2 Conceitos Preliminares

Neste capítulo introduziremos conceitos geométricos usados para descrever uma coleção finita de bolas, com o objetivo de desenvolver ferramentas e dar suporte para a realização deste trabalho.

2.1 Estruturas Fundamentais

Definição 2.1 (bola^d) Seja |x, z| a distância Euclidiana entre dois pontos $x, z \in \mathbb{R}^d$. Um subconjunto $\mathcal{B} \subset \mathbb{R}^d$ é uma bola^d se existe um ponto $z \in \mathbb{R}^d$ e um real r > 0 tal que $\mathcal{B} = \{x \in \mathbb{R}^d \mid |x, z| \leq r\}$. z é chamado de centro e r de raio de b.

Uma *d*-esfera é o bordo de (d + 1)-bola. Note que uma 0-bola é um ponto, uma 1-bola é um segmento de reta e 2-bola é um disco. Uma 0-esfera é um par de pontos, 1-esfera é um círculo e 2-esfera é o que chamamos, em \mathbb{R}^3 , de esfera, vide (10) e Figura 2.1.

Figura 2.1: 2-Esfera (corpo oco)/ 3-Bola (corpo maciço).

Definição 2.2 (Simplexo) Um p-simplexo é o fecho convexo de p+1 pontos $v_0, ..., v_p$, em \mathbb{R}^d , quando os vetores $v_1 - v_0, ..., v_p - v_0$ são linearmente independentes.

Note que um 0-simplexo é um vértice, um 1-simplexo é uma aresta, um 2-simplexo é um triângulo, um 3-simplexo é um tetraedro e um 4-simplexo é um *pentachoron* (Figura 2.2).

Figura 2.2: Exemplos de simplexos.

2.2 União de Bolas

Um objeto composto de bolas com, possivelmente, diferentes raios pode ser definido como uma *união de bolas*. O estudo de união de bolas possui aplicações em diversas áreas da Matemática. Em Geometria Computacional, por exemplo, muitas vezes é desejado que um objeto, em \mathbb{R}^3 , seja aproximado por um número finito de bolas. Descreveremos abaixo alguns dos resultados que podem ser encontrados em (13) com mais detalhes.

Seja \mathcal{B} um conjunto de bolas em \mathbb{R}^d e seja \mathcal{U} sua união, vide Figura 2.3. Assumiremos que essas bolas estão em posição geral: no plano isto significa que três centros não estarão em uma mesma reta e quatro não estarão no mesmo círculo; generalizando para o caso *n*-dimensional, n + 1 centros não estarão no mesmo hiperplano e n + 2 não poderão estar na mesma hiperesfera.

Figura 2.3: Conjunto de bolas \mathcal{B} e união \mathcal{U} em \mathbb{R}^2 .

Definição 2.3 (Escrita Mínima) Seja \mathcal{U} uma união de bolas. Dizemos que $\mathcal{U} = \bigcup B_i$, $1 \leq i \leq k$ é uma escrita mínima de \mathcal{U} se \mathcal{U} não pode ser escrita como a união de um subconjunto dos B'_i s.

É importante observar que a estrutura de uma união de bolas não é necessariamente mínima. Observe na Figura 2.4 que algumas bolas são supérfluas.

Figura 2.4: Escrita Não Mínima Escrita Mínima.

Definição 2.4 (k-face) Uma k-face de \mathcal{U} é um subconjunto da fronteira $\partial \mathcal{U}$ contido na interseção de um subconjunto de \mathcal{B} de cardinalidade (d - k).

Definição 2.5 (Vértices) Os vértices de \mathcal{U} são os pontos formados pelas 0faces de \mathcal{U} . Denominaremos \mathcal{V} como o conjunto dos vértices de \mathcal{U} .

A união de bolas e seus vértices são exibidos na Figura 2.5.

Figura 2.5: Vértices do bordo da união \mathcal{U} .

2.3 Triangulação de Delaunay e Diagrama de Voronoi

Apresentaremos os conceitos da triangulação de Delaunay e do seu dual, o diagrama de Voronoi. O diagrama de Voronoi divide o espaço em células poliédricas convexas e cada uma delas é formada pelos pontos mais próximos a um bola $b \in \mathcal{B}$. Essas estruturas permitem calcular eficientemente a geometria, a topologia e o eixo medial de uma união de bolas \mathcal{U} . Para mais detalhes, vide (17).

2.3.1 Diagrama de Voronoi

Definimos diagrama de Voronoi de um ponto M_i em uma coleção finita $M \subseteq \mathbb{R}^d$ como o conjunto de pontos de \mathbb{R}^3 mais próximos a M_i do que de qualquer outro ponto de M:

$$Vor(M_i) = \left\{ x \in \mathbb{R}^d \mid |x, M_i| \le |x, M_j|, \text{ para todo } j \ne i \right\}$$

onde |,| denota a distância Euclidiana em \mathbb{R}^d . O conjunto de todos os $Vor(M_i)$'s formam uma partição de \mathbb{R}^d . Essa decomposição é chamada diagrama de Voronoi de M e é denotada por $Vor(M_i)$.

2.3.2 Triangulação de Delaunay

A triangulação de Delaunay é classicamente definida como dual do diagrama de Voronoi. Assumindo que o conjunto de pontos M está em posição geral, existe uma única triangulação do conjunto M construída da seguinte forma: se duas regiões de Voronoi $Vor(M_i)$ e $Vor(M_j)$ são vizinhas no diagrama de Voronoi, então essas regiões são conectadas por uma aresta, que definem os triângulos de Delaunay com vértices nos pontos M_i . A triangulação de Delaunay é um tipo especial de triangulação que possui propriedades interessantes.

Definição 2.6 (Triangulação de Delaunay) Dado um conjunto $M \subseteq \mathbb{R}^d$ em posição geral. A Triangulação de Delaunay DT(S) consiste em:

- (i) Todos os d-simplexos σ_T , com $T \subseteq M$ tais que o círculo circunscrito a T não contém nenhum ponto de M e
- (ii) Todos os k simplexos (k < d) que são faces de algum outro simplexo em DT(S).

A triangulação de Delaunay, em \mathbb{R}^3 , consiste de tetraedros de Delaunay e de seus triângulos, arestas e vértices incidentes. Na Figura 2.6 temos um exemplo de diagrama de Voronoi e diagrama de Delaunay, em \mathbb{R}^2 .

Figura 2.6: Triangulação de Delaunay e Diagrama de Voronoi.

2.4 Triangulação Regular e Diagrama de Potência

O diagrama de Potência $Pow(\mathcal{B})$ de um conjunto de bolas \mathcal{B} é uma generalização do diagrama de Voronoi para pontos com peso, dividindo o espaço em células poliédricas convexas, onde cada uma delas divide o espaço em pontos "mais próximos" de um conjunto de bolas $b \in \mathcal{B}$. Para definições e propriedades detalhadas, pode-se citar (3), (10) e (17). Assim como o diagrama de Voronoi tem como dual a triangulação de Delaunay, $Pow(\mathcal{B})$ tem como dual a triangulação regular, consistindo de simplexos que conectam os centros de todo conjunto de bolas formando uma face de $Pow(\mathcal{B})$.

Restringindo a subdivisão do espaço definido por $Pow(\mathcal{B})$ à união \mathcal{U} teremos uma subdivisão de \mathcal{U} , em \mathbb{R}^3 , em células poliédricas. O subconjunto das faces do $Pow(\mathcal{B})$ na subdivisão de \mathcal{U} corresponde ao subconjunto de simplexos que formam o complexo de \mathcal{B} . Este complexo (ou seja, a união de todos os simplexos) é denominado α -shape \mathcal{S} .

2.4.1 Diagrama de Potência

Potência (de um ponto a um ponto com peso)

Dado um ponto com peso P = (p', w), onde $p' \in \mathbb{R}^d$ é dito posição de P, $w \in \mathbb{R}$ é dito peso de P e o raio $r = \sqrt{w}$. A *potência* π de um ponto $x \in \mathbb{R}^d$ a P é definido como

$$\pi_P(x) = |p', x|^2 - w$$

Definição 2.7 (Potência entre dois pontos com peso) Seja $S \subseteq \mathbb{R}^d \times \mathbb{R}$. Um conjunto de pontos com peso denotado por $p = (p', w_p)$, com $p' \in \mathbb{R}^d$ como posição e $w_p \in \mathbb{R}$ o peso. Para dois pontos com peso, $p = (p', w_p) e x = (x', w_x)$, definimos

$$\pi(p,x) = |p',x'|^2 - w_p - w_x$$

A Figura 2.7 mostra a potência entre dois pontos com peso.

Figura 2.7: Potência de p em relação a x.

Definição 2.8 (Ortogonalidade) Dois pontos com peso $p \ e \ x \ são$ ditos ortogonais se $\pi(p, x) = 0$.

Diagrama de Potência ou Diagrama de Laguerre

Dado um conjunto $S = p_1, ..., p_n$ de pontos com peso, o *diagrama de Potência* é a divisão do espaço em regiões convexas, onde o *i*-ésimo pedaço é do conjunto de pontos mais próximos de um vértice p_i , na distância de potência. Ou seja,

 $W_i = \left\{ p \in \mathbb{R}^d \mid \pi(pi, p) \le \pi(pj, p), \text{ para todo } j \neq i \right\}$

O conjunto de todos os W'_is formam uma partição de \mathbb{R}^d .

2.4.2 Triangulação Regular

A triangulação regular é dual ao diagrama de Potência, assim como a triangulação de Delaunay é dual ao diagrama de Voronoi. Os vértices da triangulação são conectados se, e somente se, as células de Voronoi com peso correspondentes tem uma face comum.

Definição 2.9 (Simplexo Regular) Seja T um conjunto de três bolas. O simplexo σ_T é dito regular se existe uma bola X tal que $\pi(X, p_i) = 0, \forall p_i \in T$ $e \pi(X, p_j) > 0, \forall p_j \in S - T$

Definição 2.10 (Triangulação Regular) A coleção de todos os d-simplexos regulares define a Triangulação Regular de S, denotada por $\mathcal{R}(\mathcal{S})$.

A Figura 2.8 nos mostra exemplos em 2D.

Figura 2.8: Triangulação Regular e Diagrama de Potência.

2.5 Alpha-Shape

Assuma que, dado um conjunto de pontos, deseja-se descrever a figura formada por esses pontos. Essa é uma noção vaga e teremos possivelmente várias interpretações, o α -shape S será uma delas. A Figura 2.9 ilustra o α shape de um conjunto de pontos para diferentes valores de α . Para maiores detalhes sobre este assunto são sugeridos (8), (16), (11) e também (9).

Figura 2.9: α -shapes para diferentes valores de α em \mathbb{R}^2 .

2.5.1 Alpha-Shape de Pontos sem Peso

Para $\alpha > 0$, o α -shape de S é definido por conter uma aresta entre pontos $p, q \in S$ se existir um disco de raio α sem pontos de S em seu interior onde p e q estarem no bordo desse disco. A definição de α -shape é baseada nas triangulações de Delaunay e regular. O α -shape básico é sempre parte da triangulação de Delaunay e α -shape com peso é parte da triangulação regular.

Para α suficientemente grande, obtemos o fecho convexo de S. Quanto menor o valor de α , mais fina é a resolução da forma de S. Note que α não

contém arestas se α é menor do que a distância dos pares mais próximos de S, vide Figura 2.10.

Figura 2.10: Triangulação de Delaunay e α -shape.

Definição 2.11 (Bola Vazia / Simplexo α -exposto) Para $0 < \alpha < \infty$, seja α -bola uma bola aberta de raio α e S um conjunto de pontos. Uma α -bola b é vazia se $b \cap S = \emptyset$. Além disso, um k-simplexo σ_T é dito α -exposto se existe uma α -bola b vazia com $T = \partial b \cap S$.

Observe que, para d = 3, ∂b é (a superfície de) uma esfera. A Figura 2.11 é um exemplo de simplexo α -exposto em \mathbb{R}^2 .

Figura 2.11: Aresta α -exposto/ Simplexo não α -exposto.

Definição 2.12 (\alpha-complexo) Para um conjunto de pontos $S \subset \mathbb{R}^d$ e $0 < \alpha < \infty$, o α -complexo $C_{\alpha}(S)$ é um subcomplexo simplicial de DT(S). Um simplexo σ_T de DT(S) está em C_{α} :

(i) se o círculo de menor raio r que passa pelos vértices de σ_T não contém nenhum outro ponto de S - T e é tal que $r < \alpha$ ou

(ii) se σ_T é face de outro simplexo em C_{α} .

Definição 2.13 (α **-shape)** $O \alpha$ -shape S de um conjunto de pontos $S \subseteq \mathbb{R}^d$ consiste na realização geométrica do complexo simplicial C_{α} .

Teorema 2.14 (Bordo ∂S) *O bordo* ∂S *do* α -shape S *de um conjunto de pontos S consiste de todos os k-simplexos (* $0 \le k < d$ *) de S que são* α -expostos.

A Figura 2.12 mostra três formas do mesmo conjunto de pontos. Na esquerda a triangulação de Delaunay, no meio o bordo do α -shape e na direita o α -complexo.

Figura 2.12: $DT(S) / \partial S / C_{\alpha}$.

2.5.2 Alpha-Shape de Pontos com Peso

O conceito de α -shape também pode ser generalizado para um conjunto de pontos com peso. Como referência, sugerimos (9).

Definição 2.15 (Simplexo α -exposto) Considere um conjunto S de pontos com peso. Um k-simplexo σ_T (k < d) é dito α -exposto se existe um ponto com peso $X = (x, \alpha)$ tal que $\pi(p, X) = 0$, $\forall p \in T$ e $\pi(q, X) > 0$, $\forall q \in S - T$.

Definição 2.16 (\alpha-complexo) Para um conjunto de pontos $S \subset \mathbb{R}^d$ e $0 \leq \alpha \leq \infty$, o α -complexo $C_{\alpha}(S)$ de S é um subcomplexo simplicial de $\mathcal{R}(S)$.

Seja σ_T um simplexo de $\mathcal{R}(\mathcal{S})$ e X = (x, w) o círculo de menor peso ortogonal aos círculos cujos centros são os vértices de σ_T . σ_T está em está em $\mathcal{C}_{\alpha}(\mathcal{S})$ se:

- (i) $w^2 < \alpha \ e \ \pi(p, X) > 0, \ \forall S T \ ou$
- (ii) σ_T é face de outro simplexo em $\mathcal{R}(\mathcal{S})$.

Definição 2.17 (α **-shape)** $O \alpha$ -shape S_{α} de um conjunto de pontos com peso S consiste na realização geométrica do complexo simplicial C_{α} .

Teorema 2.18 (Bordo ∂S) *O bordo* ∂S *do* α -shape S *de um conjunto de pontos com peso* S *consiste de todos os* k-simplexos ($0 \le k < d$) *de* S *que são* α -expostos.

Definição 2.19 (Face Singular/Componente Regular) Uma face no bordo ∂S do α -shape é singular se não é uma face de um simplexo ddimensional no α -complexo $C_{\alpha}(S)$. O conjunto das componentes conexas que ficam se removermos as faces singulares do α -shape S são denominadas componentes regulares.

Em \mathbb{R}^3 , uma componente regular \mathcal{C} do α -shape \mathcal{S} é um sólido que não precisa, necessariamente, ter todas as arestas congruentes. Note que as componentes regulares são as componentes de dimensão mais alta do α -shape.

Figura 2.13: Faces Singulares e Componentes Regulares de \mathcal{S} .

2.5.3 0-Shape

Suponha que a união de bolas \mathcal{U} está na sua escrita mínima. Um simplexo σ_T da triangulação regular está no 0-shape se, e somente se, as bolas correspondentes se interceptam.

De fato, se σ_T está no 0-shape, existe um ponto X que define a mesma potência negativa em relação às bolas cujos centros determinam σ_T . Assim, X é interior à todas as bolas que definem σ_T , o que significa que X é um ponto comum às bolas que definem σ_T . Reciprocamente, se as bolas cujos centros definem σ_T se interceptam, o ponto X que realiza a mesma potência em relação às bolas de σ_T deve estar no interior de todas as bolas correspondentes. Assim, a potência de X em relação às bolas é negativa e o simplexo σ_T está no 0-shape. A Figura 2.14 é um exemplo de 0-shape.

Poderíamos fazer o cálculo das interseções externas \mathcal{V} sem utilisar o 0shape, porém ficaria computacionalmente mais lento. De fato, essas interseções poderiam ser calculadas intersectando as bolas duas a duas, e depois testar para cada interseção de duas bolas se ela esta contida numa terceira bola. Isso seria um algoritmo de ordem de complexidade pelo menos $O(n^2)$, onde n é o número de bolas da união. O 0-shape por sua parte tem complexidade média $O(n \cdot \log(n))$.

Figura 2.14: 0-shape.