4

Comissionamento da Microturbina em Carga Máxima

4.1 Potência de saída e rendimento térmico obtido através de testes feitos com o fabricante utilizando o software disponível pela microturbina

O objetivo principal deste capítulo é apresentar a avaliação de desempenho da microturbina do fabricante Capstone, modelo C30 (*recuperated*), LPNG (*low pressure natural gas*), em carga máxima, ou seja, verificar a potência de saída e o rendimento térmico garantidos pela Capstone, como função das condições ambientais. Para isto serão utilizados os dados do teste do comissionamento da microturbina, realizado em 18/08/2005 pelo representante da Capstone na América Latina. Juntamente com os dados do comissionamento, será verificado através do manual de desempenho do fabricante, o potencial máximo de cogeração da microturbina quando associada com a caldeira de recuperação.

Na Tabela 6 são apresentados os dados de desempenho em carga máxima nas condições ISO (ISO *Full Load Performance*) da microturbina adquirida [38]. As condições ISO estão mencionadas no item 3.3.

Tabela 6 - Desempenho da Microturbina C30 (recuperated) LPNG.

Desempenho	Valores @ 5 psig (pressão do gás na entrada da microturbina)
Potência garantida (kW)	28,0 (+0/-1)
Eficiência elétrica garantida (%) - baseado no PCI ¹	25,0 (±2)
Potência do combustível (Heat Input) (kJ/hr) - baseado no PCI ¹	404.000
Potência do combustível (Heat Input) (kJ/hr) - baseado no PCS ²	444.000
Heat Hate (kJ/kWh) – baseado no PCI ¹	14400
Temperatura dos gases de exaustão (°C)	275
Energia dos gases de exaustão (kJ/hr)	327000
Vazão mássica dos gases de exaustão (kg/s)	0,31

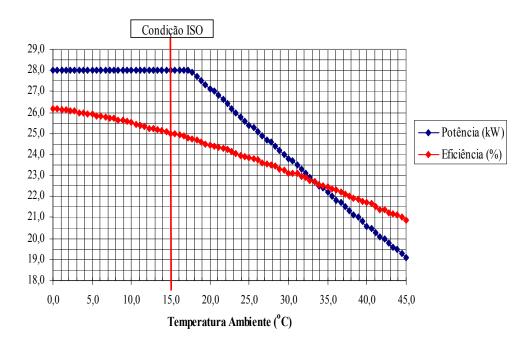
Notas: 1 - PCI - Poder calorífico inferior do combustível;

^{2 -} PCS - Poder calorífico superior do combustível.

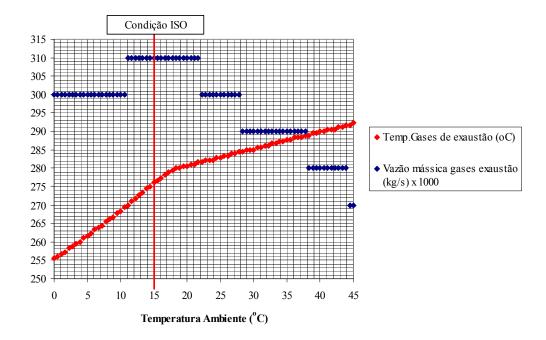
Como se pode observar na Tabela 6, a potência elétrica garantida pelo fabricante está na faixa de 27 a 28 kW, e sua eficiência elétrica na faixa de 23 a 27%, baseado no poder calorífico inferior do combustível. Vale mencionar, que estes dados são válidos para o gás natural com poder calorífico superior (PCS) na faixa de 36,14 a 42,10 MJ/Sm³ [39]. Estes dados serão aqui neste estudo verificados com os dados do teste de comissionamento realizado em 18/08/2005 pelo representante da Capstone.

Na Tabela 7 são apresentados os dados de desempenho da microturbina como função da temperatura ambiente (temperature derating), na pressão atmosférica de 101,325 kPa e operando com gás natural conforme PCS descrito acima [38]. Os valores de potência apresentados na Tabela 7 foram modificados para o modelo LPNG, conforme recomendação da referência [38], pois os dados apresentados nesta são para o modelo HPNG (high pressure natural gas). A recomendação é subtrair 2 kW do valor da potência encontrada na referência [38], devido à potência de acionamento do compressor de gás natural interno a microturbina C30 LPNG. Também foram respectivamente, ajustados e calculados os valores da potência do combustível (Heat Input) e eficiência elétrica, apresentados na referência [38] para o modelo HPNG. Este ajuste se deve ao fato que a potência do combustível (kJ/hr) em carga máxima nas condições ISO, são diferentes para os modelos HPNG e LPNG [38]. O consumo do modelo HPNG é 3% superior ao modelo LPNG nas condições ISO e carga máxima [38]. Portanto, os valores da potência do combustível (Heat Input) apresentados na referência [38] em função da temperatura ambiente foram subtraídos de 3%. Estes valores ajustados estão apresentados na Tabela 7, como também, os valores calculados da eficiência elétrica em função da temperatura. Esta eficiência foi calculada como a razão entre a potência elétrica e a potência do combustível (Heat Input) nas mesmas unidades de engenharia. Também são apresentados na Tabela 7, a temperatura dos gases de exaustão (após o recuperador de calor), a vazão mássica dos gases de exaustão e a energia disponível dos gases de exaustão para cogeração. Estes parâmetros não foram ajustados e nem calculados, pois na referência [38] estes parâmetros são os mesmos para todos os modelos C30, HPNG, LPNG e "liquid fuel" em carga máxima nas condições ISO. Desta maneira foi admitido que estes são os mesmos do modelo HPNG apresentados em [38].

Tabela 7 - Parâmetros de desempenho como função da temp. amb. e pressão atm. de 101,325 kPa – Modelo C30 (*recuperated*) LPNG – Dados do fabricante.


		Eficiência	•	<i>uperated</i>) LF Temperatura	Vazão	Energia	Heat Input
Temperatura	Potência	Elétrica	Heat Rate	Exaustão	Gases	Gases de	•
Ambiente (°C)	Elétrica (kW)	(PCI)	(PCI) (kJ/kWh)	(°C)	Exaustão	Exaustão	(PCI)
	, ,	(%)			(kg/s)	(kJ/h)	(kJ/h)
0,0	28,0	26,2	13743	256	0,30	304911	384800
0,6	28,0	26,2	13743	256	0,30	304911	384800
1,1	28,0	26,1	13779	257	0,30	305966	385823
1,7	28,0	26,1	13779	257	0,30	305966	385823
2,2	28,0	26,1	13816	258	0,30	307021	386847
2,8	28,0	26,1	13816	259	0,30	308076	386847
3,3	28,0	26,0	13853	259	0,30	308076	387870
3,9	28,0	26,0	13853	260	0,30	309131	387870
4,4	28,0	25,9	13889	261	0,30	309131	388894
5,0	28,0	25,9	13889	262	0,30	310186	388894
5,6	28,0	25,9	13926	262	0,30	311242	389917
6,1	28,0	25,9	13926	263	0,30	311242	389917
6,7	28,0	25,8	13962	264	0,30	312297	390940
7,2	28,0	25,7	13999	264	0,30	313352	391964
7,8	28,0	25,7	13999	266	0,30	313352	391964
8,3	28,0	25,6	14035	266	0,30	314407	392987
8,9	28,0	25,6	14035	267	0,30	315462	392987
9,4	28,0	25,6	14072	268	0,30	316517	394011
10,0	28,0	25,5	14108	268	0,30	317572	395034
10,6	28,0	25,5	14145	269	0,30	318627	396057
11,1	28,0	25,4	14181	270	0,31	319682	397081
11,7	28,0	25,3	14218	271	0,31	320737	398104
12,2	28,0	25,3	14255	272	0,31	321792	399128
12,8	28,0	25,3	14255	273	0,31	322847	399128
13,3	28,0	25,2	14291	273	0,31	323902	400151
13,9	28,0	25,1	14328	274	0,31	324957	401174
14,4	28,0	25,1	14364	275	0,31	326012	402198
15,0	28,0	25,0	14401	276	0,31	327067	403221
15,6	28,0	25,0	14401	277	0,31	328122	403221
16,1	28,0	24,9	14437	277	0,31	329177	404245
16,7	28,0	24,9	14474	278	0,31	330233	405268
17,2	28,0	24,8	14510	279	0,31	331288	406292
17,8	27,9	24,7	14562	279	0,31	331288	406292
18,3	27,7	24,7	14594	280	0,31	330233	404245
18,9	27,5	24,6	14625	280	0,31	329177	402198
19,4	27,3	24,5	14695	281	0,31	328122	401174
20,0	27,1	24,4	14728	281	0,31	327067	399128
20,6	27,0	24,4	14707	281	0,31	326012	397081
21,1	26,8	24,4	14778	281	0,31	324957	396057
21,7	26,6	24,3	14812	282	0,31	323902	394011
22,2	26,4	24,2	14847	282	0,30	320847	391964
23,3	26,0	24,1	14957	282	0,30	320737	388894

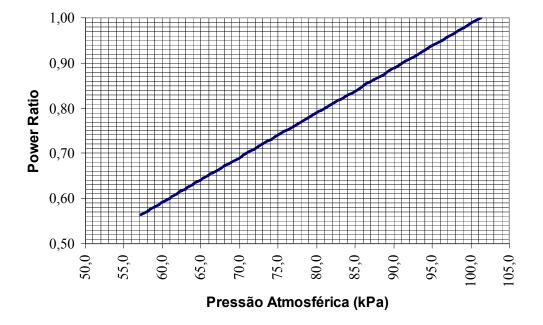
Temperatura	Potência	Eficiência	Heat Rate	Temperatura	Vazão	Energia	Heat Input	
Ambiente	Elétrica	Elétrica (PCI)	(PCI)	Exaustão	Gases Exaustão	Gases de Exaustão	(PCI)	
(°C)	(kW)	(%)	(kJ/kWh)	(°C)	(kg/s)	(kJ/h)	(kJ/h)	
23,9	25,8	23,9	15034	282	0,30	319682	387870	
24,4	25,6	23,9	15071	283	0,30	318627	385823	
25,0	25,4	23,8	15109	283	0,30	317572	383777	
25,6	25,3	23,8	15129	283	0,30	316517	382753	
26,1	25,1	23,7	15168	283	0,30	315462	380706	
26,7	24,9	23,6	15248	284	0,30	314407	379683	
27,2	24,7	23,5	15289	284	0,30	314407	377636	
27,8	24,6	23,5	15309	284	0,30	313352	376613	
28,3	24,4	23,5	15351	284	0,29	312297	374566	
28,9	24,2	23,3	15436	285	0,29	311242	373543	
29,4	24,0	23,3	15479	285	0,29	310186	371496	
30,0	23,8	23,1	15566	285	0,29	309131	370472	
30,6	23,7	23,1	15545	286	0,29	308076	368426	
31,1	23,5	23,1	15591	286	0,29	307021	366379	
31,7	23,3	23,0	15680	286	0,29	305966	365355	
32,2	23,1	22,9	15728	286	0,29	304911	363309	
32,8	22,9	22,8	15820	287	0,29	303856	362285	
33,3	22,7	22,7	15870	287	0,29	302801	360238	
33,9	22,5	22,5	15965	287	0,29	302801	359215	
34,4	22,4	22,5	15945	287	0,29	301746	357168	
35,0	22,2	22,4	16043	288	0,29	300691	356145	
35,6	22,0	22,4	16095	288	0,29	299636	354098	
36,1	21,8	22,3	16196	288	0,29	298581	353074	
36,7	21,7	22,2	16176	288	0,29	297526	351028	
37,2	21,5	22,1	16279	288	0,29	296471	350004	
37,8	21,3	22,0	16336	289	0,29	295416	347957	
38,3	21,1	21,9	16442	289	0,28	295416	346934	
38,9	21,0	21,9	16472	289	0,28	294361	345911	
39,4	20,8	21,8	16532	289	0,28	293306	343864	
40,0	20,6	21,7	16643	290	0,28	292251	342840	
40,6	20,5	21,7	16624	290	0,28	291195	340794	
41,1	20,3	21,5	16737	291	0,28	290140	339770	
41,7	20,1	21,4	16853	291	0,28	290140	338747	
42,2	20,0	21,4	16835	291	0,28	289085	336700	
42,8	19,8	21,2	16953	291	0,28	288030	335677	
43,3	19,6	21,1	17022	291	0,28	286975	333630	
43,9	19,5	21,1	17057	292	0,28	285920	332606	
44,4	19,3	21,0	17127	292	0,27	284865	330560	
45,0	19,1	20,9	17253	292	0,27	284865	329536	


Observando-se a Tabela 7 na temperatura de 15 °C, os valores de potência elétrica, eficiência elétrica e "*Heat Rate*" são os mesmos que os apresentados na Tabela 6 após o ajuste das curvas do modelo HPNG apresentados em [38]. Os valores de temperatura dos gases de exaustão e o "*Heat Input*" diferem apenas em

0,4% e 0,2%, respectivamente, devido ao fato da conversão de unidades e arredondamento, quando comparados com a Tabela 1. Pode-se observar que a variação da temperatura ambiente está na faixa de 0 à 45 °C, apesar da referência [38] apresentar uma faixa de -20 à 50 °C. Vale destacar, que todos os valores apresentados na Tabela 7 foram convertidos para o sistema internacional de unidades (SI).

As Fig. 41 e 42 apresentam de forma gráfica os valores da Tabela 7 para os parâmetros potência elétrica, eficiência elétrica, temperatura e vazão mássica dos gases de exaustão.

Figura 41 - Potência e eficiência elétrica versus temperatura ambiente na pressão atmosférica de 101,325 kPa - Modelo C30 (*recuperated*) LPNG.


Figura 42 - Temperatura e vazão mássica dos gases de exaustão versus temperatura ambiente na pressão atmosférica de 101,325 kPa - Modelo C30 (recuperated) LPNG.

Na Tabela 3 são apresentados os fatores de degradação da potência elétrica (*Power Ratio*) como função da pressão atmosférica definida pela Capstone como "*Ambient Pressure Derating*" [38]. Os valores de pressão foram convertidos para o SI. O fator de degradação (*Power Ratio*) é definido pela Eq.(1):

Tabela 8 - Fator de degradação da potência elétrica como função da pressão atmosférica - Modelo C30 (recuperated) LPNG – Dados do fabricante.

atmosienca -	Modelo C30 (I	ecuperateu) L	.PNG – Dados	do labricante	•
Pressão		Pressão		Pressão	
Atmosférica	Power Ratio	Atmosférica	Power Ratio	Atmosférica	Power Ratio
(kPa)a		(kPa)a		(kPa)a	
101,325	1,000	83,668	0,826	68,589	0,677
100,595	0,993	83,040	0,820	68,051	0,672
99,871	0,986	82,420	0,813	67,527	0,666
99,147	0,978	81,799	0,807	66,996	0,661
98,430	0,971	81,186	0,801	66,472	0,656
97,712	0,964	80,572	0,795	65,955	0,651
97,002	0,957	79,965	0,789	65,438	0,646
96,299	0,950	79,366	0,783	64,928	0,641
95,596	0,943	78,766	0,777	64,418	0,636
94,899	0,937	78,173	0,771	63,914	0,631
94,210	0,930	77,580	0,766	63,411	0,626
93,520	0,923	76,987	0,760	62,908	0,621
92,831	0,916	76,401	0,754	62,411	0,616
92,155	0,909	75,822	0,748	61,922	0,611
91,480	0,903	75,242	0,743	61,432	0,606
90,804	0,896	74,670	0,737	60,943	0,601
90,135	0,890	74,098	0,731	60,460	0,597
89,473	0,883	73,533	0,726	59,977	0,592
88,811	0,876	72,967	0,720	59,502	0,587
88,156	0,870	72,409	0,715	59,026	0,583
87,501	0,864	71,850	0,709	58,550	0,578
86,853	0,857	71,299	0,704	58,081	0,573
86,205	0,851	70,747	0,698	57,619	0,569
85,564	0,844	70,202	0,693	57,158	0,564

Na Fig. 43 é apresentado o gráfico "*Power Ratio*" versus pressão atmosférica. O efeito da pressão atmosférica na eficiência elétrica é desprezível, conforme mencionado em [38].

Figura 43 - Power Ratio versus pressão atmosférica - Modelo C30 (recuperated) LPNG.

Como se pode notar na Fig. 43, a relação entre o "*Power Ratio*" e a pressão atmosférica é linear. Desta maneira propõe-se a seguinte equação relacionando estas grandezas, Eq.(2):

Power Ratio =
$$0.00986 \times pressão$$
 atmosférica $(kPa) + 0.00032$ (2)

Na Tabela 9 são apresentados os fatores de degradação da potência elétrica (*Exhaust Back Pressure Power Ratio - E.B.P.P.R*) e eficiência elétrica (*Exhaust Back Pressure Efficiency Ratio - E.B.P.E.R*) como função da perda de carga dos gases de exaustão, definidos em [38]. Estes fatores são muito importantes no desempenho da microturbina, quando acoplada a uma caldeira de recuperação para cogeração. Os fatores de degradação são definidos pelas Eq.(3) e Eq.(4):

$$E.B.P.P.R = \frac{Potência\ elétrica}{Potência\ elétrica\ sem\ perda\ de\ c\arg a\ na\ exaustão} \quad (3)$$

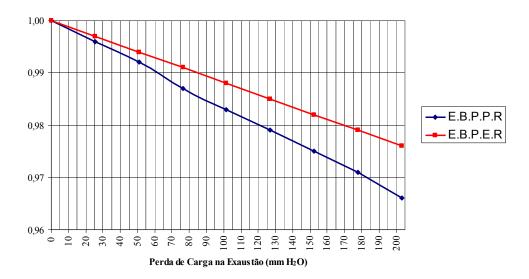

$$E.B.P.E.R = \frac{Eficiência\ elétrica}{Eficiência\ elétrica\ sem\ perda\ de\ c\ arg\ a\ na\ exaustão} \tag{4}$$

Tabela 9 - Fator de degradação da potência e eficiência elétrica como função da perda de carga dos gases de exaustão - Modelo C30 (recuperated) LPNG – dados do fabricante.

Perda de Carga (mm H ₂ O)	E.B.P.P.R	E.B.P.E.R
0	1,000	1,000
25	0,996	0,997
51	0,992	0,994
76	0,987	0,991
102	0,983	0,988
127	0,979	0,985
152	0,975	0,982
178	0,971	0,979
203	0,966	0,976

Na Fig. 44 são apresentados os gráficos "*E.B.P.P.R*" e "*E.B.P.E.R*" versus a perda de carga na exaustão.

Vale destacar que os fatores de degradação apresentados na Tabela 9 ou Fig. 44 são apresentados pela referência [38] nas condições ISO. Por outro lado, a própria referência [38] menciona que estes fatores deverão ser aplicados juntamente com os valores da Tabela 7 e 8 quando necessários.

Figura 44 - "E.B.P.P.R." e "E.B.P.E.R." versus a perda de carga na exaustão - Modelo C30 (recuperated) LPNG.

Outro ponto importante a destacar é que não foram apresentados os fatores de degradação da potência e eficiência elétrica como função da perda de carga do ar de admissão, apresentados em [38]. Isto se deve ao fato de que a microturbina opera sem restrição do ar de admissão, ou seja, nas mesmas condições das curvas geradas pela referência [38]. De acordo com a referência [38] o filtro de ar de admissão não é considerado uma restrição; apenas seu entupimento ao longo do tempo. Com uma correta manutenção do filtro este fator pode ser ignorado.

Por fim, é apresentada na referência [38] uma tabela mostrando o desempenho da microturbina em carga parcial nas condições ISO, ou seja, são apresentados os mesmos parâmetros da Tabela 7 como função da carga (kW). Novamente estes valores são válidos para o modelo HPNG. Como a potência do compressor de gás natural interno da microturbina LPNG é função de sua carga, não foi possível ajustar os parâmetros potência elétrica, eficiência elétrica e "*Heat Input*".

4.1.1

Metodologia

Para verificação da potência de saída e o rendimento térmico garantidos pelo fabricante da microturbina, serão utilizados os procedimentos descritos na referência [38], conforme mencionado em ASME-PTC-22,1977 (Performance Test Code for Gás Turbines, American Society for Mechanical Engineers, PTC-22 code) onde o fabricante da turbina é quem deverá fornecer os procedimentos de correção de desempenho. Para estas verificações serão utilizados os dados do teste do comissionamento da microturbina, realizado em 18/08/2005 pelo representante da Capstone na América Latina. Serão utilizados os dados de operação na carga máxima para a temperatura ambiente do dia do teste.

Na Tabela 10 estão apresentados todos os parâmetros e dados de interesse do teste de comissionamento realizado em 18/08/2005.

Tabela 10 - Dados do teste de comissionamento da microturbina realizado pelo representante da Capstone em 18/08/05.

represe	entante da	Capstone 6	em 18/08/0	5.	T	T	1	
Carga	Potência	Rotação da	Temp.	Pres.	Pres. Gás		Vazão Mássica	
(%)	Elétrica 1	Turbina 1	Ambiente	Atmosférica 1	Natural 1	AFR 2	Ar de Admissão	
(70)	(W)	(RPM)	(°C)1	(kPa)	(psig)		(kg/s) 2	
100	25208	96090	32,3	99,6	5	99	0,28	
100	25241	96132	32,4	99,6	5	99	0,28	
100	25164	95966	32,4	99,6	5	101	0,28	
100	24890	95944	32,5	99,6	5	103	0,28	
100	24879	95966	32,6	99,6	5	102	0,28	
100	24879	96194	32,6	99,6	5	103	0,28	
100	24741	96236	32,6	99,6	5	102	0,28	
100	24730	96236	32,6	99,7	5	101	0,28	
100	25131	96194	32,5	99,7	5	102	0,28	
100	25280	95882	32,6	99,6	5	100	0,28	
100	25318	95778	32,6	99,6	5	102	0,27	
100	24939	95882	32,6	99,6	5	101	0,28	
100	24955	96028	32,6	99,6	5	100	0,28	
100	25038	95966	32,6	99,6	5	102	0,28	
100	25010	95778	32,6	99,6	5	101	0,28	
100	25021	95798	32,5	99,6	5	103	0,27	
100	24840	95944	32,5	99,6	5	101	0,27	
100	24972	96006	32,5 99,6 5		5	99	0,28	
100	25159	95820	32,4	32,4 99,6		100	0,27	
100	25098	95674	32,4	99,6	5	99	0,28	
100	24917	95736	32,3	99,6	5	99	0,27	
100	24884	95778	32,3	99,6	5 100		0,28	
100	24983	95944	32,2	99,6	5	102	0,27	
100	24873	96028	32,2	99,6	5	102	0,28	
100	24840	96362	32,2	99,6	5	101	0,28	
100	25005	96216	32,2	99,6	5	101	0,28	
100	25291	96258	32,2	99,6	5	102	0,28	
100	25571	96278	32,1	99,6	5	101	0,28	
100	25571	96278	32,0	99,6	5	100	0,28	
100	25587	96300	31,9	99,6	5	99	0,28	
100	25483	96278	31,9	99,6	5	100	0,28	
100	25516	96342	31,7	99,6	5	101	0,28	
100	25428	96236	31,7	99,6	5	101	0,28	
100	25411	96300	31,6	99,6	5	102	0,28	
100	25406	96300	31,5	99,6	5	101	0,28	
100	25345	96278	31,5	99,6	5	100	0,28	
100	25230	96300	31,5	99,6	5	98	0,28	
100	25345	96300	31,5	99,6	5	98	0,28	
100	25323	96300	31,5	99,6	5	99	0,28	
100	25142	96258	31,5	99,6	5	101	0,28	
100	25170	96278	31,5	99,6	5	100	0,28	
100	25197	96278	31,5	99,6	5	100	0,28	
100	25302	96258	31,6	99,6	5	100	0,28	

Carga (%)	Potência Elétrica 1 (W)	Elétrica 1 Turbina 1 Ambiente Atmosférica 1 Natural 1 A							
100	25334	96342	31,7	99,6	99,6 5 100				
100	25395	96320	31,7	99,6	5	101	0,28		
100	25318	96236	31,7	99,6	5	101	0,28		
100	25252	96174	31,7	99,6	5	100	0,28		
100	25340	96278	31,8	99,6	5	101	0,28		
100	25417	96300	31,7	99,6	5	100	0,28		
100	25499	96174	31,7	99,6	5	100	0,28		
100	25488	96278	31,7	99,6	5	100	0,28		
100	25516	96300	31,7	99,6	5	100	0,28		
100	25494	96300	31,7	99,6	5	100	0,28		
100	25389	96194	31,6	99,6	5	100	0,28		
100	25362	96300	31,5	99,6	5	100	0,28		
100	25378	96258	31,5	99,6	5	99	0,28		
100	25439	96320	31,5	99,6	5	101	0,28		
100	25406	96258	31,5	99,6	5	102	0,28		
100	25422	96258	31,4	99,6	5	101	0,28		
100	25510	96300	31,4	99,6	5	100	0,28		
Média	25221	96150	32,0	99,6	5	101	0,28		

Nota 1: Valores medidos pelos instrumentos da microturbina 2: AFR – Relação ar – combustível; Valores calculados pelo software da microturbina

A referência [38] mostra o seguinte procedimento para estimativa da potência elétrica da microturbina como função das condições ambientais do local de operação:

- 1° Determine a temperatura média ambiente;
- 2° Entre na Tabela 7 deste documento e determine a potência elétrica ($W_{Tab.7}$);
- 3º Determine a pressão atmosférica;
- 4º Aplique o fator de degradação da Tabela 8 deste documento;
- 5° Determine a perda de carga dos gases de exaustão;
- 6° Aplique o fator de degradação da Tabela 9 (E.B.P.P.R) deste documento;

OBS: Este procedimento é válido para determinação da potência máxima da microturbina para uma determinada condição ambiental.

Este procedimento pode ser descrito pela Eq.(5), que determina a potência máxima (W_{site}) que a microturbina pode atingir para uma dada condição ambiental:

$$W_{site} = W_{Tab 2} \times Power \, Ratio \times E.B.P.P.R \tag{5}$$

Vale mencionar que a referência [38] não menciona qualquer procedimento para avaliação da eficiência elétrica da microturbina. Fica subentendido que a eficiência elétrica da microturbina (ηsite) como função das condições ambientais do local de operação, pode ser estimada da seguinte maneira:

- 1° Determine a temperatura média ambiente;
- 2° Entre na Tabela 7 deste documento e determine a eficiência elétrica (ηTab.7);
- 3º Determine a perda de carga dos gases de exaustão;
- 4º Aplique o fator de degradação da Tabela 9 (E.B.P.E.R) deste documento;

Este procedimento pode ser descrito pela Eq.(6), que determina a eficiência elétrica (nsite) que a microturbina deve atingir para uma dada condição ambiental:

$$\eta_{site} = \eta_{Tab.2} \times E.B.P.E.R \tag{6}$$

A eficiência elétrica da microturbina (ηmicro) pode ser calculada da seguinte maneira, Eq.(7):

$$\eta_{micro} = \frac{W_{ele} \times AFR}{\dot{m}_{ar} \times PCI} \tag{7}$$

Onde, W_{ele} é a potência elétrica (média) obtida da Tabela 10, AFR é a relação ar-combustível (média) (base mássica) obtida da Tabela 10, \dot{m}_{ar} é a vazão mássica de ar de admissão (média) obtida da Tabela 10 e PCI é o poder calorífico inferior médio do gás natural do dia do teste, obtido da concessionária CEG, cuja as características encontram-se na Tabela 11.

Tabela 11 - Características do gás natural do gás natural fornecido pela CEG em 18/08/2005 - média diária.

Composição	(%)
CO_2	0,2896
C_2H_6	2,9351
N ₂	0,7518
CH ₄	95,4793
C_3H_8	0,4650
IC ₄	0,0220
NC ₄	0,0414
IC ₅	0,0065
NC ₅	0,0060
>C ₆	0,0033
PCS (kJ/Nm ³)	37882
PCI (kJ/Nm ³)	34160
ρ (kg/Nm³)	0,6965

Com os valores de W_{ele} e η_{micro} , obtidos respectivamente, da Tabela 10 e Eq.(7), pode-se, compará-los com os valores de W_{site} e η_{site} calculados pelas Eq.(5) e Eq.(6). Os valores de W_{ele} e η_{micro} deverão ser superiores aos previstos pelo manual do fabricante, ou pelo menos, estar dentro da faixa de variação prevista pelo fabricante para cada grandeza. A referência [38] não menciona a faixa de variação das grandezas potência e eficiência elétrica para toda a faixa de temperatura apresentada na Tabela 7. Ela só menciona (garante) uma faixa de +0/-1 kW para potência elétrica e \pm 2% para eficiência elétrica nas condições ISO, conforme apresentado na Tabela 6. Desta maneira, serão admitidas neste estudo a mesmas faixas apresentadas na Tabela 6 para os parâmetros calculados W_{site} e η_{site} .

Outro ponto a destacar, é que a referência [38] não apresenta um procedimento para correção dos valores obtidos durante um teste em carga máxima para as condições de garantia, que neste caso são as condições ISO [40]. Este fato justifica a hipótese acima em admitir as mesmas faixas de variação dos parâmetros calculados $W_{\it site}$ e $\eta_{\it site}$.

O potencial máximo disponível (Potmicro) para cogeração pela microturbina pode ser calculado através da Eq.(8):

$$Pot_{micro} = \dot{m}_{gases} \times c_{p_{eases}} \times (T_{ex} - T_{amb})$$
 (8)

Onde:

 \dot{m}_{gases} é a vazão mássica dos gases de exaustão da microturbina,

 $c_{p_{gauss}}$ é o calor específico a pressão constante dos gases de exaustão da microturbina,

 T_{ex} é a temperatura de saída dos gases de exaustão da microturbina T_{amb} é a temperatura ambiente.

Neste estudo será utilizado um $c_{p_{gases}}$ de 1,1 kJ/kg K apresentado em [41].

4.1.2

Análise

Com os valores médios da Tabela 10 e 11 e com a metodologia apresentada no item 4.1, pode-se determinar os seguintes parâmetros de desempenho da microturbina, apresentados na Tabela 12 abaixo.

Tabela 12 - Valores calculados de parâmetros de desempenho da Microturbina.

Valores Calculados									
W _{Tab.7} (kW)	23,1								
Power Ratio	0,98								
E.B.P.P.R	0								
W _{site} (kW)	22,6								
η _{Ταb.7} (%)	22,9								
E.B.P.E.R	0								
η _{site} (%)	22,9								
η_{micro} (%)	18,5								
W _{ele} (kW)	25,2								

Ao se analisar a Tabela 12, pode-se notar que a potência máxima esperada para as condições ambientais durante o teste de comissionamento (Wsite) foi de 22,6 kw. O valor médio encontrado durante o teste, Tabela 10, foi de 25,2 kw. A variação percentual entre o valor medido e o calculado é de 11,5%. Isto mostra que a microturbina está gerando mais energia elétrica que o especificado pelo fabricante para uma dada condição ambiental, mesmo admitindo uma tolerância de ± 1 kW conforme mencionado acima para o valor informado pelo fabricante. Outros fatores quem podem ser atribuídos a esta diferença são:

a) <u>Definição do ponto de tomada da temperatura ambiente</u>

Foram utilizados os sensores de temperatura do fabricante localizados a jusante do gerador elétrico e a montante da entrada de ar do compressor. O ar ao passar pelo gerador elétrico é aquecido antes de entrar no compressor. Portanto, sua temperatura é superior à temperatura ambiente. O fabricante define na referência [42] que esta temperatura é considerada a temperatura ambiente para o sistema da microturbina. Esta foi utilizada neste estudo. Já na referência [38], do fabricante, não é mencionado que este ponto deverá ser utilizado como temperatura ambiente. Admitindo um aumento de temperatura de 3 °C, a temperatura ambiente seria de 29 °C. Com este valor o W_{site} seria de 23,7 kw. A variação percentual entre o valor medido e o calculado seria de 6,3 % que é aproximadamente metade do valor calculado acima. Isto mostra que a microturbina continua gerando mais energia elétrica que o especificado pelo fabricante para uma dada condição ambiental, mesmo admitindo uma tolerância de ± 1 kW, sobre o valor calculado. Portanto, para uma análise mais exata, a definição do ponto de medição da temperatura ambiente deverá ser melhor investigada. Além disto, faz-se necessária uma análise de incerteza de medição dos parâmetros avaliados para confirmação dos valores apresentados pelo fabricante.

b) <u>Calibração do sensor de temperatura ambiente</u>

Sua calibração pode eliminar os erros sistemáticos da medida da temperatura ambiente. Acreditando que o ponto de medição de temperatura ambiente esteja na entrada do gerador elétrico, novos sensores de temperatura poderão ser instalados. Portanto, quando da instalação estes estariam calibrados.

c) <u>Calibração dos medidores de tensão e corrente elétrica</u>

Estes deverão estar calibrados, de modo a eliminar os erros sistemáticos da potência informada pelo sistema de aquisição de dados. Com um multímetro calibrado, os sensores de tensão e corrente de cada fase da microturbina podem ser verificados de modo a determinar os erros sistemáticos e as incertezas de tais

grandezas. Uma vez verificado, pode-se ter mais confiança no valor de potência elétrica informada pela microturbina.

d) <u>Procedimento de aquisição de dados em regime permanente</u>

A aquisição de dados realizada pelo representante da Capstone, não seguiu o recomendado pela referência [40]. As recomendações desta deverão ser seguidas em testes de desempenho.

De um modo geral, todos os fatores citados acima deverão ser verificados e avaliados juntamente com uma análise de incerteza de modo a confirmar os valores de desempenho apresentados pelo fabricante na referência [38].

Outra grande diferença encontrada refere-se ao valor calculado da eficiência elétrica da microturbina (η_{micro}). Ao se analisar a Tabela 12, pode-se notar que a eficiência esperada para as condições ambientais durante o teste de comissionamento (η_{site}) foi de 22,9 %. O valor médio calculado (η_{micro}) através dos valores informados pelo sistema de aquisição de dados da microturbina, Tabela 10, foi de 18,5 %. A variação percentual entre o valor esperado e o calculado é de 23,8%. Isto mostra que a microturbina é menos eficiente que o apresentado pelo fabricante, mesmo levando em conta a tolerância de \pm 2 % sobre o valor η_{site} . Admitindo uma temperatura ambiente de 29 °C, a diferença percentual seria de 26,0%. O principal fator que pode ser atribuído a esta diferença é devido a não medição da vazão de gás natural. Ela foi estimada através de valores calculados pelo o software da microturbina, como a relação ar-combustível (AFR) e a vazão mássica do ar de admissão. Portanto, um medidor de vazão calibrado e de baixa incerteza deverá ser instalado na planta de cogeração, para uma avaliação mais precisa da eficiência elétrica. Outro ponto a destacar, é a avaliação da incerteza do PCI do combustível. Foi utilizado um valor médio diário, obtido através da concessionária CEG. Esta deverá ser avaliada juntamente com a variação da composição ao longo do dia de modo a serem incorporados na incerteza de medição da eficiência elétrica.

Por fim, é apresentado na Tabela 13, o valor calculado do potencial máximo da cogeração (*Pot_{micro}*) para o sistema instalado na PUC-Rio. Também são

apresentados os dados de entrada utilizados no cálculo. Para este cálculo foi utilizado uma temperatura média anual do ambiente de 25 °C, juntamente com os valores de vazão mássica e temperatura dos gases de exaustão apresentados na Tabela 7.

Tabela 13 - Valor calculado de potencial máximo de cogeração da planta da PUC-Rio

Dados de ent	Dados de entrada											
\dot{m}_{gases} (kg/s)	0,30											
$c_{p_{gases}}$ (kJ/kgK)	1,10											
$T_{ex}(^{\circ}\mathrm{C})$	283											
$T_{amb}(^{\circ}C)$	25											
Valor calculado												
Pot _{micro} (kW)	85,1											

Os resultados encontrados estão de acordo com os valores especificados pelo fabricante.

4.2 Tensão e frequência elétrica obtida através dos testes feitos com o fabricante

O objetivo principal deste item é apresentar e verificar os valores dos parâmetros de desempenho elétrico da microturbina, para carga máxima, como a tensão e frequência elétrica.

Juntamente com a apresentação dos parâmetros, serão mostrados os dados dos testes realizados na microturbina, assim como o valor da eficiência de conversão do sistema eletrônico de potência e variação máxima das tensões registradas, em cada fase, durante o desenvolvimento do teste.

4.2.1

Metodologia

O desempenho na produção de energia é uma das características operativas de grande interesse para compradores, operadores e consumidores de sistemas geradores de energia.

No que se refere à geração de energia elétrica, existe um grande número de questões de interesse quando um gerador elétrico é conectado e operado simultaneamente em paralelo com a rede elétrica da concessionária local. Quando a unidade opera em paralelo com a rede elétrica, esta deve detectar a tensão e a freqüência da rede e sincronizar-se apropriadamente com elas, antes que ocorra a conexão com a rede.

As microturbinas Capstone modelo C30 contem circuitos eletrônicos que detectam e reagem quando circunstâncias anormais ocorrem, tal que o sistema é desconectado automaticamente da rede; dentre as condições anormais de operação podemos mencionar: sobretensões, subtensões, sobrefrequências e subfrequências.

Conforme mencionado anteriormente, e, segundo referenciado em [40, 43], recomenda-se uma avaliação do desempenho na produção de energia elétrica da microturbina. Baseados nos dados disponíveis dos testes da microturbina realizados na PUC-Rio, os parâmetros a serem avaliados para a determinação da qualidade da energia produzida são:

- Frequência elétrica de saída.
- Tensão de saída.

Cada parâmetro provê um entendimento da qualidade da energia elétrica produzida pela microturbina.

Nesta parte é apresentada a metodologia para a avaliação e verificação dos parâmetros de desempenho na produção de energia da microturbina testados na PUC-Rio. A avaliação foi realizada com a microturbina operando em carga máxima. Também será apresentada a metodologia para a avaliação da eficiência de conversão do sistema eletrônico de potência assim como o cálculo das variações máximas das tensões em cada fase. Cabe destacar, nesta parte, que devido à não disponibilidade de dados do fabricante, não foram feitas as comparações respectivas.

Na Tabela 14 são apresentados os dados registrados no teste da microturbina, onde:

- ► <u>**A**</u>: Carga (%).
- **B**: Rotação da microturbina (rpm).
- ➤ <u>C</u>: Potência de saída do gerador da microturbina fornecido ao sistema eletrônico de potência (W).
- **D**: Potência elétrica de saída da microturbina (W).
- **E**: Freqüência elétrica (Hz).
- ightharpoonup $\underline{\mathbf{F}}$, $\underline{\mathbf{G}}$, $\underline{\mathbf{H}}$: Tensão de pico na fase A, B e C, respectivamente (V).
- ▶ <u>I</u>, <u>J</u>, <u>K</u>: Corrente na fase A, B, e C, respectivamente (A).
- ightharpoonup <u>L</u>, <u>M</u>, <u>N</u>: Tensão da fase A neutro, fase B neutro e fase C neutro, respectivamente (V).
- **O**, **P**, **Q**: Potência na fase A, B e C, respectivamente (W).

Tabela 14 - Dados elétricos do teste realizado na microturbina, na PUC-Rio.

<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>E</u>	<u>F</u>	<u>G</u>	<u>H</u>	Ī	<u>J</u>	<u>K</u>	<u>L</u>	<u>M</u>	<u>N</u>	<u>O</u>	<u>P</u>	Q
%	rpm	W	W	Hz	V	V	V	A	Α	Α	V	V	V	W	W	W
100	96090	29636	25208	60	364	36	365	32	32	32	258	260	258	8446	8410	8350
100	96132	29662	25241	60	365	36	365	32	32	32	258	260	258	8446	8410	8352
100	95966	29567	25164	60	363	36	365	32	32	32	257	259	258	8410	8377	8319
100	95944	29268	24890	60	364	36	365	32	32	32	257	259	258	8289	8264	8212
100	95966	29274	24879	60	364	36	364	32	32	32	257	259	258	8322	8311	8264
100	96194	29308	24879	60	364	36	364	32	32	32	257	259	257	8341	8314	8262
100	96236	29122	24741	60	364	36	364	32	31	32	257	259	258	8262	8234	8188
100	96236	29105	24730	60	365	36	363	32	31	31	257	259	257	8319	8278	8234
100	96194	29586	25131	60	363	36	364	32	32	32	257	259	257	8462	8432	8374
100	95882	29694	25280	60	364	36	364	32	32	32	258	259	258	8495	8454	8421
100	95778	29782	25318	60	364	36	364	32	32	32	257	259	258	8451	8427	8369
100	95882	29373	24939	60	364	36	364	32	32	32	258	260	258	8363	8333	8273
100	96028	29370	24955	60	364	36	364	32	32	32	257	259	258	8374	8339	8278
100	95966	29449	25038	60	364	36	365	32	32	32	258	260	258	8352	8336	8270
100	95778	29423	25010	60	364	36	364	32	32	32	258	260	258	8405	8380	8314
100	95798	29420	25021	60	364	36	365	32	32	32	258	260	258	8372	8344	8297
100	95944	29217	24840	60	364	36	364	32	32	32	257	259	257	8355	8333	8262
100	96006	29404	24972	60	365	36	364	32	32	32	258	259	258	8418	8377	8336
100	95820	29566	25159	60	364	36	364	32	32	32	257	259	258	8424	8402	8344
100	95674	29525	25098	60	365	36	365	32	32	32	258	260	258	8363	8330	8275
100	95736	29271	24917	60	364	36	364	32	32	32	258	259	257	8363	8322	8270
100	95778	29286	24884	60	364	36	364	32	32	32	257	259	258	8374	8336	8297
100	95944	29339	24983	60	364	36	364	32	32	32	257	259	257	8363	8336	8278
100	96028	29286	24873	60	363	36	364	32	32	32	257	259	257	8336	8311	8273
100	96362	29197	24840	60	364	36	364	32	32	32	257	259	257	8251	8221	8185

100	96216	29451	25005	60	364	36	364	32	32	32	257	259	258	8418	8380	8339
100	96258	29771	25291	60	364	36	364	32	32	32	258	260	258	8514	8481	8418
100	96278	30112	25571	60	365	36	364	33	32	32	258	260	258	8561	8528	8479
<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>E</u>	<u>F</u>	<u>G</u>	<u>H</u>	I	<u>J</u>	<u>K</u>	L	M	<u>N</u>	<u>O</u>	<u>P</u>	Q
<u>%</u>	<u>rpm</u>	<u>W</u>	<u>W</u>	<u>H</u>	<u>V</u>	$\underline{\mathbf{V}}$	<u>V</u>	<u>A</u>	<u>A</u>	<u>A</u>	<u>V</u>	$\underline{\mathbf{V}}$	<u>V</u>	<u>W</u>	<u>W</u>	<u>W</u>
100	96278	30104	25571	60	363	36	364	33	32	33	257	259	258	8561	8534	8473
100	96300	30077	25587	60	365	36	365	33	32	32	258	260	258	8547	8517	8468
100	96278	30003	25483	60	363	36	365	33	32	32	258	260	258	8545	8525	8451
100	96342	30040	25516	60	363	36	364	33	32	32	257	259	257	8561	8512	8465
100	96236	29934	25428	60	364	36	364	33	32	32	258	260	258	8523	8487	8438
100	96300	29878	25411	60	364	36	365	33	32	32	258	260	258	8523	8498	8443
100	96300	29884	25406	60	364	36	364	32	32	32	258	260	25	8503	8465	8424
100	96278	29801	25345	60	364	36	364	32	32	32	258	260	25	8473	8438	8388
100	96300	29715	25230	60	364	36	363	32	32	32	257	259	25	8448	8418	8369
100	96300	29861	25345	60	364	36	364	32	32	32	258	260	25	8484	8451	8377
100	96300	29780	25323	60	364	36	364	32	32	32	257	259	25	8451	8421	8363
100	96258	29598	25142	60	363	36	364	32	32	32	257	259	25	8432	8402	8341
100	96278	29592	25170	60	364	36	364	32	32	32	257	259	25	8413	8394	8339
100	96278	29697	25197	60	364	36	364	32	32	32	258	259	25	8457	8424	8383
100	96258	29782	25302	60	364	36	364	32	32	32	257	259	25	8481	8451	8396
100	96342	29852	25334	60	365	36	365	32	32	32	258	260	25	8490	8465	8410
100	96320	29904	25395	60	363	36	365	32	32	32	258	260	25	8495	8462	8410
100	96236	29783	25318	60	364	36	365	32	32	32	258	260	25	8476	8448	8396
100	96174	29750	25252	60	364	36	364	32	32	32	257	260	25	8473	8454	8394
100	96278	29827	25340	60	364	36	364	32	32	32	258	260	25	8498	8473	8413
100	96300	29946	25417	60	364	36	365	33	32	32	258	260	25	8520	8490	8443
100	96174	30067	25499	60	364	36	365	33	32	32	258	260	25	8547	8528	8487
100	96278	30010	25488	60	364	36	366	33	32	32	258	260	25	8539	8509	8468
100	96300	30033	25516	60	364	36	364	33	32	32	258	260	25	8534	8503	8454
100	96300	30076	25494	60	365	36	366	33	32	32	258	260	25	8550	8520	8468
100	96194	29937	25389	60	363	36	363	33	32	32	257	259	25	8503	8479	8410
100	96300	29896	25362	60	364	36	365	33	32	32	258	259	25	8512	8465	8416
100	96258	29870	25378	60	365	36	364	32	32	32	258	260	25	8525	8503	8438
100	96320	29971	25439	60	364	36	365	33	32	32	258	260	25	8512	8481	8424
100	96258	29927	25406	60	364	36	366	33	32	32	258	260	25	8531	8509	8457
100	96258	29897	25422	60	364	36	366	32	32	32	258	260	25	8542	8506	8448
100	96300	30063	25510	60	364	36	366	33	32	32	258	260	25	8556	8547	8470

As medições dos dados no dia do teste da microturbina foram realizadas com os sensores internos incorporados a ela, os quais foram aquisitados por um computador através de uma interfase serial RS-232. Na Tabela 3 são mostradas as exatidões dos sensores internos da microturbina Capstone C30, conforme referência [33].

Tabela 15 - Exatidão dos sensores internos da microturbina Capstone modelo C30 (Recuperated) LPNG, de 28 KW.

GRANDEZA MEDIDA	UNIDADE	EXATIDÃO	FUNDO DE ESCALA
Corrente ¹	A	± 1.4% (Típico) / ± 2.4% (Máximo)	46
Tensão ¹	V	± 0.6% (Típico) / ± 1.3% (Máximo)	528
Potência de saída ¹	kW	± 2.0% (Típico) / ± 3.7% (Máximo)	28
Frequência de saída	Hz	± 0.05% da leitura	

Nota 1: As exatidões são referentes ao Fundo de Escala.

A freqüência elétrica fornecida pelo sistema da concessionária local é de 60 Hz em corrente alternada. Na Tabela 14 (coluna E) apresentam-se os dados das medições da freqüência elétrica realizadas no dia do teste da microturbina. Conforme referenciado em [40, 43], a análise do desempenho na produção de energia elétrica, inclui a determinação dos valores da freqüência máxima, mínima e média, juntamente com o desvio padrão dos dados registrados no dia do teste. Para a determinação destes valores podem ser utilizadas as seguintes equações:

$$F = \frac{\sum_{i=1}^{i=N} F_i}{N} \tag{9}$$

Onde:

F: Freqüência média (Hz);

F_i: Frequência em cada medição ao longo do teste (Hz);

N: Número total de medições ao longo do teste.

O desvio padrão é uma medida que relaciona a dispersão dos valores da frequência medida (F_i) com respeito ao valor médio (F), para o qual, conforme referenciado em [40], pode-se utilizar a seguinte equação:

$$Fstd = \pm \sqrt{\frac{\sum_{i=1}^{i=N} (F - F_i)^2}{N - 1}}$$
 (10)

Onde:

Fstd: Desvio Padrão;

F: Freqüência média (Hz);

F_i: Freqüência em cada medição ao longo do teste (Hz);

N: Número total de medições ao longo do teste.

Conforme referenciado em [43], a freqüência de um sistema de potência está diretamente associada à velocidade de rotação dos geradores que suprem o sistema. A freqüência pode ser alterada quando a rotação do gerador for alterada; originando com isto desde um simples mau funcionamento até a queima de motores e equipamentos em geral pelo sobreaquecimento; motivo pelo qual como referenciado em [43] a tolerância da variação da freqüência pode ser de $\pm 1\%$ do valor nominal (\pm 0,6 Hz).

Devido aos danos que poderiam se originar em diversos equipamentos é necessário que a tensão seja monitorada e registrada ao longo do período do teste. Motivo pelo qual, um outro parâmetro a ser avaliado para determinar o desempenho na qualidade da energia elétrica produzida pela microturbina é a tensão.

Como no caso anterior, segundo referenciado em [40, 43], esta análise inclui a determinação dos valores da tensão máxima, mínima e média, juntamente com o desvio padrão dos dados registrados no dia do teste. Para a determinação destes valores podem ser utilizadas as seguintes equações:

$$V = \frac{\sum_{i=1}^{i=N} V_i}{N} \tag{11}$$

Onde:

V: Tensão média de saída (V);

V_i: Tensão para cada medição ao longo do teste (V);

N: Número total de medições ao longo do teste.

Similar ao caso anterior, segundo referenciado em [40], para o cálculo do desvio padrão da tensão, pode ser utilizada a seguinte equação:

$$Vstd = \pm \sqrt{\frac{\sum_{i=1}^{i=N} (V - V_i)^2}{N - 1}}$$
 (12)

Onde:

Vstd: Desvio padrão da voltagem;

V: Tensão média de saída (V);

V_i: Tensão para cada medição ao longo do teste (V);

N: Número total de medições ao longo do teste.

Segundo referenciado em [40, 43], permite-se à tensão uma tolerância de ±10 % da tensão nominal sem causar danos significantes na operação da maioria dos equipamentos. Divergências fora desta faixa podem ser quantificadas como elevações ou diminuições abruptas da tensão; segundo referenciado em [40], os resultados deste teste, em geral, deve mostrar:

- \triangleright número total de perturbações na tensão que excederem a faixa de ± 10 %.
- tensão máxima, mínima, média e desvio padrão das tensões que excederem ± 10 %.
- duração mínima e máxima de incidentes excedendo $\pm 10 \%$.

Sabe-se que todo sistema que transforma energia tem uma eficiência de transformação, motivo pelo qual, um outro ponto não especificado na bibliografia consultada, mas apresentado neste capítulo, é o cálculo da eficiência de conversão do sistema eletrônico de potência da microturbina Capstone modelo C30 (η_{SEP}).

Como pode se observar na Fig. 20, a potência de alta frequência gerada no gerador da microturbina é direcionada ao seu sistema eletrônico de potência; primeiramente ela passa por um retificador, onde é convertida em energia de corrente continua; para posteriormente passar por um inversor de frequência, onde

é convertida em potência da baixa frequência de acordo com as características específicas da rede elétrica pronta para o seu consumo.

Neste caso, para o cálculo da eficiência de conversão do sistema eletrônico de potência da microturbina, vão ser utilizados valores médios para ambos os tipos de potências. Segundo referenciado em [40, 43], o cálculo da potência média pode ser feito com a seguinte equação:

$$Po = \frac{\sum_{i=1}^{i=N} Po_i}{N}$$
 (13)

Onde:

Po: Potência elétrica média (W);

Po_i: Potência elétrica para cada medição ao longo do teste (W);

N: Número total de medições ao longo do teste.

Então, o cálculo da eficiência do sistema eletrônico de potência é realizado da seguinte forma:

$$\eta_{SEP} = \frac{\text{Potência Elétrica Média de Saída da Microturbina}}{\text{Potência de Saída Média do Gerador ao Sistema Eletrônico de Potência}}$$
 (14)

Outro ponto não mencionado na bibliografia consultada, e apresentado neste capítulo, é o referente à variação máxima das tensões registradas, em cada fase, durante o desenvolvimento do teste, o qual pode nos indicar a estabilidade das tensões geradas pela microturbina durante o teste; Segundo referenciado em [40], o cálculo da variação máxima das tensões pode ser feito com a seguinte equação:

$$Máximo = \frac{Valor \ médio \ no \ teste - Valor \ para \ cada \ medição}{Valor \ médio \ no \ teste} * 100 \ \ (15)$$

Cabe mencionar que os cálculos apresentados anteriormente foram realizados com os parâmetros medidos e registrados durante o funcionamento

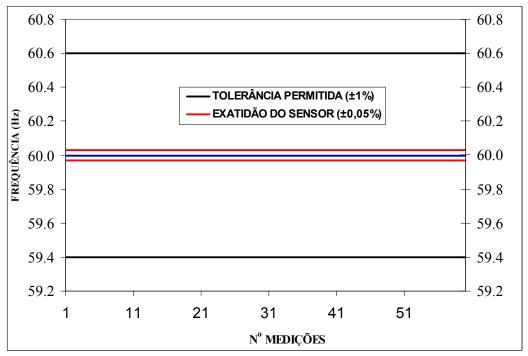
estável da microturbina, ou seja, não foram considerados dados medidos em regime transiente que ocorre durante o arranque e desligamento da microturbina.

4.2.2 Análise

Baseados nos dados do teste da microturbina e na metodologia apresentada no item 5.1, nesta parte mostra-se à avaliação dos parâmetros de desempenho na geração de energia elétrica da microturbina.

As frequências elétricas medidas (tensão e corrente) foram monitoradas continuamente durante o desenvolvimento do teste. Os valores registrados, mostrados na Tabela 14 (coluna E), foram analisados e apresentados na Fig. 45; com a utilização das equações (1) e (2), determinou-se a frequência média, frequência máxima, frequência mínima e o desvio padrão durante o desenvolvimento do teste. Estes resultados são apresentados na Tabela 16.

Tabela 16 - Resumo dos resultados de avaliação da freqüência elétrica durante o desenvolvimento do teste.


PARÂMETRO	FREQUÊNCIA (Hz)
Freqüência média	60,00
Freqüência máxima	60,00
Freqüência mínima	60,00
Desvio padrão	0,00

Pôde-se observar que, durante o desenvolvimento do teste, o valor registrado da freqüência elétrica é constante, o que significa que o sistema consegue manter uma continua sincronização com a rede elétrica.

Tomando em consideração o valor da exatidão do medidor de frequência elétrica mostrado na Tabela 15 ($\pm 0.05\%$ * 60 = ± 0.03 Hz), o valor da frequência elétrica do sistema pode variar na seguinte faixa:

$$59.97 \le f \le 60.03$$
 (Hz)

O que atende aos critérios de tolerância estabelecidos ($\pm 1\% * 60 = \pm 0.6$ Hz), conforme pode ser observados graficamente na Fig. 45.

Figura 45 - Tolerância permitida e faixa de variação dos valores registrados das freqüências elétricas durante o desenvolvimento do teste da microturbina Capstone.

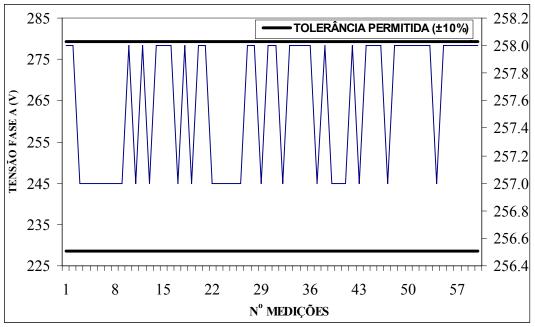
Da mesma forma que na freqüência, as tensões registradas durante o desenvolvimento do teste, mostrados na Tabela 14 (colunas L, M e N), foram analisadas e apresentadas graficamente nas Fig. 46, 47 e 48. Utilizando as equações (11) e (12), determinou-se o valor da tensão média, tensão máxima, tensão mínima e o desvio padrão, para cada fase, durante o período do teste; estes resultados são apresentados na Tabela 17.

Cabe destacar que a tensão nominal, da microturbina, em cada fase é de aproximadamente 254 VAC, sendo que estas tensões são referidas ao neutro, conforme referenciado em [41].

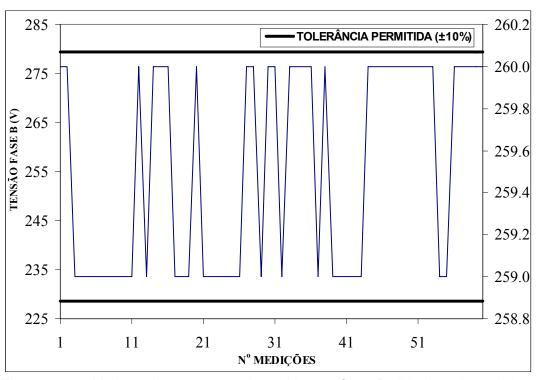
Tabela 17 - Resumo dos resultados de avaliação das tensões para cada fase durante o desenvolvimento do teste.

PARÂMETRO	TENSÃO FASE A (VAC)	TENSÃO FASE B (VAC)	TENSÃO FASE C (VAC)
Tensão média	257,6	259,5	257,8
Tensão máxima	258	260	258
Tensão mínima	257	259	257
Desvio padrão	0,50	0,50	0,39

Conforme mencionado no item 5.1, a tolerância de $\pm 10\%$ da tensão nominal é $\pm 25,4$ V, ou seja, a faixa na qual a tensão de cada fase pode variar é a seguinte:


$228,6 \le TENSÃO FASE A, B e C \le 279,4 (VAC)$

Com a utilização da equação (15) e da Tabela 14 (coluna L, M e N) pode-se calcular a máxima variação das tensões geradas pela microturbina para cada fase, as quais são apresentadas na Tabela 18.


Tabela 18 - Variação máxima dos valores registrados das tensões para cada fase durante o desenvolvimento do teste.

PARÂMETRO	TENSÃO	TENSÃO	TENSÃO
	FASE A	FASE B	FASE C
Variação máxima da tensão	0,2	0,2	0,3

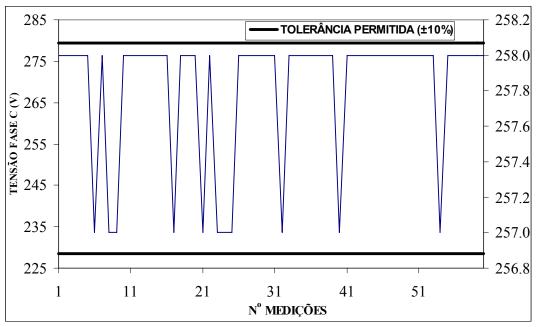

Nas Fig. 46, 47 e 48 são apresentados graficamente os valores das tensões para cada fase (A, B e C) medidas e registradas durante o desenvolvimento do teste.

Figura 46 - Valores das tensões da saída na fase A (V) da microturbina Capstone durante o desenvolvimento do teste.

Figura 47 - Valores das tensões da saída na fase B (V) da microturbina Capstone durante o desenvolvimento do teste.

Figura 48 - Valores das tensões da saída na fase C (V) da microturbina Capstone durante o desenvolvimento do teste.

Pôde-se observar nas Fig. 46, 47 e 48, e na Tabela 18, que os valores das tensões medidas durante o desenvolvimento do teste encontram-se dentro da faixa de variação permitida para as tensões (±10%); o que quer dizer que o sistema consegue manter uma continua sincronização, em tensão, com a rede.

Na Tabela 19 são apresentados os valores da potência média que o gerador fornece ao sistema eletrônico de potência e a potência média de saída da microturbina, calculados com a equação (13). O valor da eficiência de conversão do sistema eletrônico de potência da microturbina (η_{sep}), que também é apresentado nesta tabela, foi calculada com a equação (14).

Tabela 19 - Valores médios das potências no cálculo da eficiência do sistema eletrônico de potência da microturbina.

GRANDEZA	UNIDADE	VALOR
Potência de saída do gerador da microturbina fornecido ao sistema eletrônico de potência	W	29684
Potência elétrica de saída da microturbina	W	25221
Eficiência de conversão do sistema eletrônico de potência da $\text{microturbina} \ (\ \eta_{\text{sep}} \)$	%	85

Pode-se observar na Tabela 19 o valor da eficiência de conversão do sistema eletrônico de potência da microturbina é de 85%.

Uma outra forma de conhecer a potência média total gerada pela microturbina é calculando-a com o somatório das potências médias geradas em cada fase, a qual é mostrada na Tabela 20. Considera-se, nesta parte, que a potência total e as potências para cada fase foram medidas com um sensor do mesmo tipo (mesma exatidão).

Tabela 20 - Cálculo dos valores da potência média gerada pela microturbina baseado nas potências médias em cada fase.

GRANDEZA	UNIDADE	VALOR
Potência média de saída na Fase A	W	8451
Potência média de saída na Fase B	W	8421
Potência média de saída na Fase C	W	8368
Somatório das potências médias de saída em cada fase	W	25241
Potência média total medida na saída da microturbina	W	25221

Uma análise da Tabela 20 indica que aparentemente existe uma discordância entre o valor da potência média medida na saída da microturbina com o somatório das potências médias em cada fase. Porém, se considerarmos o valor típico da exatidão do medidor de potência da microturbina indicado na Tabela 15 (± 2,0% do fundo de escala), que é 560 W, logo o valor da potência média total medida na microturbina, pode variar na seguinte faixa:

$$24661 \le 25221 \le 25781$$
 (W)

Portanto, o valor da potência total calculada está dentro da exatidão de medição.

Os resultados encontrados estão de acordo com os valores especificados pelo fabricante.