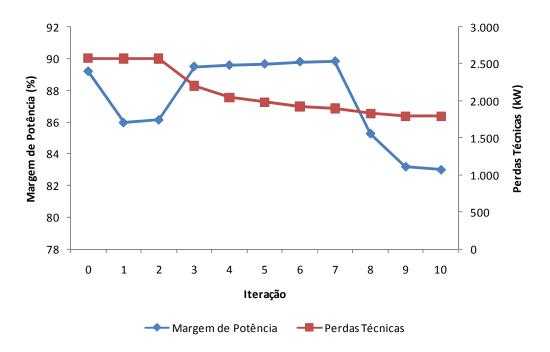


Figura 4.10 - Minimização das perdas técnicas com carregamento pesado

O diagrama unifilar do sistema após a redução de perdas é igual ao apresentado na Figura 4.9. Nota-se que tanto no aumento da margem de potência quanto na redução das perdas técnicas apresentam resultados com a mesma topologia da rede, porém a margem de potência da barra crítica e as perdas técnicas são diferentes, como pode ser observado nas iterações 5 e 9 das Tabelas 4.5 e 4.7 respectivamente. Isso ocorre devido à configuração das chaves abertas na iteração anterior e, conseqüentemente, o ponto de operação ser diferentes em cada caso, ou seja depende da configuração inicial. Também pode ser observado nos dois casos que algumas topologias são repetidas durante o processo de otimização, devido ao uso do critério de aspiração.

No algoritmo de redução de perdas técnicas cada configuração apresentada na Tabela 4.9 corresponde à opção de chaveamento que produz a menor perda e, portanto é a opção escolhida pelo algoritmo de Busca Tabu para ser a nova configuração corrente, se não existirem atributos proibidos. Identificado o melhor vizinho, essa configuração é comparada com a configuração corrente e é gerado um vetor chamado *movim*. Esse vetor é comparado com a lista tabu e verifica-se se a configuração apresenta atributos proibidos. Se o movimento não for proibido, o valor da perda dessa configuração (melhor vizinho) é comparado com o valor da perda da configuração anterior, e se esse valor for menor é armazenado como sendo a menor perda e a configuração é armazenada como sendo a melhor configuração encontrada até o momento. Se o movimento for

considerado tabu, é aplicado o critério de aspiração, que consiste em comparar a perda da configuração candidata com a menor perda encontrada até aquele momento. Se a perda for menor que a menor perda encontrada, então o "status" tabu da configuração é ignorado e é feita a transição para a configuração candidata. Caso o critério não seja satisfeito, é feita uma busca no próximo elemento do vetor de configurações vizinhas *vch* até que seja encontrada uma configuração válida. No caso em que todas as configurações do vetor não serem válidas (proibidas e não satisfizerem o critério de aspiração) então o algoritmo faz a transição para a configuração que possui atributos na lista tabu e que deteriore menos a função objetivo. Todo o processo é repetido para cada nova configuração aceita até que o critério de parada seja satisfeito, ou seja no número máximo de iteraçãoes do algoritmo. No objetivo de aumento da margem de potência o processo é análogo.

4.3 Sistema de Distribuição com Carregamento Crítico

O fator de carga λ igual a 7,27 foi usado para simular o sistema na região próxima à "ponta do nariz" na curva PV. A Tabela 4.10 mostra o ponto de operação para as barras de carga do sistema antes da reconfiguração. Em todas as barras o ângulo β tem valores próximos de 180°, o que indica que os vetores gradientes de potência ativa e reativa estão praticamente alinhados e em direções opostas. O lugar geométrico desses vetores no plano $V\theta$ representa o encontro da curvas P e Q constantes em um único ponto, que representam a única solução de tensão possível para o ponto de operação em análise. Para uma carga maior com mesmo fator de potência, as curvas não se encontram e com isso não há solução. A Tabela 4.13 apresenta o carregamento crítico.

Tabela 4.12 – Índices de estabilidade de tensão no carregamento crítico

Barra	Tensão	M	Si	Sm	det[D'] x V _i	β
	(pu)	(%)	(pu)	(pu)	(pu)	(graus)
2	0,9796	99,8074	0,0083	4,3124	18,5976	168,7463
3	0,8832	97,3645	0,0063	0,2399	0,0575	178,0937
4	0,8327	91,9031	0,0087	0,1078	0,0116	178,7848
5	0,7831	93,6084	0,0038	0,0598	0,0035	179,1238
6	0,6590	85,4603	0,0030	0,0208	0,00043	179,5003
7	0,6355	46,1194	0,0103	0,0192	0,00026	179,4784
8	0,6029	36,5500	0,0098	0,0154	0,00014	179,4245
9	0,5611	68,9712	0,0026	0,0083	0,00006	179,3580
10	0,5225	60,4182	0,0024	0,0061	0,00003	179,3185
11	0,5167	64,2135	0,0020	0,0057	0,00003	179,3098
12	0,5067	53,3012	0,0026	0,0055	0,00002	179,2913
13	0,4665	42,1888	0,0024	0,0041	0,00001	179,2347
14	0,4521	14,5567	0,0047	0,0055	0,00001	179,2249
15	0,4431	39,6777	0,0020	0,0032	0,00001	179,1858
16	0,4343	34,7547	0,0020	0,0031	0,00001	179,1292
17	0,4219	28,8158	0,0019	0,0027	0,00001	179,0221
18	0,4180	14,0930	0,0030	0,0035	0,000003	178,9511
19	0,9757	99,6878	0,0070	2,2379	5,0079	152,6716
20	0,9500	98,6568	0,0068	0,5064	0,2564	112,4828
21	0,9449	98,3500	0,0068	0,4100	0,1681	109,0522
22	0,9404	97,7859	0,0067	0,3041	0,0924	104,5834
23	0,8578	95,9998	0,0064	0,1605	0,0257	176,6659
24	0,8107	72,9063	0,0274	0,1012	0,0095	174,2511
25	0,7873	65,5539	0,0266	0,0773	0,0053	171,8926
26	0,6462	83,4018	0,0031	0,0184	0,0003	179,5002
27	0,6293	81,0135	0,0030	0,0157	0,0002	179,5039
28	0,5534	70,1149	0,0025	0,0085	0,0001	179,5373
29	0,4992	31,5748	0,0050	0,0074	0,00003	179,5705
30	0,4767	2,0205	0,0219	0,0224	0,00002	179,5961
31	0,4482	14,7648	0,0054	0,0063	0,00001	179,5106
32	0,4418	7,4397	0,0075	0,0081	0,00001	179,4755
33	0,4399	37,1529	0,0023	0,0037	0,00001	179,4158

Tabela 4.13 – Carregamento Crítico

Barra	Carga Ativa P (kW)	Carga Reativa Q (kVar)
1	-	-
2	727	436,2
3	654,3	290,8
4	872,4	581,6
5	436,2	218,1
6	436,2	145,4
7	1454	727
8	1454	727
9	436,2	145,4
10	436,2	145,4
11	327,15	218,1
12	436,2	254,45
13	436,2	254,45
14	872,4	581,6
15	436,2	72,7
16	436,2	145,4
17	436,2	145,4
18	654,3	290,8
19	654,3	290,8
20	654,3	290,8
21	654,3	290,8
22	654,3	290,8
23	654,3	363,5
24	3053,4	1454
25	3053,4	1454
26	436,2	181,75
27	436,2	181,75
28	436,2	145,4
29	872,4	508,9
30	1454	4362
31	1090,5	508,9
32	1526,7	727
33	436,2	290,8

Obviamente a situação crítica apresentada dificilmente acontece na prática, mas serve para representar o desempenho do algoritmo de otimização em casos de carregamento excessivo do sistema de distribuição. Os resultados da simulação são apresentados na Figura 4.11 e na Tabela 4.14.

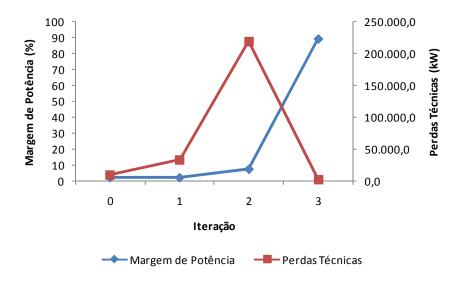


Figura 4.11 – Maximização da margem de potência com carregamento crítico

Tabela 4.14 - Aumento da margem de potência no carregamento crítico

Configuração	Chaves	M barra crítica (%)	Perdas	Barra
	Abertas		Técnicas	Crítica
			(kW)	
0 - Inicial	33 34 35 36 37	2,0205	9.321,2	30
1	12 33 35 36 37	2,0205	32.809,6	30
2	12 28 33 35 37	7,3303	218.767,9	30
3	9 12 28 33 37	89,3231	2.510,2	25

Os resultados da Tabela 4.11 mostram que o algoritmo de Busca Tabu levou o sistema de 32 barras a uma situação mais favorável do ponto de vista de segurança de tensão. Percebe-se que na configuração 3 o sistema apresenta margem da barra crítica igual a 89,3231%, indicando que em poucas iterações o algoritmo converge para uma configuração de boa qualidade, devido ao armazenamento de atributos que levam a essa configuração. A partir desta configuração as chaves 9, 12 e 28 permanecem abertas até a última iteração, ou seja, é o armazenamento de atributos presentes nas configurações de elite, que guia a busca para configurações de alta qualidade.

A Figura 4.12 mostra o diagrama unifilar do sistema após o aumento da margem de potência. As perdas técnicas tiveram oscilações durante a execução do algoritmo de otimização, e o valor final foi de 2.510,2 kW. Entretanto, o ponto de operação final do sistema está situado na região normal de operação e distante da "ponta do nariz", e as margens de potência das barras são todas positivas e próximas de 100%, o que garante uma distância maior em relação ao ponto de máximo carregamento e um alívio do mesmo, com o aumento do perfil de tensão do sistema, mostrado na Figura 4.13.

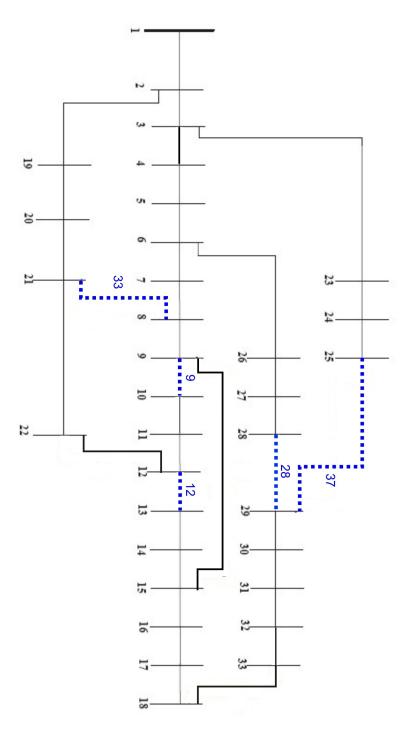


Figura 4.12 – Diagrama unifilar após o aumento da margem (Crítico)

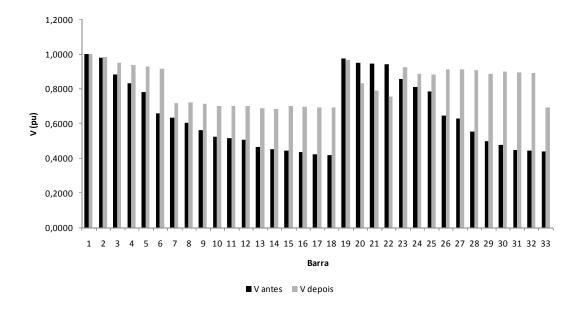


Figura 4.13 - Perfil de tensão antes e depois da reconfiguração (Crítico)

O ponto de operação do sistema após a reconfiguração é mostrado na Tabela 4.15.

Tabela 4.15 – Ponto de operação após maximização da margem de potência

Barra	Tensão	M	Si	Sm	det[D'] x V _i	β
	(pu)	(%)	(pu)	(pu)	(pu)	(graus)
2	0,9859	99,9440	0,0087	14,8111	217,9570	93,6121
3	0,9497	99,6739	0,0081	2,1284	4,2125	99,8755
4	0,9393	99,2318	0,0119	1,2948	1,4861	96,7064
5	0,9316	99,5114	0,0055	0,9142	0,7025	95,1092
6	0,9161	99,2980	0,0052	0,5197	0,1943	93,1914
7	0,7198	97,2709	0,0150	0,1086	0,0102	109,5066
8	0,7205	96,9232	0,0149	0,1208	0,0120	110,6332
9	0,7143	99,0313	0,0039	0,0972	0,0074	106,6098
10	0,7011	98,6873	0,0050	0,0905	0,0061	106,2593
11	0,7015	98,8997	0,0043	0,0928	0,0063	106,5836
12	0,7026	98,6483	0,0055	0,0976	0,0068	107,0426
13	0,6894	98,5884	0,0056	0,0749	0,0038	102,8799
14	0,6836	97,3584	0,0115	0,0680	0,0030	99,7797
15	0,6997	99,0045	0,0032	0,0672	0,0029	96,5290
16	0,6985	98,9777	0,0032	0,0615	0,0023	94,5819
17	0,6918	99,0251	0,0029	0,0509	0,0016	92,7589
18	0,6917	98,4987	0,0045	0,0477	0,0014	94,2513
19	0,9682	99,8493	0,0074	4,4404	19,8709	95,6304
20	0,8303	98,8423	0,0080	0,4036	0,1863	116,4547
21	0,7898	98,5132	0,0079	0,2832	0,0959	118,6140
22	0,7561	97,8983	0,0078	0,1879	0,0438	113,1572
23	0,9270	99,3324	0,0090	1,0900	1,0992	103,5918
24	0,8878	93,2829	0,0412	0,5031	0,2295	107,1273
25	0,8842	89,3231	0,0373	0,3337	0,0979	102,5985
26	0,9137	99,2098	0,0054	0,4752	0,1597	93,0084
27	0,9114	99,1146	0,0054	0,4248	0,1246	92,6410
28	0,9064	98,7403	0,0052	0,2904	0,0515	90,8664
29	0,8884	97,8715	0,0103	0,2785	0,0435	96,1832
30	0,9017	90,6030	0,0457	0,2568	0,0338	94,0522
31	0,8952	97,5376	0,0108	0,1945	0,0189	90,5066
32	0,8936	96,5322	0,0149	0,1806	0,0160	90,6261
33	0,6917	98,9133	0,0033	0,0455	0,0013	95,4582

Os resultados da Tabela 4.13 mostram que com o objetivo de minimizar as perdas técnicas, a redução chega a 54,45 %. Entretanto, a margem da barra crítica na configuração final tem valor menor que -100%, que de acordo com [França, 2003] ocorre quando $S_m < 0$. Em um sistema multi-nó, uma situação crítica deste porte em uma certa barra é acompanhada por várias outras barras adjacentes. O objetivo de minimização das perdas técnicas não é o mais recomendado nesta situação, pois devido ao carregamento excessivo o sistema está muito próximo do ponto de máximo carregamento. Portanto, a fim de evitar uma situação de colapso de tensão o objetivo de maximização da margem de potência levará o sistema a operar em uma região mais segura do ponto de vista de segurança de tensão e também reduzirá as perdas técnicas, porém em uma proporção menor.

Tabela 4.16 - Redução das perdas técnicas no carregamento crítico

Configuração	Chaves	M barra crítica	Perdas	Barra
	Abertas	(%)	Técnicas	Crítica
			(kW)	
0 – Inicial	33 34 35 36 37	2,0205	9.321,2	30
1	5 33 34 35 36	2,0205	9.321,2	31
2	5 28 34 35 36	-3.828,6	9.321,2	9
3	7 28 34 35 36	-2.022,7	8.590,6	11
4	7 12 28 35 36	79,5456	4.244,9	8

A Figura 4.14 mostra o diagrama unifilar após a redução das perdas técnicas no carregamento crítico.

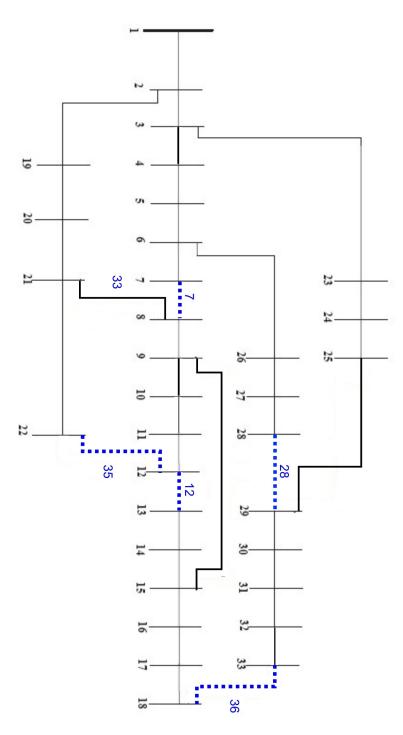


Figura 4.14 – Diagrama unifilar após a redução das perdas técnicas (Crítico)

4.4 Conclusão

O algoritmo de Busca Tabu mostrou-se adequado em resolver o problema de reconfiguração em sistemas de distribuição com o objetivo de maximização da margem de potência. Os critérios utilizados (lista tabu, intensificação, critério de aspiração e configurações de elite), para direcionar a busca permitiram que a mesma convergisse rapidamente para soluções de boa qualidade. O critério de escolha da vizinhança permitiu uma boa adequação do tempo computacional e da quantidade de soluções, o que comprova a eficiência do algoritmo em encontrar soluções de boa qualidade, evitando que a busca termine em um mínimo local.

Utilizaram-se funções objetivo de maximização da margem de potência e minimização das perdas técnicas em três diferentes níveis de carregamento. Com carregamento leve a barra crítica do sistema apresentava margem de potência alta, mas, ainda assim, o algoritmo conseguiu encontrar novas configurações onde a barra crítica apresentasse margem de potência maior e reduzindo as perdas técnicas. Contudo, se fosse utilizada a função objetivo de minimização das perdas técnicas, a redução é maior, e não há influência em relação ao aumento da margem de potência da barra crítica.

Na situação de carregamento pesado o aumento da margem da barra crítica é acompanhado de uma redução das margens das barras adjacentes. Na minimização das perdas técnicas, o algoritmo encontra um valor mínimo local e com a escolha de uma vizinhança de boa qualidade, consegue prosseguir a busca por melhores soluções da função objetivo.

Para a condição de carregamento crítico o algoritmo dedicado à maximização da margem de potência levou o sistema a uma condição mais favorável sob o ponto de vista de segurança de tensão, elevando a margem de potência da barra crítica, de barras adjacentes, aumentando a distância ao ponto de máximo carregamento e reduzindo as perdas técnicas. Com o algoritmo dedicado a redução das perdas técnicas o objetivo foi alcançado, entretanto levou o sistema a uma situação desfavorável em relação à estabilidade de tensão, em um efeito "avalanche", em que uma situação crítica em certa barra é acompanhada por outras barras adjacentes. Assim, comprovou-se que a redução das perdas nem sempre leva a maiores margens de potência. Pelo contrário, nesse caso, as margens deterioram-se atingindo valores negativos.