Referências

Robert G. Reynolds: An Introduction to Cultural Algorithms, 2002 World Congress on Computational Intelligence.

Tubel, P. and Hopmann, M., Intelligent Completion for Oil and Gas Production Control in Subsea Multi-lateral Well Applications, paper SPE 36582 presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 6-9 October, 1996.

Yeten, B. and Jalali, Y., Effectiveness of Intelligent Completions in a Multiwell Development Context, paper SPE 68077 presented at the SPE Middle East Oil Show, Bahrain, 17-20 March, 2001.

Apêndice A – Tratamento de Incertezas

A Curva Bathtub

A probabilidade para que uma válvula falhe está relacionada a sua confiabilidade, que se altera como passar do tempo. Além disso, com relação ao tempo de vida de um componente, o mecanismo mais provável da falha também pode mudar. Inicialmente a probabilidade de falha mais elevada para um componente pode ser do tipo mortalidade infantil. Neste estágio a falha é causada muito provavelmente por testes inadequado do equipamento, ou devido a danos causados durante a instalação. Com o passar do tempo este mecanismo da falha torna-se menos provável de ocorrer. A probabilidade de falha diminui com o tempo após o período de mortalidade infantil. A taxa de falhas neste estágio é baixa e aproximadamente constante e é julgada ser devido a erros aleatórios. Após esse período de confiabilidade relativamente elevada o componente começa a envelhecer podendo falhar devido a este envelhecimento. A tendência prevista neste estágio é que a taxa de falhas aumente com tempo.

Os diferentes mecanismos de falha em função do tempo estão representados na curva "bathtub", como mostrado na figura 68, o período $0 < t < t_1$ mostra o decaimento da taxa de falha com tempo, correspondendo ao mecanismo de falha do tipo mortalidade infantil. No período $t_1 < t < t_2$ a taxa de falha é constante, correspondendo a ocorrência de falha aleatória. O último período $t > t_2$ corresponde ao mecanismo de falha do tipo envelhecimento. A função correspondente a densidade de probabilidade de falha (pdf) é mostrada na figura 69. Nesta figura a probabilidade da falha volta a diminuir após o período atrasado porque a falha já ocorreu.
Figura 68. Curva bathtub

Figura 69. Função de densidade de probabilidade da curva bathtub
Distribuição Weibull

A função de distribuição mais conveniente para representar a distribuição de vida dos produtos (válvulas) onde a taxa de falhas varia com o tempo é a distribuição weibull (Abernathy, 2000). A taxa de falha \(h(t) \) é definida como a probabilidade que um componente de idade \(t \) falhará no momento seguinte, dado que o componente sobreviveu até esse tempo. Na distribuição weibull a taxa de falha é definida como:

\[
h(t) = \frac{\beta}{\alpha} \left(\frac{t}{\alpha} \right)^{\beta-1} \exp \left(-\frac{t}{\alpha} \right)
\]

(10)

onde \(\beta \) é o parâmetro de forma e \(\alpha \) é o parâmetro de escala.

A função de distribuição cumulativa Weibull é dada pela equação abaixo:

\[
F(t) = 1 - \exp \left(-\left(\frac{t}{\alpha} \right)^\beta \right)
\]

(11)

A derivada de \(F(t) \) em relação a \(t \) nos dá a função de densidade de probabilidade Weibull:

\[
f(t) = \frac{\beta}{\alpha} \left(\frac{t}{\alpha} \right)^{\beta-1} \exp \left(-\left(\frac{t}{\alpha} \right)^\beta \right)
\]

(12)

O parâmetro de forma \(\beta \) permite que a distribuição assuma formas variadas, e consequentemente define o mecanismo da falha. Especificamente, \(\beta < 1 \) implica em um mecanismo de falha de mortalidade infantil; isto é, uma taxa de falhas que diminui com tempo. Um valor de \(\beta = 1 \) representa um mecanismo da falha aleatória e assim uma taxa de falhas constante. Para \(1 < \beta < 4 \) implica o desgaste adiantado, para \(\beta > 4 \) implica o envelhecimento e o desgaste rápido. Para todo \(\beta > 1 \) a taxa de falhas aumenta com tempo.

O parâmetro \(\alpha \) (\(\alpha > 0 \)) estica ou comprime a função de densidade de probabilidade. Valores de \(\alpha > 1 \) agem no sentido de esticar a função de densidade de
probabilidade. Valores mais elevados de α geram distribuições mais largas, com o pico ocorrendo em tempos mais atrasados. No pico é a época mais provável de ocorrer falha. Valores de $\alpha < 1$ comprimem a função de densidade de probabilidade, com a distribuição se aproximando a um ponto quando $\alpha \to 0$.

Nas figuras 70 e 71 abaixo mostra-se os efeitos dos parâmetros α e β na distribuição Weibull.

Legenda:
- $\alpha = 3$
- $\alpha = 5$
- $\alpha = 7$

Figura 70. Funções de densidade de probabilidade variando α

Legenda:
- $\beta = 0.5$
- $\beta = 1.0$
- $\beta = 2.5$
- $\beta = 4.5$

Figura 71. Funções de densidade de probabilidade variando $\beta
Cenários de Confiabilidade

Conforme discutido acima, o mecanismo de falha muda com o passar do tempo. Assim, o parâmetro β deve variar no tempo. Isto poderia ser realizado dividindo o tempo total da operação em um número de estágios, onde cada estágio tem seu próprio mecanismo característico de falha com um valor correspondente de β. Entretanto, uma mudança de um mecanismo dominante de falha para outro não ocorre de forma abrupta, β deve mudar gradualmente com o passar do tempo. Isto é realizado aqui com β aumentando com tempo, de acordo com a seguinte relação:

$$\beta(t) = c + zt$$ \hspace{1cm} (13)

onde c e z são constantes.

Nesta equação o parâmetro c é o valor inicial para β e o parâmetro z define a inclinação do aumento de β com o tempo.

Parâmetros da Weibull

Os parâmetros da Weibull utilizada nos testes com incerteza técnica (falha), realizados no capítulo 5 encontram-se na tabela 44 a seguir:

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>5.0</td>
</tr>
<tr>
<td>c</td>
<td>0.99</td>
</tr>
<tr>
<td>z</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Tabela 44. Valores dos parâmetros da weibull

Os valores de c e z foram utilizados com base em Yeten(2004). Com esses valores de parâmetro, a weibull toma a forma mostrada na figura 72 e 73 a seguir.
Figura 72. Distribuição de Probabilidade Weibull utilizada nos testes do modelo de otimização sob incerteza técnica

Figura 73. Distribuição Cumulativa Weibull utilizada nos testes do modelo de otimização sob incerteza técnica
Simulação Monte Carlo

Monte Carlo é uma ferramenta de simulação estatística que utiliza métodos de amostragem para resolver problemas de natureza estocástica ou determinística. A simulação Monte Carlo é um método apropriado para resolver problemas de alta dimensão e/ou parâmetros estocásticos e, muitas vezes, é usada para calcular o valor esperado e a dispersão (desvio padrão) de uma variável que é função de várias variáveis estocásticas e que não pode ser tratada analiticamente, considerando as faixas de variação e as distribuições de probabilidades do conjunto de parâmetros incertos (Hammersley, 1964).

Uma das grandes vantagens da simulação Monte Carlo sobre outras técnicas numéricas é a possibilidade de avaliar o erro das estimativas. O desvio padrão das amostras, $SD(F)$ (equação (14)) é uma medida da dispersão dos valores estimados em relação à média.

$$SD(F) = \sqrt{\frac{1}{M-1} \left(\sum_{j=1}^{M} [f_j] - \frac{1}{M} \left(\sum_{j=1}^{M} f_j \right)^2 \right)}$$

(14)

Onde f_j é o resultado para cada cenário considerado ou cada simulação, M corresponde o número de amostras ou cenários considerados para a variável estocástica e F é a estimativa do verdadeiro valor da variável.

O erro padrão, $SE(F)$, descrito na equação (15), é uma medida do erro cometido pelas estimativas em relação à média da amostra.

$$SE(F) = \frac{SD(F)}{\sqrt{M}}$$

(15)

O coeficiente de variação, CV (equação (16)) é uma medida adimensional da precisão das estimativas.

$$CV = \frac{SD(F)}{F}$$

(16)
As estimativas feitas com simulação Monte Carlo não possuem um padrão bem definido de convergência para o valor verdadeiro. De acordo com a equação (15), o erro das estimativas diminui com a raiz quadrada de \(M \), logo deve-se ter uma amostra muito grande, para que uma precisão aceitável seja atingida. Entretanto, quanto maior a amostra, maior o custo computacional, podendo até inviabilizar a aplicação. Analisando novamente a equação (15), o erro das estimativas pode ser reduzido se o desvio padrão das estimativas puder ser reduzido de alguma forma. Existem várias técnicas para reduzir o erro, manipulando o desvio padrão (ou variância) das estimativas. Estas técnicas são conhecidas como técnicas de redução de variância (McKay, 1979, Owen, 1992, Tang 1993, Boyle, 1997).
Apêndice B – Simulador de Reservatórios IMEX

Neste apêndice são mostradas algumas informações referidas ao simulador de reservatórios IMEX utilizado neste trabalho.

O Simulador IMEX

A corporação CMG: Computing Modelling Group (CMG 2000:2) desenvolveu um pacote de aplicações para simulação de reservatório: simulador black-oil IMEX, simulador de injeção de gás, editor de malhas para simuladores CMG, gerador de relatórios, visualizador da malha de reservatório em 2D e 3D, e graficador de curvas de resultados. O mais importante destes produtos para este trabalho é o IMEX.

IMEX é um simulador black-oil (Fanchi 2000) de três fases que leva em consideração a gravidade e efeitos capilares. O IMEX suporta configurações de grid cartesiana, cilíndrica e com profundezas e espessuras variáveis. Desta forma é possível mapear as configurações de campos em 2D e 3D.

O IMEX foi programado em FORTRAN 77 e pode ser executado sob diferentes plataformas: mainframes IBM, CDC, CRAY, Honeywell, DEC, Prime, Gould, Unisys, Apollo, SUN, HP, FPS, IBM-PC 486, e família Intel Pentium.

Características do IMEX

O simulador IMEX pode ser executado em três modos: explícito, implícito ou adaptativo. Estes modos, referem-se à forma como são resolvidas as equações não-lineares do modelos de fluxo. No caso de modo explícito, o passo de tempo utilizado deve ser sempre menor que o máximo valor de passo que mantenha a estabilidade do sistema. No modo implícito, é necessário resolver um sistema de equações não lineares a cada passo, podendo ser escolhidos passos maiores. O modo explícito é vantajoso quando as variações dos estados são lentas e não são feitos muitos cálculos, enquanto que o modo implícito é necessário quando existem muitas variações nos estados e fica necessário resolver sistemas de equações. O modo adaptativo permite escolher entre a solução implícita ou explícita segundo a característica das variações dos estados do sistema.
Geralmente, na malha, só um pequeno número de blocos deve ser tratado de forma totalmente implícita, pois a maioria dos blocos pode ser tratado de forma explícita. Este procedimento é bastante proveitoso para problemas onde só existem grandes fluxos nas proximidades dos poços (efeito cone) ou em reservatórios estratificados com camadas bem finas. Utilizando o modo adaptativo o tratamento de forma totalmente implícita é feito apenas onde for necessário, obtendo-se uma grande economia no esforço computacional requerido.

O IMEX suporta também as opções de dupla porosidade e dupla permeabilidade (Douglas, 1990), as quais permitem o tratamento de reservatórios com fraturas, onde as fraturas são modeladas como duas partes com porosidade primária e secundária. Já pela dupla permeabilidade é possível modelar a comunicação de fluidos entre as duas partes definidas na fratura.

O simulador IMEX usa uma rotina de solução baseada em eliminação de Gauss incompleta, isto serve como um acondicionamento dos dados antes de aplicar o método GMRES (Generalized Minimum Residual) (Saad e Schultz, 1986; Burkhart, 1988) que é um método iterativo que permite minimizar a norma do resíduo baseado na geração dos espaços de Krilov. Em conjunto, o acondicionamento dos dados e o método GMRES permitem diminuir o custo computacional e os requerimentos de memória quando o número de equações a resolver é muito grande.

Uso do IMEX

Neste simulador a comunicação com o usuário é efetuada através de arquivos de entrada e saída. O usuário deve criar um arquivo texto de entrada (formato .DAT) que contém: a configuração da malha, informação geológica, tipo de fluxo de óleo, condições iniciais, métodos numéricos, lista de poços, entre outras coisas. O simulador, após a execução, fornece os valores de saída em um grupo de arquivos. Esse fluxo de informações é apresentado no seguinte gráfico:
O Arquivo .DAT é imprescindível, uma vez que este arquivo contém todas as informações que definem a configuração completa da reserva a ser simulada. A informação contida no arquivo .DAT está classificada em 7 tipos de dados:

<table>
<thead>
<tr>
<th>Tipos de dados usados no arquivo .DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dados de controle de Entrada e Saída</td>
</tr>
<tr>
<td>2. Dados de descrição do reservatório</td>
</tr>
<tr>
<td>3. Propriedades das componentes</td>
</tr>
<tr>
<td>4. Dados de Rochas e Fluidos</td>
</tr>
<tr>
<td>5. Condições Iniciais</td>
</tr>
<tr>
<td>6. Informação sobre os métodos numéricos</td>
</tr>
<tr>
<td>7. Informação dos poços e dados recorrentes.</td>
</tr>
</tbody>
</table>

Tabela 45. Tipos de dados existentes no arquivo .DAT

Se a simulação for com recorrência, deverá existir o arquivo .RRF e a entrada seguinte deve estar composta pelo conjunto de arquivos .DAT, .IRF, .MRF e .RRF da última execução.

Os arquivos .OUT e .IRF contêm os resultados globais da simulação, isto é, valores de óleo, gás, água etc. O arquivo .IRF contém o índice dos resultados e o arquivo .OUT armazena os resultados numéricos em si.
Comando INCLUDE

Neste trabalho, os únicos dados a serem alterados do ponto de vista do simulador de reservatório são os relacionados aos poços (informação dos poços e dados descritos na Tabela 45).

O comando *INCLUDE permite ao simulador quebrar a leitura sequencial do arquivo de entrada .DAT primário para começar a leitura de um arquivo secundário. Uma vez finalizada a leitura do segundo arquivo (*EOF is reached*), continua-se com a leitura a partir da linha seguinte a que continha o comando *INCLUDE.*

O formato do comando é o seguinte: *INCLUDE ‘arquivosec’*

Este comando facilita a alteração de algumas partes do arquivo .DAT sem afetar o resto. Como mencionado acima, no trabalho proposto precisam ser alterados apenas os dados relacionados aos poços; portanto o arquivo .DAT deve conter um comando *INCLUDE xxxxxx.dat no momento que se começa a definição dos poços no campo. Deste modo, os dados de definição de poços (tipo de poços, localizações, geometria, parâmetros físicos, restrições, tempos de alterações de válvulas) estarão definidos no arquivo secundário xxxxxx.dat. Com esta estratégia, as mudanças dadas pelo processo de otimização serão fornecidas em um arquivo pequeno, ao invés de se precisar re-criar arquivos .DAT completos.

O Aplicativo Results Report

Todos os resultados da simulação são armazenados em arquivos .OUT e .IRF, sendo que a maioria destes resultados não é necessária para se obter a curva de produção do campo. O aplicativo *results report* (CMG 2000:2) permite escolher apenas os dados necessários de acordo com a aplicação, servindo como um gerador de relatórios.

No problema em questão precisa-se dos seguintes valores:

- Óleo acumulado em superfície no grupo de poços produtores do campo;
- Gás acumulado em superfície no grupo de poços produtores do campo;
- Afluência de água em superfície no grupo de poços produtores do campo;
- Taxa de Produção de óleo, gás e água em condições de superfície do campo.

Portanto, ao se usar o *results report* com um *script* adequado às necessidades do trabalho, obtém-se os valores acima de forma resumida e legível pelo módulo que calcula o Valor Presente Líquido.
Arquivos Utilizados

A seguir será mostrado os arquivos .dat utilizados neste trabalho: arquivos que descrevem os reservatórios e os poços das alternativas (include.dat).

Reservatório Sintético

*GRID *CART 40 11 3
*KDIR *DOWN
*DI *CON 50
*DJ *CON 50
*DK *CON 10
*DTOP 440*2000
=NULL *CON 1
*POR *CON 0.20
PERM KVAR 500
800
1200
PERM KVAR 500
800
1200
PERM KVAR 50
70
120
** Folhelhos entre as camadas
*TRANSK *IJK 1:40 1:11 1 0.0
*TRANSK *IJK 1:40 1:11 2 0.0
*TRANSK *IJK 1:40 1:11 3 0.0
*CPOR 1.0E-5
*PRPOR 300
*MODEL *BLACKOIL
*TRES 80.0
*PVT *BG 1
** kgf/cm2 m3/m3 m3/m3STD m3/m3STD cp cp
1.03 0.16 1.0745 3.5200E-01 9.22
5.5317E-03
7.02 1.32 1.0780 5.1805E-02 8.65
1.1304E-02
13.01 2.59 1.0819 2.7583E-02 8.10
1.7093E-02
19.00 3.91 1.0860 1.8774E-02 7.60
2.3519E-02
24.99 5.28 1.0901 1.4190E-02 7.14
3.0841E-02
30.98 6.68 1.0944 1.1380E-02 6.72
3.9209E-02
36.97 8.10 1.0988 9.4819E-03 6.34
4.8760E-02
42.96 9.55 1.1032 8.1194E-03 5.99
5.9634E-02
60.92 14.00 1.1168 5.6336E-03 5.14
1.0166E-01
400.00 281.26 1.3732 1.0000E-03 0.50
8.0812E+00

*REFPW 100.0
*VWI 1.0
*CVW 0.0
*ROCKFLUID
*RPT 1
*SWT
** Sw krw krow Pcow
0.20 0.00000 0.8000 0.
0.22 0.00048 0.7373 0.
0.25 0.00300 0.6480 0.
0.28 0.00766 0.5645 0.
0.30 0.01200 0.5120 0.
0.33 0.02028 0.4381 0.
0.35 0.02700 0.3920 0.
0.38 0.03888 0.3277 0.
0.40 0.04800 0.2880 0.
0.43 0.06348 0.2333 0.
0.45 0.07500 0.2000 0.
0.48 0.09408 0.1549 0.
0.50 0.10800 0.1280 0.
0.53 0.13068 0.0925 0.
0.55 0.14700 0.0720 0.
0.57 0.16428 0.0541 0.
0.60 0.19200 0.0320 0.
0.62 0.21168 0.0205 0.
0.65 0.24300 0.0080 0.
0.70 0.30000 0.0000 0.
*SLT *SMOOTH *PLAW
*INITIAL
*VERTICAL *BLOCK_CENTER
*WATER_OIL_GAS
*REDEPTH 2000
*REFPRESS 250
*DWOC 3000
*DGOC 0
*PB *CON 78.0
*NUMERICAL
*AIM *STAB
*NCUTS 10
*DTMIN 0.0010
*DTMAX 365
*RUN
*DATE 2004 1 1
*INCLUDE INCLUDE.DAT
*DATE 2024 1 1
Alternativa Base de poços do Reservatório Sintético – válvulas on/off

POCO INJETOR

**GROUP'INJETOR1'*ATTACHTO'INJETORES'
**GROUP'INJETORES' *ATTACHTO'FIELD'

POCO INJETOR

COMPLETACAO INTELIGENTE

POCO PRODUTOR

Alternativa Base de poços do Reservatório Sintético – válvulas de abertura contínua (STW)

POCO INJETOR

**GROUP'INJETOR1'*ATTACHTO'INJETORES'
**GROUP'INJETORES' *ATTACHTO'FIELD'

POCO INJETOR

COMPLETACAO INTELIGENTE

POCO PRODUTOR

POCO PRODUTOR

POCO PRODUTOR
Alternativa Base de poços do Reservatório Sintético – válvulas de abertura contínua (FF)

* POCO INJETOR
** COMPLETACAO INTELIGENTE
 *WELL 1 'INJ1'
 *INJETOR MobWeight 'INJ1'
 *INCOMP *WATER
 *OPERATE *MAX *STW 150
 *OPERATE *MAX *BHP 400
 *GEOMETRY *K 0.100 0.37 1.0 0
 *PERF *GEO 'INJ1'
 1 6 1 1.0 *OPEN FLOW-FROM 'SURFACE'
 1 6 2 1.0 *OPEN FLOW-FROM 1
 1 6 3 1.0 *OPEN FLOW-FROM 2

** POCO PRODUTOR
*WELL2 'PROD1'
*PRODUCER 'PROD1'
*OPERATE *MAX *STL 400
*OPERATE *MIN *BHP 78
*GEOMETRY *K 0.100 0.37 1.0 0
*PERF *GEO 'PROD1'
 40 6 1 1.0 *OPEN FLOW-TO 'SURFACE'
 40 6 2 1.0 *OPEN FLOW-TO 1
 40 6 3 1.0 *OPEN FLOW-TO 2

Reservatório com Aqüífero

RESULTS SECTION INOUT
*INTERRUPT *RESTART-STOP
*RANGECHECK *ON
*XDR *ON
*WPRN *WELL 100
*WPRN *SECTOR 100
*WPRN *GRID 100
*WPRN *ITER *NONE
*OUTPRN *WELL *BRIEF
*OUTPRN *TABLES *NONE
*OUTPRN *GRID *NONE
*OUTPRN *RES PV HCPV
*WSRF *WELL 1
*WSRF *SECTOR 1
*WSRF *GRID 1
*OUTSRF *GRID *PRES *Sw *SG *DATUMPRES *OILPOT *BPP
*OUTSRF *RES *ALL
*OUTDIARY *BRIEF *PRESAQ *HEADER 20
*INUNIT *MODSI
*OUTUNIT *MODSI

*GRID *CORNER 33 57 3
*COORD
763891.062500 7301866.000000 3935.897461 763891.062500
7301866.000000 4020.897461
763891.687500 7301908.000000 3929.389893 763891.687500
7301908.000000 4014.389893

** Os demais valores de COORD foram omitidos devido ao grande número desses valores

*ZCORN
3935.897461 3929.389893
3929.389893 3921.542725
3921.542725 3912.054443

** Os demais valores de ZCORN foram omitidos devido ao grande número desses valores

RESULTS SECTION NETPAY
RESULTS SECTION NETGROSS
*NETGROSS *CON 1.00
*POR *CON 0.229
*PERMI *CON 575.000000
*PERMJ *CON 575.000000
*PERMK *CON 57.500000
RESULTS SECTION TRANS
RESULTS SECTION FRACS
RESULTS SECTION VOLMOD
RESULTS SECTION GRIDNONARRAYS
*CPOR 0.000010
*PRPOR 390.000000
RESULTS SECTION GRIDOTHER
RESULTS SECTION ROCKCOMPACTION
RESULTS SECTION SECTORLEASE
MODEL *BLACKOIL
**$ OilGas Table 'Table A'
*PVT *BG 1
**
P Rs Bo BG VisO VisG
0.1 0.0 1.0466 1.000 39.56 0.0123
19.614 8.3 1.0707 0.036 14.36 0.0125
39.228 13.2 1.0807 0.026 11.13 0.0129
54.370 16.4 1.0858 0.016 9.51 0.0139
88.263 24. 1.10000 0.010 7.2 0.0150
588.42 136. 1.33000 0.002 1.2 0.0432
*DENSITY *OIL 940.8
*GRAVITY *GAS 0.7
*CO 7.75E-05
*CVO 0.045
*BWI 1.013
*CW 4.08E-05
*REFPW 277.2
*VWI 0.53
*CVW 0
*DENSITY *WATER 1055.
RESULTS SECTION MODELARRAYS
*ROCKFLUID
*RPT 1
*SWT
0.250000 0.000000 0.800000 0.000000
0.275000 0.003053 0.685900 0.000000
0.300000 0.007518 0.583200 0.000000
0.325000 0.012735 0.491300 0.000000
0.350000 0.018511 0.409600 0.000000
0.375000 0.024741 0.337500 0.000000
0.400000 0.031358 0.274400 0.000000
0.425000 0.038316 0.219700 0.000000
0.450000 0.045579 0.172800 0.000000
0.475000 0.053121 0.133100 0.000000
0.500000 0.060919 0.100000 0.000000
0.525000 0.068955 0.072900 0.000000
0.550000 0.077213 0.051200 0.000000
0.575000 0.085680 0.034300 0.000000
0.600000 0.094345 0.021600 0.000000
0.625000 0.103198 0.012500 0.000000
0.650000 0.112230 0.006400 0.000000
0.675000 0.121433 0.002700 0.000000
0.700000 0.130800 0.000800 0.000000
0.750000 0.150000 0.000000 0.000000
*SLT
0.300000 0.090000 0.000000 0.000000
0.370000 0.238864 0.008000 0.000000
0.405000 0.210906 0.018000 0.000000
0.440000 0.184687 0.032000 0.000000
0.475000 0.160207 0.050000 0.000000
0.510000 0.137468 0.072000 0.000000
0.545000 0.116468 0.098000 0.000000
Alternativa Base de poços do Reservatório com Aqüífero – válvulas de abertura contínua (FF)

GROUP 'UEP' ATTACHTO 'Field'
WELL 'PROD1' ATTACHTO 'UEP'
PRODUCER 'PROD1'
OPERATE MIN BHP 55. CONT
OPERATE MAX STIL 3000. CONT
GEOMETRY K 0.0762 0.37 1. 0.
PERF GEO 'PROD1'

GROUP 'UEP' ATTACHTO 'Field'
WELL 'INJ1' ATTACHTO 'UEP'
INJECTOR MOBWEIGHT 'INJ1'
OPERATE MAX BHP 450. CONT
OPERATE MAX STW 3000. CONT
GEOMETRY K 0.0762 0.37 1. 0.
PERF GEO 'INJ1'

** UBA ff Status Connection
23 38 1 1. OPEN FLOW-TO 'SURFACE' REFLAYER
24 39 1 1. OPEN FLOW-TO 1
25 40 2 1. OPEN FLOW-TO 2
26 41 2 1. OPEN FLOW-TO 3
27 42 3 1. OPEN FLOW-TO 4

** UBA ff Status Connection
7 32 1 1. OPEN FLOW-FROM 'SURFACE' REFLAYER
7 33 1 1. OPEN FLOW-FROM 1
7 34 2 1. OPEN FLOW-FROM 2
7 35 2 1. OPEN FLOW-FROM 3
7 36 3 1. OPEN FLOW-FROM 4
RESULTS SIMULATOR IMEX 200600
TITLE1 'MODEL 01'
TITLE2 'SYNTHETIC MODEL BASED ON OUTCROP DATA'
** I/O CONTROL SECTION
*INUNIT *MODSI
 *XDR *ON
 *WPRN *WELL *TIME
 *WPRN *GRID 0
 *WPRN *ITER *NONE

GCONP 'UEP'
MAX STL 8000. CONT
IPP

Reservatório Real
RESULTS XOFFSET 0.0000
RESULTS YOFFSET 0.0000
RESULTS ROTATION 0.0000 **$ (DEGREES)
**$ Distance units: m
**$ Distance units: m
**$ Distance units: m
RESULTS AXES-DIRECTIONS 1.0 1.0 1.0
*INCLUDE 'model01_grid00.inc'
*INCLUDE 'model01_por00.inc'
*INCLUDE 'model01_perms00.inc'
*INCLUDE 'model01_resarrays00.inc'
*CPOR 2.069E-9
*PRPOR 100
MODEL BLACKOIL
TRES 80
** PVT table generated using correlations in Bulder
** Correlations datas:
** - Reservoir temperature = 80 oC
** - Bubble point pressure = 100 kgf/cm2
** - Oil gravity = 25 API
** - Gas gravity = 0.70
** - Water salinity = 55000 ppm
PVT EG 1

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.03323</td>
<td>0.493917</td>
<td>1.05458</td>
<td>0.821624</td>
<td>7.4115</td>
<td>0.0125953</td>
</tr>
<tr>
<td>7.63102</td>
<td>2.10869</td>
<td>1.05797</td>
<td>6.13335</td>
<td>6.82484</td>
<td>0.0126648</td>
</tr>
<tr>
<td>14.2288</td>
<td>3.99697</td>
<td>1.06198</td>
<td>11.5588</td>
<td>6.24607</td>
<td>0.0127605</td>
</tr>
<tr>
<td>20.8266</td>
<td>6.05614</td>
<td>1.06638</td>
<td>17.0992</td>
<td>5.71719</td>
<td>0.0128739</td>
</tr>
<tr>
<td>27.4244</td>
<td>8.2438</td>
<td>1.07109</td>
<td>22.7548</td>
<td>5.24559</td>
<td>0.0130026</td>
</tr>
<tr>
<td>34.0222</td>
<td>10.5359</td>
<td>1.07607</td>
<td>28.5255</td>
<td>4.82886</td>
<td>0.0131453</td>
</tr>
<tr>
<td>40.6199</td>
<td>12.9165</td>
<td>1.08129</td>
<td>34.4102</td>
<td>4.46154</td>
<td>0.0133016</td>
</tr>
<tr>
<td>47.2177</td>
<td>15.3745</td>
<td>1.08673</td>
<td>40.4068</td>
<td>4.13752</td>
<td>0.0134711</td>
</tr>
<tr>
<td>53.8155</td>
<td>17.9014</td>
<td>1.09236</td>
<td>46.5122</td>
<td>3.85102</td>
<td>0.0136537</td>
</tr>
<tr>
<td>60.4133</td>
<td>20.4907</td>
<td>1.09818</td>
<td>52.7219</td>
<td>3.59686</td>
<td>0.0138494</td>
</tr>
<tr>
<td>67.0111</td>
<td>23.1368</td>
<td>1.10418</td>
<td>59.0303</td>
<td>3.37053</td>
<td>0.0140581</td>
</tr>
<tr>
<td>73.6089</td>
<td>25.8356</td>
<td>1.11034</td>
<td>65.43</td>
<td>3.16821</td>
<td>0.01428</td>
</tr>
<tr>
<td>80.2066</td>
<td>28.5832</td>
<td>1.11666</td>
<td>71.9123</td>
<td>2.98664</td>
<td>0.014515</td>
</tr>
<tr>
<td>86.8044</td>
<td>31.3765</td>
<td>1.12314</td>
<td>78.4669</td>
<td>2.82306</td>
<td>0.014763</td>
</tr>
<tr>
<td>93.4022</td>
<td>34.2128</td>
<td>1.12977</td>
<td>85.082</td>
<td>2.67514</td>
<td>0.0150239</td>
</tr>
<tr>
<td>100</td>
<td>37.0896</td>
<td>1.13654</td>
<td>91.7464</td>
<td>2.54089</td>
<td>0.0152976</td>
</tr>
<tr>
<td>180</td>
<td>74.5934</td>
<td>1.22876</td>
<td>170.642</td>
<td>1.56142</td>
<td>0.0194248</td>
</tr>
<tr>
<td>260</td>
<td>115.75</td>
<td>1.33693</td>
<td>233.576</td>
<td>1.12197</td>
<td>0.0241185</td>
</tr>
<tr>
<td>340</td>
<td>159.605</td>
<td>1.4585</td>
<td>278.75</td>
<td>0.877134</td>
<td>0.0284875</td>
</tr>
<tr>
<td>420</td>
<td>205.632</td>
<td>1.59185</td>
<td>311.706</td>
<td>0.722108</td>
<td>0.0323313</td>
</tr>
<tr>
<td>500</td>
<td>253.493</td>
<td>1.73375</td>
<td>336.885</td>
<td>0.615409</td>
<td>0.0357093</td>
</tr>
</tbody>
</table>

BWI 1.02439
CVO .0018
CWV 0
CW 4.42269e-005
DENSITY OIL 903.249
DENSITY WATER 1013.3
REFPW 100
VWI 0.412638
GRAVITY GAS 0.7
*INCLUDE 'model01_fluidarrays00.inc'
*ROCKFLUID
** Facies 1
RPT 1
*SWT
**SW
<table>
<thead>
<tr>
<th>KRW</th>
<th>KRO</th>
<th>PCOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td>0.36</td>
<td>0.0001117321</td>
<td>0.6721698</td>
</tr>
<tr>
<td>0.39</td>
<td>0.001787713</td>
<td>0.5920663</td>
</tr>
<tr>
<td>0.42</td>
<td>0.005474871</td>
<td>0.5170433</td>
</tr>
<tr>
<td>0.45</td>
<td>0.01117321</td>
<td>0.4471009</td>
</tr>
<tr>
<td>0.48</td>
<td>0.01888272</td>
<td>0.382239</td>
</tr>
<tr>
<td>0.51</td>
<td>0.02860341</td>
<td>0.3224577</td>
</tr>
<tr>
<td>0.54</td>
<td>0.04033528</td>
<td>0.267757</td>
</tr>
<tr>
<td>0.57</td>
<td>0.05407832</td>
<td>0.2181368</td>
</tr>
<tr>
<td>0.6</td>
<td>0.06983254</td>
<td>0.1735972</td>
</tr>
<tr>
<td>0.63</td>
<td>0.08759794</td>
<td>0.1341382</td>
</tr>
<tr>
<td>0.66</td>
<td>0.1073745</td>
<td>0.09975968</td>
</tr>
<tr>
<td>0.69</td>
<td>0.1291623</td>
<td>0.07046177</td>
</tr>
<tr>
<td>0.72</td>
<td>0.1529612</td>
<td>0.04624442</td>
</tr>
<tr>
<td>0.75</td>
<td>0.1787713</td>
<td>0.02710763</td>
</tr>
<tr>
<td>0.78</td>
<td>0.2065926</td>
<td>0.0130514</td>
</tr>
<tr>
<td>0.81</td>
<td>0.2364251</td>
<td>0.004075741</td>
</tr>
<tr>
<td>0.84</td>
<td>0.2682687</td>
<td>0.00001806422</td>
</tr>
<tr>
<td>0.848</td>
<td>0.2771</td>
<td>0</td>
</tr>
</tbody>
</table>

** Facies 2
RPT 2
*SWT
**SW
<table>
<thead>
<tr>
<th>KRW</th>
<th>KRO</th>
<th>PCOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>0.48</td>
<td>0.001662956</td>
<td>0.412972</td>
</tr>
<tr>
<td>0.51</td>
<td>0.006651823</td>
<td>0.3342587</td>
</tr>
<tr>
<td>0.54</td>
<td>0.0149666</td>
<td>0.2638603</td>
</tr>
<tr>
<td>0.57</td>
<td>0.02660729</td>
<td>0.2017766</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0415739</td>
<td>0.1480077</td>
</tr>
<tr>
<td>0.63</td>
<td>0.05986641</td>
<td>0.1025536</td>
</tr>
<tr>
<td>0.66</td>
<td>0.08148483</td>
<td>0.06541421</td>
</tr>
<tr>
<td>0.69</td>
<td>0.1064292</td>
<td>0.03658965</td>
</tr>
</tbody>
</table>
0.72 0.1346994 0.01607986
0.75 0.1662956 0.00388485
0.779 0.2 0
1 1 0

*SLT
** SL KRG KRO PCOG
0.45 0.9 0
0.48 0.8006327 0.001549587
0.51 0.7070764 0.006198347
0.54 0.6193311 0.01394628
0.57 0.5373967 0.02479339
0.6 0.4612732 0.03873967
0.63 0.3909607 0.05578512
0.66 0.3264592 0.07592975
0.69 0.2677686 0.09917355
0.72 0.2148889 0.1255165
0.75 0.1678202 0.1549587
0.78 0.1265625 0.1875
0.81 0.0911157 0.2231405
0.84 0.06147986 0.2618802
0.87 0.03765496 0.303719
0.9 0.01964101 0.348657
0.93 0.007438017 0.3966942
0.96 0.00104971 0.4478306
0.978 0 0.48
1 0 0.5

*INCLUDE 'model01_rockarrays00.inc'

*INITIAL
*VERTICAL *BLOCK_CENTER *WATER_OIL_GAS
REFDEPTH 2500
REFPRES 270
DWOC 2800
DGOC 0.1
*INCLUDE 'model01_initarrays00.inc'

*NUMERICAL
*AIM *STAB
** AIM *THRESH 0.0 0.0
*NCUTS 15
*DMIN 0.0010
*DTMAX 365
**INCLUDE 'model01_well00.inc'

*RUN
*DATE 2004 12 31
*INCLUDE INCLUDE.DAT
*DATE 2024 12 31

RESULTS UNITNAMES BEGIN
RESULTS UNITNAMES 1 'ZONA_1'
RESULTS UNITNAMES 2 'ZONA_1'
RESULTS UNITNAMES 3 'ZONA_1'
RESULTS UNITNAMES 4 'ZONA_2'
RESULTS UNITNAMES 5 'ZONA_2'
RESULTS UNITNAMES 6 'ZONA_3'
RESULTS UNITNAMES END
RESULTS SPEC 'Permeability J'
RESULTS SPEC SPECNOTCALCVAL -99999
RESULTS SPEC REGION 'All Layers (Whole Grid)'
RESULTS SPEC REGIONTYPE 0
RESULTS SPEC LAYERNUMB 0
RESULTS SPEC PORTYPE 1
RESULTS SPEC EQUALSI 0 1
RESULTS SPEC STOP
RESULTS SPEC 'Permeability K'
RESULTS SPEC SPECNOTCALCVAL -99999
RESULTS SPEC REGION 'All Layers (Whole Grid)'
RESULTS SPEC REGIONTYPE 0
RESULTS SPEC LAYERNUMB 0
RESULTS SPEC PORTYPE 1
RESULTS SPEC EQUALSI 1 0.3
RESULTS SPEC STOP
RESULTS SPEC 'Trans Multiplier K'
RESULTS SPEC SPECNOTCALCVAL -100000
RESULTS SPEC REGION 'Layer 3 - Whole layer'
RESULTS SPEC REGIONTYPE 1
RESULTS SPEC LAYERNUMB 3
RESULTS SPEC PORTYPE 1
RESULTS SPEC CON 0.0001
RESULTS SPEC REGION 'Layer 5 - Whole layer'
RESULTS SPEC REGIONTYPE 1
RESULTS SPEC LAYERNUMB 5
RESULTS SPEC PORTYPE 1
RESULTS SPEC CON 0.0001
RESULTS SPEC REGION 'Layer 1 - Whole layer'
RESULTS SPEC REGIONTYPE 1
RESULTS SPEC LAYERNUMB 1
RESULTS SPEC PORTYPE 1
RESULTS SPEC CON 1
RESULTS SPEC REGION 'Layer 2 - Whole layer'
RESULTS SPEC REGIONTYPE 1
RESULTS SPEC LAYERNUMB 2
RESULTS SPEC PORTYPE 1
RESULTS SPEC CON 1
RESULTS SPEC REGION 'Layer 4 - Whole layer'
RESULTS SPEC REGIONTYPE 1
RESULTS SPEC LAYERNUMB 4
RESULTS SPEC PORTYPE 1
RESULTS SPEC CON 1
RESULTS SPEC REGION 'Layer 6 - Whole layer'
RESULTS SPEC REGIONTYPE 1
RESULTS SPEC LAYERNUMB 6
RESULTS SPEC PORTYPE 1
RESULTS SPEC CON 1
RESULTS SPEC STOP

Alternativa Base de poços do Reservatório Real – válvulas de abertura contínua (FF)

DTWELL 15
WELL 'PROD1'
PRODUCER 'PROD1'
OPERATE MAX STO 2500. CONT REPEAT
OPERATE MIN BHP 110. CONT REPEAT
MONITOR WCUT 0.9 SHUTIN
GEOMETRY K 0.06215 0.37 1. 0.
PERF GEO 'PROD1'
** UBA ff Status Connection
 42 20 1 1. OPEN FLOW-TO 'SURFACE'
 42 20 2 1. OPEN FLOW-TO 1
 42 20 3 1. OPEN FLOW-TO 2
 42 20 4 1. OPEN FLOW-TO 3 REFLAYER
 42 20 5 1. OPEN FLOW-TO 4
 42 20 6 1. OPEN FLOW-TO 5
WELL 'PROD2'
PRODUCER 'PROD2'
OPERATE MAX STO 2500. CONT REPEAT
OPERATE MIN BHP 110. CONT REPEAT
MONITOR WCUT 0.9 SHUTIN
GEOMETRY K 0.06215 0.37 1. 0.
PERF GEO 'PROD2'
** UBA ff Status Connection
 11 2 4 1. OPEN FLOW-TO 'SURFACE' REFLAYER
 11 2 5 1. OPEN FLOW-TO 1
 11 2 6 1. OPEN FLOW-TO 2
WELL 'PROD3'
PRODUCER 'PROD3'
OPERATE MAX STO 2500. CONT REPEAT
OPERATE MIN BHP 110. CONT REPEAT
MONITOR WCUT 0.9 SHUTIN
GEOMETRY K 0.06215 0.37 1. 0.
PERF GEO 'PROD3'
** UBA ff Status Connection
 24 43 1 1. OPEN FLOW-TO 'SURFACE' REFLAYER
 24 43 2 1. OPEN FLOW-TO 1
 24 43 3 1. OPEN FLOW-TO 2
 24 43 4 1. OPEN FLOW-TO 3
 24 43 5 1. OPEN FLOW-TO 4
WELL 'PROD4'
PRODUCER 'PROD4'
OPERATE MAX STO 2500. CONT REPEAT
OPERATE MIN BHP 110. CONT REPEAT
MONITOR WCUT 0.9 SHUTIN
GEOMETRY K 0.06215 0.37 1. 0.
PERF GEO 'PROD4'
** UBA ff Status Connection
 43 43 1 1. OPEN FLOW-TO 'SURFACE' REFLAYER
 43 43 2 1. OPEN FLOW-TO 1
 43 43 3 1. OPEN FLOW-TO 2
WELL 'PROD5'
PRODUCER 'PROD5'
OPERATE MAX STO 10000. CONT REPEAT
OPERATE MIN BHP 110. CONT REPEAT
MONITOR WCUT 0.9 SHUTIN
GEOMETRY K 0.06215 0.37 1. 0.
PERF GEO 'PROD5'
** UBA ff Status Connection
 36 39 4 1. OPEN FLOW-TO 'SURFACE' REFLAYER
 36 39 5 1. OPEN FLOW-TO 1
 36 39 6 1. OPEN FLOW-TO 2
WELL 'PROD6'
PRODUCER 'PROD6'
OPERATE MAX STO 2500. CONT REPEAT
OPERATE MIN BHP 110. CONT REPEAT
MONITOR WCUT 0.9 SHUTIN
GEOMETRY K 0.06215 0.37 1. 0.
PERF GEO 'PROD6'
** UBA ff Status Connection
 7 36 1 1. OPEN FLOW-TO 'SURFACE' REFLAYER
 7 36 2 1. OPEN FLOW-TO 1
 7 36 3 1. OPEN FLOW-TO 2
 7 36 4 1. OPEN FLOW-TO 3
 7 36 5 1. OPEN FLOW-TO 4
WELL 'PROD7'
PRODUCER 'PROD7'
OPERATE MAX STO 2500. CONT REPEAT
OPERATE MIN BHP 110. CONT REPEAT
MONITOR WCUT 0.9 SHUTIN
GEOMETRY K 0.06215 0.37 1. 0.
PERF GEO 'PROD7'
** UBA ff Status Connection
 21 32 1 1. OPEN FLOW-TO 'SURFACE' REFLAYER
 21 32 2 1. OPEN FLOW-TO 1
 21 32 3 1. OPEN FLOW-TO 2
 21 32 4 1. OPEN FLOW-TO 3
 21 32 5 1. OPEN FLOW-TO 4
WELL 'INJ1'
INJECTOR MOBWEIGHT 'INJ1'
INCOMP WATER
OPERATE MAX STW 2500. CONT REPEAT
OPERATE MAX BHP 400. CONT REPEAT
GEOMETRY K 0.06215 0.37 1. 0.
PERF GEO 'INJ1'
** UBA ff Status Connection
 23 53 1 1. OPEN FLOW-FROM 'SURFACE' REFLAYER
 23 53 2 1. OPEN FLOW-FROM 1
 23 53 3 1. OPEN FLOW-FROM 2
 23 53 4 1. OPEN FLOW-FROM 3
 23 53 5 1. OPEN FLOW-FROM 4
WELL 'INJ2'
INJECTOR MOBWEIGHT 'INJ2'
INCOMP WATER
OPERATE MAX STW 2500. CONT REPEAT
OPERATE MAX BHP 400. CONT REPEAT
GEOMETRY K 0.06215 0.37 1. 0.
PERF GEO 'INJ2'
** UBA ff Status Connection
 39 49 1 1. OPEN FLOW-FROM 'SURFACE' REFLAYER
 39 49 2 1. OPEN FLOW-FROM 1
 39 49 3 1. OPEN FLOW-FROM 2
 39 49 4 1. OPEN FLOW-FROM 3
 39 49 5 1. OPEN FLOW-FROM 4
 39 49 6 1. OPEN FLOW-FROM 5
WELL 'INJ3'
INJECTOR MOBWEIGHT 'INJ3'
INCOMP WATER
OPERATE MAX STW 2500. CONT REPEAT
OPERATE MAX BHP 380. CONT REPEAT
GEOMETRY K 0.06215 0.37 1. 0.
PERF GEO 'INJ3'
** UBA ff Status Connection
 43 31 1 1. OPEN FLOW-FROM 'SURFACE'
 43 31 2 1. OPEN FLOW-FROM 1
 43 31 3 1. OPEN FLOW-FROM 2
 43 31 4 1. OPEN FLOW-FROM 3
 43 31 5 1. OPEN FLOW-FROM 4 REFLAYER
WELL 'INJ5'
INJECTOR MOBWEIGHT 'INJ5'
INCOMP WATER
OPERATE MAX STW 2500. CONT REPEAT
OPERATE MAX BHP 400. CONT REPEAT
GEOMETRY K 0.06215 0.37 1. 0.
PERF GEO 'INJ5'
** UBA ff Status Connection
 18 13 1 1. OPEN FLOW-FROM 'SURFACE' REFLAYER
 18 13 2 1. OPEN FLOW-FROM 1
 18 13 3 1. OPEN FLOW-FROM 2
 18 13 4 1. OPEN FLOW-FROM 3
 18 13 5 1. OPEN FLOW-FROM 4
 18 13 6 1. OPEN FLOW-FROM 5
WELL 'INJ4'
INJECTOR MOBWEIGHT 'INJ4'
INCOMP WATER
OPERATE MAX STW 2500. CONT REPEAT
OPERATE MAX BHP 400. CONT REPEAT
GEOMETRY K 0.06215 0.37 1. 0.
PERF GEO 'INJ4'
** UBA ff Status Connection
 8 23 1 1. OPEN FLOW-FROM 'SURFACE' REFLAYER
 8 23 2 1. OPEN FLOW-FROM 1
 8 23 3 1. OPEN FLOW-FROM 2
 8 23 6 1. OPEN FLOW-FROM 3