PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

Sergio Ibajé Oliveira Bueno

AVALIAÇÃO ESTRUTURAL DE DUTOS COM DEFEITOS DE CORROSÃO COINCIDENTES COM A SOLDA LONGITUDINAL

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Ciências de Engenharia Mecânica.

> Orientador: José Luiz de França Freire Co-orientador: Adilson Carvalho Benjamin

Rio de Janeiro Maio de 2007

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

Sergio Ibajé Oliveira Bueno

Avaliação Estrutural de Dutos com Defeitos de Corrosão Coincidentes com a Solda Longitudinal

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. José Luiz de França Freire Orientador Departamento de Engenharia Mecânica – PUC-Rio

> Prof. Ronaldo Domingues Vieira Departamento de Engenharia Mecânica – PUC-Rio

Prof. Valter Rocha dos Santos Departamento de Engenharia Metalúrgica – PUC-Rio

> Dr. Adilson Carvalho Benjamin Petrobras/Cenpes Dr. Alexandre Meirelles Pope

Petrobras/Cenpes

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico

Rio de Janeiro, 02 de maio de 2007.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Sergio Ibajé Oliveira Bueno

Graduou-se em Engenharia Metalúrgica UFF na (Universidade Federal Fluminense) em 1987. Cursou Engenharia de Equipamentos (ênfase Inspeção) na Petrobras em 1989 e Engenharia de Dutos na PUC-Rio em 2001. Atuou nas áreas de inspeção de equipamentos de plataformas e avaliação de integridade de dutos e equipamentos submarinos. Participou de cursos e congressos, no Brasil e no exterior, na área de engenharia de dutos. É responsável pela análise de integridade estrutural de dutos e equipamentos submarinos na PETROBRAS/Unidade de Negócios Bacia de Campos/Suporte Técnico.

Ficha Catalográfica

Bueno, Sergio Ibajé Oliveira

Avaliação estrutural de dutos com defeitos de corrosão coincidentes com a Solda Longitudinal / Sergio Ibajé Oliveira Bueno; orientador: José Luiz de França; co-orientador: Adilson Carvalho Benjamin. – Rio de Janeiro : PUC, Departamento de Engenharia Mecânica, 2007.

[17], 202 f. : il. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas.

1. Engenharia mecânica – Teses. 2. Dutos. 3. Defeitos de corrosão. 4. Solda Longitudinal. 5. Avaliação estrutural. 6. Métodos de avaliação. I. Freire, José Luiz de França. II. Benjamin, Adilson Carvalho. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

Dedico esta dissertação aos trabalhadores do Brasil, em especial aqueles que dedicam sua vida na exploração e produção de petróleo nas plataformas da Bacia de Campos. Trabalhadores que com sua luta diária e muitas vezes pouco reconhecida garantem a produção de energia tão necessária à sociedade brasileira.

Com base no vosso exemplo procurei fazer o melhor.

Agradecimentos

Ao Professor José Luiz de França Freire, pela orientação e aprendizado durante o curso de Engenharia de Dutos e na elaboração da tese.

Ao meu Co-orientador Adilson Carvalho Benjamin, pela paciência, generosidade em transferir conhecimentos adquiridos em vários anos de pesquisa, pela orientação e oportunidade de desenvolver este trabalho ao seu lado.

Ao professor Ronaldo Domingues Vieira, pela atenção durante a realização dos ensaios e discussão dos resultados.

Ao amigo Marcelo Torres Piza Paes pela orientação e diversas correções nos aspectos relacionados a materiais, bem como pelo incentivo e apoio se mostrando sempre a disposição apesar dos seus diversos afazeres e viagens.

Aos meus pais Adão e Cely que sempre me incentivaram nos estudos me deixando a vontade para traçar meu caminho.

À minha mulher Liliane que com seu carinho e compreensão soube me apoiar nos momentos difíceis e tornar este período o mais leve possível.

Ao meu filho João Pedro, simplesmente por ele existir e ser para mim um motivo de muita felicidade.

À minha equipe de trabalho composta pelos Engenheiros Aldo Renato Franzoi, Ricardo Pereira de Morais, Rodolfo José de Moura Neto, Carlos Eduardo Amosso Medeiros e pelos Técnicos de Inspeção Francimário da Silva Vieira de Melo, Jussara Carvalho Ribeiro e Esmir Gonçalves pelo incentivo e por terem suprido minha ausência necessária para a produção desta dissertação. Aos meus Gerentes na PETROBRAS Sergio Fonseca Candido e Guilherme de Almeida Peixoto que souberam compreender a necessidade de imersão e dedicação exclusiva para cursar as disciplinas e elaborar a dissertação.

Aos amigos do CENTRO de PESQUISAS da PETROBRAS, Rodrigo Hoppe, José Cláudio Guimarães Teixeira e João Luís do Nascimento que me ajudaram no entendimento dos fenômenos da Tese relacionados às propriedades mecânicas do material.

Ao Engenheiro Ricardo Dias de Souza pela ajuda inicial com dados dos tubos do ORBEL e pelo trabalho prévio tantas vezes citado nesta Tese.

Às secretarias da Gerência de Elevação e Escoamento da UN-BC Aline Sodero Lemos e Ana Cristina de Oliveira pela ajuda dedicada na preparação das viagens.

Aos amigos, colegas de mestrado da PUC-RIO, Leonardo Dantas Rodrigues, Marco Antonio Pérez Rosas, Habib Zambrano e José de Jesús Leal Carvajalino pela acolhida e pelos bons momentos vividos.

Aos Técnicos de Metalografia da PUC-RIO Marco Aurélio Pestana Guimarães e Heitor Nuss Guimarães pela ajuda na preparação e análise das microestruturas.

Ao Dr. Marcos Henrique de Pinho Maurício do Departamento de Ciência dos Materiais e Metalurgia da PUC-RIO pela ajuda nas avaliações no MEV e nas medições de tamanhos de grão.

Aos professores que participaram da Comissão examinadora.

A todos que não foram citados acima, porém que tiveram participação na elaboração da minha tese.

Resumo

Bueno, Sergio Ibajé Oliveira; Freire, José Luiz de França (orientador). **Avaliação Estrutural de Dutos com Defeitos de Corrosão Coincidentes com a Solda Longitudinal.** Rio de Janeiro, 2007, 202p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

A redução de espessura de parede causada por corrosão é um dos defeitos que mais afetam a integridade dos dutos. Estes defeitos podem ocorrer no metal base, nas soldas longitudinais ou circunferenciais, bem como nas zonas afetadas pelo calor. Os métodos de avaliação da resistência remanescente introduzem ressalvas ou proíbem o tratamento de defeitos de corrosão coincidentes com as juntas soldadas. No presente trabalho foram avaliados os níveis de segurança dos métodos usuais de avaliação da resistência de dutos com defeitos introduzidos na região da solda longitudinal de tubos soldados por arco submerso. Os tubos testados eram de aço C-Mn fabricados na década de 60 e foram retirados de operação após uma campanha superior a 30 anos. Com estes tubos foram fabricados 5 espécimes, cada qual com 1 defeito externo produzido por eletro-erosão, sendo posteriormente submetidos a testes de pressão monitorados. Foram realizados ensaios de tração, ensaios de impacto Charpy e ensaios de dobramento, para determinação das propriedades mecânicas do metal de base, do metal de solda e da zona termicamente afetada (ZTA). Foram realizados também ensaios metalográficos do metal de base e do metal de solda, análise química do metal de base e do metal de solda e medição das tensões residuais no metal de solda. A aplicação dos métodos de nível 1 (ASME B31G, 085dL, RPA, DNV isolado e PCORRC) resultou em pressões previstas inferiores às pressões reais de ruptura para defeitos de formato esférico. Para defeitos de seção retangular a aplicação dos métodos de nível 1 resultou em pressões superiores às pressões reais. A aplicação dos métodos de nível 2 (Effective Area e DNV geometria complexa) resultou em pressões previstas superiores às pressões reais de ruptura para defeitos de formato esférico e de seção retangular. As análises das fraturas indicaram que não ocorreu falha por deficiência de tenacidade em nenhum espécime. A corrosão alveolar leve pré-existente na superfície interna dos espécimes foi apontada como causa mais provável das pressões previstas superiores às pressões reais de ruptura.

Palavras-chave

Dutos; defeitos de corrosão; solda longitudinal; avaliação estrutural; métodos de avaliação.

Bueno, Sergio Ibajé Oliveira; Freire, José Luiz de França (advisor). **Structural Assessment of Pipelines with Blunt Corrosion Defects Coincident with Long-Seam Welds.** Rio de Janeiro, 2007, 202p. Masters Thesis – Department of Mechanics, Pontifical Catholic University of Rio de Janeiro.

One of the most important issues that affects pipeline integrity is corrosioncaused metal loss. This type of defect can occur over the pipe body, seam or girth welds or even on heat affected zones. Pipeline remaining strength criterions are restricted or even prohibited for assessing corrosion defects coincident with weld regions. This present work investigated the reliability of the most common assessment criteria for corroded pipes when defects were coincident with seam weld region in submerged arc welded pipes. The tested specimens were C-Mn steel pipe, from a pipeline manufactured in the 60's and had operated for over 30 years. Five external defects were created on five pipe specimens and pressure tested until rupture. Stress, charpy V-notch and bending tests were carried out to find the mechanical properties of the welded joints. Microstructure and chemical composition from base metal and weld metal were also analyzed. Residual stresses on welds were measured. The level 1 criterion (ASME B31G, 085dL, RPA, DNV single and PCORRC) applications have underestimated failure pressure for spherical shaped defects. On the other hand, the same criterions have overestimated failure pressure for rectangular shaped defects. The level 2 criterions (Effective Area e DNV complex geometry) application overestimated failure pressure for all 5 specimens with both spherical and rectangular shaped defects. Fracture analyses have indicated that no specimen had a toughness controlled failure. Internal pit corrosion that was found after pressure testing is recognized as the most probable cause of underestimated pressure forecasts.

Keywords:

Pipelines; corrosion defects; long-seam welds; structural assessment; assessment methods.

Sumário

LISTA DE SIGLAS	23
1 Introdução	24
1.1. Evolução dos Métodos de Avaliação de Integridade de Dutos na	
Presença de Defeitos de Corrosão	25
1.2. Evolução dos Métodos de Avaliação de Integridade de Dutos na	
Presença de Defeitos de Corrosão na PETROBRAS e na PUC-RIO	28
1.3. Motivação do tema da dissertação	29
1.4. Apresentação dos próximos capítulos desta Dissertação	30
2 Daviaño de Literaturo	22
2 Revisão da Literatura	33 24
2.1. Aspectos de Conosao em Dutos	34 25
2.1.2. Correção polo coão do mierorganismos em dutos submarinos	25
2.1.2. Correção pela ação de microrganismos em dutos submarinos	ა <u>ა</u>
2.1.3. Conosao pelo 1123 e CO2	30
2.1.4. Possibilidade das Soldas Longitudinais serein atingidas pela conosao	J9 //1
2.2. Acos utilizados na fabricação de tubos	41 //3
2.2.1. Principais normas de especificação de materiais para tubos	45 45
2.3. Processos de soldagem na fabricação de tubos	46
2.3.1 Soldagem Arco Submerso (SAW) e Conformação LIOE	40
2.3.2 A velocidade de restriamento em processo de soldagem SAW	50
2.3.3 Soldagem por Resistência Elétrica (ERW)	52
2.4 Fabricação de Tubos sem Costura	55
2.5. Restrições à avaliação da resistência de dutos com defeitos em soldas	56
2.6. Aspectos de Tenacidade relacionados aos Métodos de Avaliação de	
Resistência Remanescente de dutos com Defeitos de Corrosão.	61
2.7. Requisitos de Tenacidade (RT) da ZTA das Normas de Projeto	63
2.8. Dificuldades na Avaliação da Tenacidade da ZTA em tubos SAW	64
2.9. Princípios de Análise de Fratura	65
2.10. Influência da espessura na tenacidade da junta soldada	67
2.11. Avaliação de Tensões Residuais pela Técnica do Furo Cego	69

3 Procedimento experimental	72
3.1. Origem dos Segmentos de Tubos	72
3.1.1. Histórico Operacional do Oleoduto que deu Origem aos Segmentos	
de Tubos	73
3.1.2. Seleção e identificação dos segmentos de tubos	73
3.2. Qualificação do material	75
3.2.1. Ensaios de Tração	75
3.2.1.1. Metodologia de Ensaio	76
3.2.2. Ensaios de Dobramento	79
3.2.3. Ensaios de Impacto com CPs de dimensões reduzidas	80
3.2.4. Avaliação das Tensões Residuais pela Técnica do "Furo Cego"	80
3.2.5. Análise Química do Metal Base e do Metal de Solda	81
3.2.6. Análise Microestrutural e Medição de Microdureza	81
3.3. Testes de pressão interna ou de ruptura	81
3.3.1. Fechamento dos Espécimes Tubulares	82
3.3.2. Fabricação dos Defeitos	82
3.3.2.1. Considerações sobre a Usinagem dos Rebaixos Esféricos	83
3.3.2.2. Considerações sobre a Usinagem dos Rebaixos Retangulares	85
3.3.2.3. Levantamento Dimensional dos Espécimes Tubulares	86
3.3.3. Testes de Pressão nos Espécimes Tubulares	87
3.3.3.1. Medições de Deformação, Pressão e Volume Injetado	89
3.3.3.2. Medições de Deslocamento Radial no Centro dos Defeitos	89
3.3.3.3. Condicionamento dos Sinais	90
3.3.3.4. Registro em Vídeo dos Testes	90
3.3.3.5. Incertezas das Medidas	91
4 Resultados Obtidos nos Ensaios	92
4.1. Ensaios de Tração	92
4.2. Ensaios de Dobramento	96
4.3. Análise Química do Metal Base e do Metal de Solda	96
4.4. Medição de microdureza	97
4.5. Análise Microestrutural	100
4.6. Ensaios de Impacto com CPs de dimensões reduzidas	105
4.7. Tensões Residuais pela Técnica do "Furo Cego"	110
4.8. Resultados do Levantamento Dimensional dos Espécimes Tubulares	113
4.9. Testes de ruptura	115

4.10. Comparação entre as Deformações Medidas pelos Strain Gages (SG)	121
5 Discussão dos Resultados dos Testes de Ruptura	127
5.1. Análise do Perfil de Corrosão Interna dos ETs	127
5.1.1. Resultados das pressões previstas de ruptura pelos métodos de	
nível 1 considerando a contribuição dos alvéolos	129
5.1.2. Resultados das pressões previstas de ruptura pelos métodos de	
nível 2 considerando a contribuição dos alvéolos	133
5.2. Comparação com experimento da literatura	135
5.3. Análise Fratográfica dos locais do vazamento dos ETs retangulares	
(15 e 16)	141
5.4. Análise Fratográfica dos locais do vazamento dos ETs esféricos	
(11, 13 e 14)	144
5.5. Análise pelo Método dos Elementos Finitos da Intensificação de	
Tensões nos ETs retangulares.	146
6 Conclusões	149
7 Recomendações de Trabalhos Futuros	151
8 Referências Bibliográficas	152
APENDICE A – Valores Medidos nos Ensaios de Tração	158
CPs TRANSVERSAIS CONTENDO A SOLDA LONGITUDINAL	158
CPs LONGITUDINAIS RETIRADOS APENAS DO METAL DE SOLDA	159
CPs LONGITUDINAIS RETIRADOS DO METAL BASE	161
CPs TRANSVERSAIS RETIRADOS DO METAL BASE	163
APENDICE B – Memória de Cálculo da Resistência Remanescente dos	
E Is com defeitos pelo Metodo da API 579	165
APÊNDICE C - Entos e Croquis dos ETs anós Runtura com Dimensões	
	167
FT 11	168
ET 13	160
ET 15	170
ET 16	171

APÊNDICE D – Telas dos Programas RSTRENG e DNV–RP–F101	172
RSTRENG	172
DNV-RP-F101	173
APÊNDICE E – Análise das Superfícies de Fratura dos CPs de Ensaio	
Charpy com auxílio do MEV	174
APENDICE F – Analise das Superficies de Fratura do ET 14 com	
auxílio do MEV	183
APÊNDICE G – Equações dos Métodos de Avaliação da Resistência	
Remanescente de Dutos Corroídos	187
G.1 – Métodos de Nível 1	187
G.2 – Métodos de Nível 2	190
APENDICE H– Estimativa de Tensões atuantes nos defeitos dos ETs	
retangulares com a influência dos alvéolos	198
Modelagem da seção transversal sem considerar a presença de alvéolos	198
Modelagem da seção transversal com 1 pite de corrosão interna	199

200

retangulares com a influência dos alvéolos
Modelagem da seção transversal sem considerar a presença de a
Modelagem da seção transversal com 1 pite de corrosão interna
Modelagem da seção transversal para 3 pites de corrosão interna

Lista de Figuras

Figura 2-1 – Aspecto da corrosão induzida por microrganismos na	
presença de incrustação de sulfato de bário e estrôncio (BaSO ₄ , SrSO ₄)	37
Figura 2-2 – Corrosão Dispersa por toda a circunferência do	
duto - BRS associada a BaSO₄	38
Figura 2-3 – Posição da Solda Longitudinal em relação à Geratriz	
Inferior (faixa branca – indicação 6h)	40
Figura 2-4 – Corrosão Localizada na Geratriz Inferior - Duto com	
elevado BSW	41
Figura 2-5 – Ilustração mostrando alguns itens da solda por arco submerso.	48
Figura 2-6 – Esquema ilustrativo do processo U-O-E de fabricação de tubos.	50
Figura 2-7 – Esquema simplificado do processo ERW com a corrente	
gerada por eletrodos de contato (esquerda) e por indução (direita)	53
Figura 2-8 – Ilustração da perfuração do bloco na fabricação de	
tubos sem costura pelo método rotary piercing	56
Figura 2-9 – Constrição à deformação devido ao material não tensionado	67
Figura 2-10– Variação do comportamento do material de dútil para	
frágil em função da espessura	68
Figura 2-11 – Ilustração da relação dos diâmetros do furo e do local de	
medição da tensão residual	70
Figura 2-12 – Desenho esquemático de extensômetros de três	
elementos (tipo A) usado na Técnica do Furo Cego	71
Figura 3-1 – Diagrama simplificado do Oleoduto ORBEL	72
Figura 3-2 – Ilustração mostrando os tipos de CPs ensaiados à tração	78
Figura 3-3 – Ilustração mostrando as dimensões A (cutelo) e	
B (suporte) do ensaio de dobramento	79
Figura 3-4 – Esquema de orientação para fabricação dos	
eletrodos para confecção dos defeitos dos ETs 11, 13 e 14	84
Figura 3-5 – Seções longitudinais dos defeitos produzidos por	
eletro-erosão nos ETs 11, 13 e 14 (dimensões em mm)	85
Figura 3-6 - Seções longitudinais e vista de topo dos defeitos usinados	
nos ETs 15 e 16 (dimensões em mm)	86
Figura 3-7 – Esquema mostrando as localizações, direções e identificações	

das rosetas extensométricas (ETs 11, 13 e 14)	88
Figura 3-8 – Esquema mostrando as localizações, direções e	
identificações das rosetas extensométricas (ETs 15 e 16)	88
Figura 3-9 – Ilustração do apalpador utilizado para medir o deslocamento	
radial da superfície do defeito	90
Figura 4-1 – Resultados de Limite de escoamento (LE) dos CPs MB	
Transv (Metal Base na direção Transversal), MB Long (Metal Base da	
direção Longitudinal) comparado com a Especificação do API 5L para	
o Limite de Escoamento Transversal (317 MPa)	92
Figura 4-2 – Resultados de Limite de Resistência à Tração dos CPs MB	
Transv (Metal Base na direção Transversal), MB Long (Metal Base da	
direção Longitudinal) comparado com a Especificação do API 5L para	
a Limite de Resistência à Tração Transversal (434 MPa)	93
Figura 4-3 – Resultados de Tensão Limite de Escoamento dos CPs T	
(MB Transv), L (Metal Base Longitudinal) e M (All weld –	
longitudinal retirado apenas do metal de solda)	94
Figura 4-4 – Resultados de $\sigma_{_y}/\sigma_{_u}$ na longitudinal (L) e	
transversal (T) comparados com o limite superior de 0,93 da API 5L [18]	95
Figura 4-5 – Resultados da razão entre σ_{y}/σ_{u} na longitudinal (L)	
e na transversal (T) comparados com o limite superior de 1,02 da	
DNV OS-F101 [31]	95
Figura 4-6– Esquema ilustrativo da localização dos pontos de	
medição de microdureza Vickers na junta soldada	98
Figura 4-7– Perfil de microdureza das junta soldada dos tubos 13 e 14	99
Figura 4-8 – Junta soldada mostrando os passes interno (inferior) e	
externo (superior) e a ZTA – ataque: nital 2%	100
Figura 4-9 – Ferrita poligonal e perlita (Tubo 16) – 200X	
– ataque: nital 2%	101
Figura 4-10 – Ferrita poligonal e de aparência acicular (Tubos 15 e 14)	
– 200X – ataque: nital 2%	101
Figura 4-11 – Ferrita com aparência acicular (Tubos 11 e 13) – 200X	
– ataque: nital 2%	102
Figura 4-12 – Metalografia do Tubo 13 apresentando alinhamento	
microestrutural – 200X – ataque: nital 2%	102
Figura 4-13 – Caracterização microestrutural do passe interno	
(Tubos 11 e 13) – 100X – ataque: nital 2%	103

Figura 4-14 - Caracterização microestrutural dos passes interno, externo	
e ZTA (Tubo 15) – 100X – ataque: nital 2%	103
Figura 4-15 – Região de grãos grosseiros da ZTA do Tubo 13 – 200X	
– ataque: nital 2%	104
Figura 4-16 – Microestruturas do metal base dos tubos 14, 11 e 16	
mostrando o corte transversal de inclusões alongadas – 500X –	
ataque: nital 2%	104
Figura 4-17 – Valores de Energia absorvida a –20 °C no Ensaio Charpy	
dos CPs com entalhes posicionados em 5 regiões da junta soldada.	106
Figura 4-18 – Valores de Energia absorvida a 0 °C no Ensaio Charpy	
dos CPs com entalhes posicionados em 5 regiões da junta soldada.	106
Figura 4-19 – Valores de Energia absorvida a +22 °C no Ensaio Charpy	
dos CPs com entalhes posicionados em 5 regiões da junta soldada	107
Figura 4-20 – Comparação da tenacidade medida no Ensaio	
Charpy (Temperatura de +20°C) de aços da literatura com os obtidos	
nos CPs dos tubos	108
Figura 4-21 – Variação da Energia Absorvida (J) por ET em	
função da temperatura do Ensaio Charpy	109
Figura 4-22 – Valores das Tensões Residuais medidas nas direções	
longitudinal e circunferencial em vários pontos da circunferência do	
ET 16 – Técnica do Furo Cego	112
Figura 4-23 – Valores das Tensões Residuais Máximas e Mínimas	
em vários pontos da circunferência do ET 16 – Técnica do Furo Cego	113
Figura 4-24– Vista de topo do defeito produzido por eletro-erosão no ET 13	115
Figura 4-25 – Vista de topo do defeito produzido por eletro-erosão no	
ET 15	115
Figura 4-26 – Parâmetros de forma (L^2/Dt) dos defeitos dos ETs	117
Figura 4-27 – Comparação dos resultados da pressão real (Prup) de	
ruptura (linha vermelha pontilhada) com os pressão previstas (<i>Pmétodo</i>)	
pelos diversos métodos	121
Figura 4-28 – Descarregamento local no ponto de instalação das rosetas	
7 dos ETs retangulares 15 e 16 comparados com os ETs cilíndricos	122
Figura 4-29– Comparação do deslocamento radial (abaulamento) do	
centro do defeitos dos ETs	123
Figura 4-30 – Descontinuidade de medições indicando o descolamento	
dos SG 7 e 10	125

Figura 5-1 – ET 14 após o teste de pressão com as marcações para o corte.	127
Figura 5-2 – Superfície interna do ET 11 após o corte.	128
Figura 5-3 – Cálculos da Pressão de Ruptura considerando a perda	
de espessura relativa aos alvéolos de corrosão interna	
(Métodos de Nível 1)	132
Figura 5-4– Sensibilidade dos Métodos de Nível 2 à presença dos	
alvéolos internos de corrosão.	135
Figura 5-5 – Comparação das características das soldas da referencia	
(SSAW–direita) e dos ETs (DSAW–esquerda)	137
Figura 5-6 – Espécime Tubular para Teste de Pressão mostrando o	
segmento contendo os defeitos soldados em tubo íntegro.	138
Figura 5-7 – Detalhe dos três defeitos simulados de corrosão	
produzidos por usinagem	138
Figura 5-8 – Detalhe dos três defeitos simulados de corrosão produzidos	
por usinagem	139
Figura 5-9 – Medições de espessura (em mm) realizadas com paquímetro	
após o teste de ruptura.	141
Figura 5-10 – Medições de espessura (em mm) realizadas com ultra-som	
antes do teste de ruptura.	142
Figura 5-11 – Detalhe do local do vazamento do ET 15	
(comprimento: 4 mm, profundidade: 0,8 mm)	142
Figura 5-12 – Detalhe do local do vazamento do ET 16 mostrando	
o alvéolo interno na parte de baixo e a pequena estricção na parte de cima	143
Figura 5-13 – Detalhe mostrando o local do vazamento visto ao	
microscópio ótico (aumento 200X)	143
Figura 5-14 – Foto do local de vazamento do ET 15 na borda do defeito	144
Figura 5-15 – Foto do ET 11 mostrando o local do vazamento entre a	
solda e o metal base	144
Figura 5-16 – Análise macroscópica da falha do ET 14 mostrando	
detalhe do início da fratura e do rasgamento dútil	145
Figura 5-17 – Análise macroscópica da falha do ET 14 mostrando	
detalhe do início da fratura na superfície interna	146
Figura 5-18 – Curva Tensão-deformação em um CP da direção	
transversal do tubo 16	147
Figura E-1 – Regiões de clivagem (ET 15; –20°C; MB) –	
Aumentos 40X e 500X	175

Figura E-2 – Parcela da fratura de característica dútil mostrando as	
cavidades e raias de rasgamento (ET 13; –20°C; MB)	176
Figura E-3 – Inclusão de Mns observada na área dútil do CP	
(ET 13; –20°C; MB)	177
Figura E-4 – Inclusão de óxidos (MnO–SiO ₂) caracterizada pela	
análise EDS. (amostra 5)	178
Figura E-5 – Inclusão de óxidos (MnO–SiO ₂) e sulfetos (MnS)	
caracterizada pela análise EDS. (amostra 5)	179
Figura E-6 – Inclusão de óxidos (MnO–SiO ₂) caracterizada pela	
análise EDS. (ET 15; –20°C; CS)	180
Figura E-7 – Inclusão de óxidos (MnO–SiO ₂) caracterizada pela	
análise EDS. (ET 14; 20°C; CS)	181
Figura E-8 – Planos de clivagem associados a microcavidades	
(ET 16; 0°C; LF+5mm)	182
Figura F-1 – Visualização dos segmentos da fratura a serem analisados	
no MEV	184
Figura F-2 – Visualização do bandeamento das amostras A1, B2 e B1	184
Figura F-3 – Visualização do aspecto dútil da fratura (microcavidades)	
no ponto de iniciação – região A1	185
Figura F-4 – Visualização do aspecto dútil da fratura (microcavidades)	
afastado do ponto de iniciação – região A1	186
Figura G-1 – Representação da área longitudinal perdida por meio de	
uma área parabólica e retangular	188
Figura G-2 – Detalhe dos comprimentos para o cálculo pelo método	
"Effective Area"	191
Figura G-3 – Subdivisão de um defeito de geometria complexa	
em "patch" e "pits"	192
Figura G-4 – Definição da área de patch (A_{patch}) e área de pit	
(A_{pit}) para subdivisão de uma geometria complexa em "patch"	
e "pits" idealizados	193
Figura G-5 – Exemplo de agrupamento de defeitos adjacentes	
para interação	193
Figura G-6 – Combinação de defeitos em interação	196
Figura H-1 – Simulação pelo MEF da seção transversal do defeito	
sem a influência de alvéolos	199
Figura H-2 – Plastificação do ligamento na presença de um alvéolo	

interno com tensão constante em toda a seção de aproximadamente	
548 MPa para um carregamento de 41 kgf/cm ² de pressão	200
Figura H-3 – Plastificação do ligamento na presença de três alvéolo	
interno com tensão máxima de aproximadamente 548 MPa para um	
carregamento de 39 kgf/cm ² de pressão	201
Figura H-4 – Detalhe da plastificação do ligamento na presença de	
três alvéolos internos para um carregamento de 39 kgf/cm ² de pressão	202

Lista de Tabelas

Tabela 2-2 – Composição química de aço X80 para a fabricação	
de tubos ERW.	54
Tabela 3-1 – Exemplo de pressões [kgf/cm ²] aplicadas em teste	
hidrostático no ORBEL I.	73
Tabela 3-2– Resumo da Inspeção realizada no canteiro após o	
recebimento dos tubos	74
Tabela 3-3– Posição dos tubos retirados do Oleoduto	75
Tabela 3-4 – Dimensões dos defeitos conforme projetado –	
ETs 11, 13 e 14	84
Tabela 4-1 – Resultados das Análises Químicas do Metal Base	
(espectrometria por emissão ótica) e Comparação com especificações	
API 5L e DNV OS F-101 atuais	96
Tabela 4-2 – Resultados de microdureza das Juntas Soldadas	
amostradas dos segmentos de tubos.	98
Tabela 4-3 – Resultados de Medições das Tensões Residuais	
realizadas no centro da solda longitudinal pela Técnica do Furo Cego.	111
Tabela 4-4 – Resumo das medições realizadas nos ETs após a	
introdução dos defeitos.	114
Tabela 4-5 – Pressões de Falha dos ETs sem defeitos pelos diversos	
métodos de instabilidade (kgf/cm ²).	116
Tabela 4-6 – Resultados de pressões calculadas pelos métodos ($P_{método}$)	
e das pressões obtidas (<i>P_{rup}</i>) nos testes de ruptura (kgf/cm ²)	118
Tabela 4-7 – Erros Percentuais dos Métodos na Previsão das	
Pressões de Ruptura	119
Tabela 4-8 – Deformações circunferenciais máximas medidas nos	
ETs com defeitos esféricos.	124
Tabela 5-1 – Resumo da contribuição dos alvéolos e da limitação	
dos métodos	130
Tabela 5-2 – Alteração das relações d/t devido a consideração da	
contribuição dos alvéolos internos	130
Tabela 5-3 – Resultados de pressões calculadas pelos métodos e	
das pressões obtidas nos testes de ruptura (kgf/cm ²) considerando	

a influência dos alvéolos.	131
Tabela 5-4 - Erros Percentuais dos Métodos de Nível 1 considerando a	
influência dos alvéolos na Previsão das Pressões de Ruptura	131
Tabela 5-5 – Resultados de pressões calculadas pelos métodos e das	
pressões obtidas nos testes de ruptura (kgf/cm²) considerando a	
influência dos alvéolos.	134
Tabela 5-6 – Erros Percentuais dos Métodos de Nível 2	
considerando a influência dos alvéolos na Previsão das Pressões	
de Ruptura	134
Tabela 5-7 – Dados Técnicos de Tubos antigos testados com defeitos	
usinados englobando a solda longitudinal	136
Tabela 5-8 – Dimensões dos defeitos projetados para serem usinados	137
Tabela 5-9– Resultados dos Testes de Pressão dos Defeitos Usinados	139
Tabela E-1 – Características das amostras selecionadas para análise	
no MEV	174

LISTA DE SIGLAS

BRS - Bactéria Redutora de Sulfato.

BSW – *Basic Sediments and Water* (Teor de Água e Sedimentos)

DEM-PUC-Rio – Departamento de Engenharia Mecânica da PUC-Rio.

DNV – Det Norske Veritas.

ERW – Eletric Resistance Welding .

ETs – Espécimes Tubulares.

IW – Induction Welding.

LF – Linha de Fusão.

MIG – Métodos de soldagem a arco elétrico que utilizam gases inertes ou uma mistura destes para a proteção da poça de fusão.

MAG – Métodos de soldagem a arco elétrico que utilizam gases ativos ou uma mistura de gases ativos e inertes para a proteção da poça de fusão.
PETROBRAS – Petróleo Brasileiro S/A.

SMTS – *Specified Minimum Tensile Strength* (Limite Mínimo de Tração Especificado).

SMYS – *Specified Minimum Yield Strength* (Limite Mínimo de Escoamento Especificado).

SAW – Submerged Arc Welding (Solda por Arco Submerso)

TIG – Método de soldagem a arco elétrico que utiliza eletrodo de tungstênio e um gás inerte para a proteção da poça de fusão.

TH – Teste Hidrostático.

TG – Tamanho de Grão ASTM.

TRANSPETRO – Empresa Subsidiária da PETROBRAS, responsável pela operação de dutos e terminais.

TT – Temperatura de Transição.

UOE – Processo de conformação de tubos com costura longitudinal a partir de chapa bobinada.

ZTA – Zona Termicamente Afetada.