2.1. Introdução

Apresentam-se nesse capítulo as equações fundamentais para descrição e formulação determinística dos problemas de acoplamento fluido mecânico tratados nesse trabalho. Inicialmente, descrevem-se algumas hipóteses assumidas para definição do modelo físico e das equações governantes dos problemas. Posteriormente, as equações governantes dos problemas são descritas sob a formulação de elementos finitos e algumas propriedades sobre a discretização dessas equações no domínio do tempo são apresentadas.

2.2. Modelo físico

Inicia-se a definição do modelo físico com a exposição dos conceitos de média volumétrica e média volumétrica intrínseca. Esses conceitos mostram-se úteis dada à dificuldade de descrição dos problemas no nível microscópico. Um volume elementar representativo (*VER*) de volume total $V = \sum_{\pi} V_{\pi}$ é utilizado para definição de média volumétrica. A Figura 2.1 representa um *VER*, sendo V_{π} o volume ocupado por uma fase π . A média volumétrica de uma grandeza χ para uma fase π é dada por (2.1)

$$\left\langle \chi_{\pi} \right\rangle = \frac{1}{V} \int_{V} \chi_{\pi} dV \tag{2.1}$$

E a média volumétrica intrínseca dada por (2.2)

$$\left\langle \chi_{\pi} \right\rangle^{\pi} = \frac{1}{V_{\pi}} \int_{V_{\pi}} \chi_{\pi} dV = \frac{V}{V_{\pi}} \left\langle \chi_{\pi} \right\rangle$$
(2.2)

Figura 2.1 Volume elementar representativo

De acordo com Whitaker (1968) *apud* Lewis e Schrefler (1998) os resultados obtidos com o processo da média volumétrica apresentam-se válidos quando a relação (2.3) é satisfeita

$$d \ll l \ll L \tag{2.3}$$

Sendo L um comprimento característico associado ao meio poroso numa escala macroscópica, d um comprimento associado aos poros e l o comprimento característico do *VER*. Com essa relação satisfeita, espera-se também, que a média volumétrica seja independente do tempo e da posição no meio poroso.

De maneira geral, os vazios do meio poroso são preenchidos com fluidos e uma mistura de ar (vapor d'água, gás, etc.). Considerando-se a hipótese do meio poroso estar totalmente preenchido por duas fases de fluido (fase molhante w e fase não molhante nw), o grau de saturação de uma fase π é dado pela razão entre o volume de poros ocupados pelo fluido π , V_{π} e o volume total de poros de um volume elementar representativo, V_f .

$$S_{\pi} = \frac{V_{\pi}}{V_f} \tag{2.4}$$

Sendo $V_f = V_w + V_{nw}$. Dessa maneira $S_w + S_{nw} = 1$. Sendo S_w o grau de saturação da fase molhante e S_{nw} o grau de saturação da fase não molhante.

A porosidade do meio é definida pela razão entre o volume total de poros e o volume total do *VER*.

$$\phi = \frac{V_f}{V} \tag{2.5}$$

Prossegue-se a definição do modelo físico pela descrição das tensões. Assume-se: tração positiva, na fase sólida σ_s e compressão positiva para poro pressão na fase fluida σ_f . Aplicando-se o conceito de média volumétrica intrínseca podem ser obtidas as tensões totais médias, ou seja

$$\langle \boldsymbol{\sigma} \rangle = \frac{1}{V} \int_{V} \boldsymbol{\sigma} dV = \frac{1}{V} \left(\int_{V_{s}} \boldsymbol{\sigma} dV + \int_{V_{f}} \boldsymbol{\sigma} dV \right)$$
$$\langle \boldsymbol{\sigma} \rangle = \frac{V_{s}}{V} \langle \boldsymbol{\sigma}_{s} \rangle^{s} + \frac{V_{f}}{V} \left(\frac{V_{nw}}{V_{f}} \langle \boldsymbol{\sigma}_{nw} \rangle^{nw} + \frac{V_{w}}{V_{f}} \langle \boldsymbol{\sigma}_{w} \rangle^{w} \right)$$
$$\langle \boldsymbol{\sigma} \rangle = (1 - \phi) \langle \boldsymbol{\sigma}_{s} \rangle^{s} + \phi \left(S_{nw} \langle \boldsymbol{\sigma}_{nw} \rangle^{nw} + S_{w} \langle \boldsymbol{\sigma}_{w} \rangle^{w} \right)$$
(2.6)

σ_π representa o tensor de tensões médias da fase π. Para a fase de fluido o tensor de tensões é expresso de acordo com (2.7)

$$\boldsymbol{\sigma}_{\pi} = \boldsymbol{\tau}_{\pi} - \mathbf{m} \boldsymbol{p}_{\pi} \tag{2.7}$$

Onde τ_{π} representa as tensões cisalhantes e **m** é um vetor contendo valores iguais a 1 para tensões normais e 0 para os componentes de tensão cisalhante.

$$\mathbf{m} = \{1 \ 1 \ 1 \ 0 \ 0 \ 0\}^T \tag{2.8}$$

Negligenciando a parcela referente às tensões de cisalhamento para fluidos, podese escrever (2.9)

$$\langle \boldsymbol{\sigma} \rangle = (1 - \phi) \langle \boldsymbol{\sigma}_s \rangle^s + \phi \mathbf{m} \left(S_{nw} \langle p_{nw} \rangle^{nw} + S_w \langle p_w \rangle^w \right)$$
 (2.9)

Ou ainda:

$$\langle \boldsymbol{\sigma} \rangle = (1 - \boldsymbol{\phi}) \langle \boldsymbol{\sigma}_{s} \rangle^{s} + \boldsymbol{\phi} \mathbf{m} \langle p^{f} \rangle^{f}$$

$$\langle p^{f} \rangle^{f} = S_{nw} \langle p_{nw} \rangle^{nw} + S_{w} \langle p_{w} \rangle^{w}$$

$$(2.10)$$

Onde $\langle p^f \rangle^f$ é a poro pressão média proveniente das fases molhante e não molhante.

Verifica-se que o tensor das tensões é dividido em duas componentes: uma que representa o efeito das poro pressões e outra que deforma o esqueleto sólido, tensões efetivas σ' .

$$\langle \mathbf{\sigma}' \rangle = (1 - \phi) \langle \mathbf{\sigma}_s \rangle^s + \mathbf{m} \langle p^f \rangle^f$$
 (2.11)

Omitindo o símbolo $\langle . \rangle$ e representando p^f apenas por p pode-se descrever o tensor de tensões totais por (2.12), sendo essa representação condizente com a definição de Terzaghi.

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}' - \mathbf{m}p \tag{2.12}$$

As pressões das fases molhante e não molhante são relacionadas pela pressão capilar p_c .

$$p_c = p_{nw} - p_w \tag{2.13}$$

A pressão capilar para um meio isotérmico é função do grau de saturação da fase molhante.

Após a descrição do modelo físico assumido para representação do meio poroso, podem ser estabelecidas as equações governantes dos problemas de acoplamento fluido mecânico, tratados nesse trabalho.

2.3. Equação de equilíbrio

Apresentam-se neste item as equações que governam o comportamento mecânico em meios porosos deformáveis.

A equação de equilíbrio é determinada utilizando-se o princípio dos trabalhos virtuais para problemas quase estáticos, equação (2.14). Esta equação relaciona as velocidades das grandezas estáticas reais, como a tensão total $\dot{\sigma}$ as forças de corpo $\dot{\mathbf{b}}$ e as forças de superfície $\dot{\mathbf{t}}$ com as grandezas cinemáticas virtuais como as deformações virtuais $\delta \varepsilon$ e os deslocamentos virtuais $\delta \mathbf{u}$.

$$\int_{\Omega} \delta \boldsymbol{\varepsilon}^{T} \, \boldsymbol{\sigma} \, d\Omega - \int_{\Omega} \delta \boldsymbol{u}^{T} \, \boldsymbol{b} \, d\Omega - \int_{\Gamma} \delta \boldsymbol{u}^{T} \, \boldsymbol{t} \, d\Gamma = 0$$
(2.14)

As velocidades das tensões totais podem ser expressas em termos das velocidades das tensões efetivas e das velocidades das poro pressões. Essa relação é demonstrada na equação (2.15).

$$\mathbf{\dot{\sigma}} = \mathbf{\sigma}' - \mathbf{m} \, p \tag{2.15}$$

Onde: σ' é a velocidade da tensão efetiva, p a velocidade das poro pressões.

A descrição da relação constitutiva, em termos de velocidades, pode ser dada pela equação (2.16)

$$\mathbf{\sigma}' = \mathbf{D}_T (\mathbf{\varepsilon} - \mathbf{\varepsilon}_c - \mathbf{\varepsilon}_p - \mathbf{\varepsilon}_o) + \mathbf{\sigma}'_0$$
(2.16)

Na equação (2.16), $\hat{\mathbf{\epsilon}}$ representa à velocidade de deformação total do esqueleto, $\hat{\mathbf{\epsilon}}_c$ a velocidade das deformações devido à fluência (expressa por uma função de fluência \mathbf{c} , dependente do nível e da trajetória de tensões), $\hat{\mathbf{\epsilon}}_p$ a velocidade das deformações volumétricas (a qual considera a deformabilidade dos grãos), $\hat{\mathbf{\epsilon}}_o$ que representa outras velocidades de deformação, como as provocadas por fenômenos térmicos e químicos e por fim $\hat{\mathbf{\sigma}}'_0$ que representa a velocidade da tensão efetiva inicial. A matriz \mathbf{D}_T é dependente do nível e da trajetória de tensões e vários modelos constitutivos podem ser utilizados para defini-la.

$$\dot{\boldsymbol{\varepsilon}}_{c} = \boldsymbol{c}(\boldsymbol{\sigma}')dt$$

$$\dot{\boldsymbol{\varepsilon}}_{p} = -\mathbf{m}\frac{\dot{p}}{3K_{s}}$$
(2.17)

 $\mathbf{D}_T = \mathbf{D}_T(\mathbf{\sigma}', \boldsymbol{\varepsilon}, \boldsymbol{\varepsilon})$

Em (2.17), K_s representa o módulo volumétrico dos grãos.

Omitindo, por simplificação, as parcelas $\hat{\boldsymbol{\epsilon}}_c = \hat{\boldsymbol{\epsilon}}_o$ da equação (2.16), a mesma pode ser escrita como:

$$\dot{\boldsymbol{\sigma}}' = \boldsymbol{D}_T \, \boldsymbol{\hat{\epsilon}} + \, \boldsymbol{D}_T \, \boldsymbol{m} \, \frac{p}{3K_s} + \, \boldsymbol{\hat{\sigma}'}_0 \tag{2.18}$$

Consequentemente a equação (2.15) pode ser escrita como:

$$\dot{\boldsymbol{\sigma}} = \boldsymbol{D}_T \, \boldsymbol{\hat{\epsilon}} + \, \boldsymbol{D}_T \, \boldsymbol{m} \, \frac{p}{3K_e} + \, \boldsymbol{\hat{\sigma}'}_0 - \boldsymbol{m} \, \boldsymbol{\hat{p}}$$
(2.19)

$$\dot{\mathbf{\sigma}} = \dot{\mathbf{\sigma}}^{\prime\prime} + \mathbf{D}_T \mathbf{m} \frac{\dot{p}}{3K_s} - \mathbf{m} \dot{p}$$
(2.20)

Onde $\mathbf{\sigma}'' = \mathbf{D}_T \mathbf{\epsilon} + \mathbf{\sigma}'_0$ representa a velocidade da tensão responsável por toda deformação da fase sólida.

Considerando-se a hipótese de linearidade geométrica pode-se descrever a relação entre velocidades de deslocamentos e velocidades de deformações infinitesimais como a equação (2.21).

$$\overset{\bullet}{\varepsilon}_{ij} = \frac{1}{2} \begin{pmatrix} \bullet & \bullet \\ u_{i,j} + u_{j,i} \end{pmatrix}$$
(2.21)

Com as definições apresentadas reescreve-se a equação (2.14) da seguinte maneira:

$$\int_{\Omega} \delta \boldsymbol{\varepsilon}^{T} \mathbf{D}_{T} \, \boldsymbol{\varepsilon} \, d\Omega + \int_{\Omega} \delta \boldsymbol{\varepsilon}^{T} \mathbf{D}_{T} \mathbf{m} \, \boldsymbol{p} \frac{1}{3K_{s}} d\Omega + \int_{\Omega} \delta \boldsymbol{\varepsilon}^{T} \, \boldsymbol{\sigma}'_{0} \, d\Omega$$

$$- \int_{\Omega} \delta \boldsymbol{\varepsilon}^{T} \mathbf{m} \, \boldsymbol{p} \, d\Omega - \int_{\Omega} \delta \mathbf{u}^{T} \, \boldsymbol{b} \, d\Omega - \int_{\Gamma} \delta \mathbf{u}^{T} \, \boldsymbol{t} \, d\Gamma = 0$$
(2.22)

2.4. Equação de fluxo

Inicia-se esse item do trabalho com a descrição da equação de fluxo para o caso trifásico, sendo posteriormente apresentadas as equações para os casos particulares de fluxo bifásico e monofásico.

2.4.1. Fluxo trifásico

Descrevem-se neste item as equações que governam o fluxo trifásico em meios porosos.

Em um meio poroso, o fluxo de fluido deve satisfazer a conservação de massa de fluido. Para efetuar o balanço de massa de fluido, toma-se como volume de controle um cubo elementar constituído de material poroso, Figura 2.2

Figura 2.2 Volume de controle para balanço de massa do fluido.

Tomando-se inicialmente o fluxo na direção d_y através da face $d_x d_z$, temse como fluxo de massa de fluido, $(\rho q_y)_1 d_x d_z$ e $(\rho q_y)_2 d_x d_z$. Sendo ρ e qdensidade do fluido e vazão, respectivamente. Considerando-se que (ρq_y) seja uma função contínua e diferenciável, pode-se escrever

$$(\rho q_y)_2 = (\rho q_y)_1 + \frac{\partial (\rho q_y)}{\partial y} d_y$$
(2.23)

Dessa forma, o fluxo na direção *y* gera uma diminuição na massa de fluido igual a:

$$(\rho q_y)_2 - (\rho q_y)_1 = \frac{\partial(\rho q_y)}{\partial y} d_y$$
(2.24)

Adotando-se o mesmo procedimento para as demais direções e fazendo-se o somatório das três parcelas resultantes, obtém-se o balanço de massa de fluido devido o fluxo, equação (2.25)

$$\left(\frac{\partial(\rho q_x)}{\partial x} + \frac{\partial(\rho q_y)}{\partial y} + \frac{\partial(\rho q_z)}{\partial z}\right) d_x d_y d_z = \nabla^T(\rho q) d_x d_y d_z$$
(2.25)

Podendo-se então, representar o balanço de massa de fluido no meio poroso, equação da continuidade, pela equação (2.26)

$$\nabla^{T}(\rho q)d_{x}d_{y}d_{z} + \frac{d}{dt}(m_{\pi} d_{x}d_{y}d_{z}) = 0$$
(2.26)

$$\nabla^T(\rho q) + \overset{\bullet}{m_\pi} = 0$$

Onde m_{π} representa o incremento de massa de fluido numa parcela infinitesimal do meio poroso por unidade de tempo.

Tomando-se a equação de Darcy para representar o fluxo de fluido, pode-se de uma forma geral expressar a equação da continuidade por

$$-\nabla^{T}[T_{m}\nabla(p_{\pi}+\rho_{\pi}gh)] + \frac{\phi}{B_{\pi}}\frac{\partial S_{\pi}}{\partial t} + \phi S_{\pi}\frac{\partial}{\partial t}\left(\frac{1}{B_{\pi}}\right) + \phi\frac{\partial}{\partial t}\left(\frac{R_{s\pi}S_{\pi}}{B_{\pi}}\right) + \lambda_{f}$$

$$\left[\left(\mathbf{m}^{T}-\frac{1}{3K_{s}}\mathbf{m}^{T}\mathbf{D}_{T}\right)\mathbf{\hat{\epsilon}} + \left(\frac{(1-\phi)}{K_{s}} - \frac{1}{9K_{s}^{2}}\mathbf{m}^{T}\mathbf{D}_{T}\mathbf{m}\right)\mathbf{\hat{p}}\right] = 0$$
(2.27)

Onde:

$$T_{m} = \mathbf{k} \left(\frac{k_{r\pi}}{\mu_{\pi} B_{\pi}} + R_{s\pi} \frac{k_{r\pi}}{\mu_{\pi} B_{\pi}} \right)$$

$$\lambda_{f} = \frac{S_{\pi}}{B_{\pi}} + \frac{R_{s\pi} S_{\pi}}{B_{\pi}}$$
(2.28)

Sendo **k** a matriz de permeabilidade intrínseca do meio poroso, *p* a poro pressão como descrito em (2.10), ϕ a porosidade do meio, *g* a aceleração da gravidade, *h* a carga de elevação, $k_{r\pi}$ a permeabilidade relativa, μ a viscosidade dinâmica, *S* o grau de saturação, *B* o fator de variação de volume, $R_{s\pi}$ o fator de dissolução de gás no líquido, todos referentes à fase π e ∇ o operador de derivação,

$$\nabla = \left\{ \frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z} \right\}^T.$$

Cabe salientar que a permeabilidade relativa de cada fase é função da pressão capilar que por sua vez é função do grau de saturação do meio. Entretanto, para simplificação da notação da formulação, a permeabilidade relativa de cada fase será representada apenas por $k_{r\pi}$.

O fator de variação de volume *B* descreve a razão entre o volume da fase π medido nas condições de pressão em questão e o volume medido nas condições

padrão (STC)
$$B_{\pi} = \frac{V_{\pi}}{V_{\pi STC}}$$
.

O fator de dissolução de gás no líquido $R_{s\pi}$ relaciona o volume de gás medido nas condições padrão, dissolvido nas condições de pressão padrão.

$$R_{s\pi} = \frac{V_{dgSTC}}{V_{\pi STC}}.$$

$$\left(\frac{\phi}{B_{\pi}}\frac{\partial S_{\pi}}{\partial t}\right) \text{ descreve a velocidade de variação da saturação da fase } \pi .$$

$$\left[\phi S_{\pi}\frac{\partial}{\partial t}\left(\frac{1}{B_{\pi}}\right) + \phi\frac{\partial}{\partial t}\left(\frac{R_{s\pi}S_{\pi}}{B_{\pi}}\right)\right] \text{ representa a velocidade de variação da } \pi .$$

densidade de fluido, também da fase π .

$$\left(\mathbf{m}^{T} \mathbf{\hat{\epsilon}}\right)$$
 representa a velocidade de variação volumétrica do esqueleto

sólido.

$$\left(\frac{1}{3K_s}\mathbf{m}^T\mathbf{D}_T \mathbf{\dot{\epsilon}} + \frac{1}{9K_s^2}\mathbf{m}^T\mathbf{D}_T\mathbf{m}\mathbf{\dot{p}} - \frac{(1-\phi)}{K_s}\mathbf{\dot{p}}\right) \text{ determina a velocidade determina}$$

variação do volume de grãos devido às tensões efetivas.

A partir do caso trifásico obtêm-se as equações de fluxo particularizadas para as condições de fluxo bifásico e monofásico.

2.4.2. Fluxo bifásico

Para o caso particular de fluxo de fluido molhante e fluido não molhante a equação da continuidade pode ser expressa da seguinte forma

$$-\nabla^{T}[T_{m}\nabla(p_{\pi}+\rho_{\pi}gh)] + \frac{\phi}{B_{\pi}}\frac{\partial S_{\pi}}{\partial t} + \phi S_{\pi}\frac{\partial}{\partial t}\left(\frac{1}{B_{\pi}}\right) + \lambda_{f}.$$

$$\left[\left(\mathbf{m}^{T}-\frac{1}{3K_{s}}\mathbf{m}^{T}\mathbf{D}_{T}\right)\mathbf{\dot{\epsilon}} + \left(\frac{(1-\phi)}{K_{s}} - \frac{1}{9K_{s}^{2}}\mathbf{m}^{T}\mathbf{D}_{T}\mathbf{m}\right)\mathbf{\dot{\rho}}\right] = 0$$
(2.29)

Com:

$$T_{m} = \mathbf{k} \left(\frac{k_{r\pi}}{\mu_{\pi} B_{\pi}} \right)$$

$$\lambda_{f} = \frac{S_{\pi}}{B_{\pi}}$$
(2.30)

2.4.3. Fluxo monofásico

A equação da continuidade para fluxo monofásico de água ou óleo pode ser expressa da seguinte maneira

$$\begin{bmatrix} \mathbf{m}^{T} - \frac{1}{3K_{s}} \mathbf{m}^{T} \mathbf{D}_{T} \end{bmatrix} \mathbf{\hat{\epsilon}} + \begin{bmatrix} \frac{(1-\phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} + \frac{\phi}{K_{\pi}} \end{bmatrix} \mathbf{\hat{\rho}}$$

$$-\nabla^{T} [T_{m} \nabla (p_{\pi} + \rho_{\pi} gh)] = 0$$
(2.31)

Com $T_m = \mathbf{k} / \mu_{\pi}$.

Nota-se que a variação da densidade de fluido nesse caso é representada por $\frac{\phi}{K_{\pi}} \stackrel{\bullet}{p}$, sendo K_{π} o módulo volumétrico do fluido.

2.5. Solução do problema de valor de contorno

Um problema de valor de contorno requer que suas equações sejam satisfeitas em todos os pontos do domínio (Ω) e que suas condições de contorno sejam satisfeitas no contorno do domínio (Γ). Na equação (2.22) as condições de contorno são atendidas naturalmente. Entretanto, na equação da continuidade, as condições de contorno devem satisfazer o seguinte:

(a) A continuidade do fluxo através do contorno;

$$-\mathbf{n}^T T_m - q = 0 \tag{2.32}$$

Onde, n é um vetor unitário na direção da normal à superfície de contorno e q é o fluxo por unidade de área da superfície de contorno.

(b) As poro pressões prescritas p^b ;

$$p = p^b \tag{2.33}$$

Designando a equação da continuidade de **A** e a condição de contorno (2.32) de $\overline{\mathbf{B}}$, é requerida, para o problema de valor de contorno, que se atenda a seguinte condição:

$$\int_{\Omega} \mathbf{a}^{T} \, \bar{\mathbf{A}} \, d\Omega + \int_{\Gamma} \mathbf{b}^{T} \, \bar{\mathbf{B}} \, d\Gamma = 0 \tag{2.34}$$

Na equação (2.34) a e b representam funções arbitrárias.

2.6. Formulação em elementos finitos

Apresenta-se nesse item do trabalho, a formulação em elementos finitos das equações que descrevem o fluxo monofásico e o fluxo bifásico, em problemas de acoplamento fluido mecânico. As equações são descritas num domínio $\Omega \subset \mathbb{R}^3$ com um contorno Γ para um tempo t $\in [0,T]$.

2.6.1. Acoplamento fluido mecânico com fluxo monofásico

2.6.1.1. Formulação em elementos finitos das equações governantes

Considerando-se a hipótese de fluxo monofásico a equação (2.34) apresenta em $\bar{\mathbf{A}}$ a segunda derivada da parcela $(p_{\pi} + \rho_{\pi}gh)$ De acordo com Lewis e Scherefer (1998), é necessária uma distribuição suave no espaço dessa parcela devido à integração. Em ordem dessa limitação, pode-se escrever a parcela com derivada segunda da equação (2.34) sob uma forma fraca, utilizando-se o teorema de Green, descrito a seguir:

$$\int_{\Omega} \phi \frac{\partial \psi}{\partial x} d\Omega = -\int_{\Omega} \frac{\partial \phi}{\partial x} \psi d\Omega + \int_{\Gamma} \phi \psi n_x d\Gamma$$
(2.35)

Onde n_x é o cosseno diretor entre a normal e a direção x.

Com essas substituições efetuadas escreve-se a equação (2.34) como:

$$\int_{\Omega} \left\{ \mathbf{a}^{T} \left[\left(\mathbf{m}^{T} - \frac{1}{3K_{s}} \mathbf{m}^{T} \mathbf{D}_{T} \right)^{\bullet} \mathbf{\epsilon} + \left(\frac{(1-\phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} + \frac{\phi}{K_{\pi}} \right)^{\bullet} \mathbf{p} \right] \right\} d\Omega +$$

$$\int_{\Omega} (\nabla \mathbf{a})^{T} \frac{\mathbf{k}}{\mu_{\pi}} \nabla (p_{\pi} + \rho_{\pi} gh) d\Omega -$$

$$\int_{\Gamma} \left\{ \mathbf{a}^{T} \mathbf{n}^{T} \frac{\mathbf{k}}{\mu_{\pi}} \nabla (p_{\pi} + \rho_{\pi} gh) + \mathbf{b}^{T} \mathbf{n}^{T} \frac{\mathbf{k}}{\mu_{\pi}} \nabla (p_{\pi} + \rho_{\pi} gh) + \mathbf{b}^{T} q \right\} d\Gamma = 0$$
(2.36)

Pode-se assumir que $\mathbf{b} = -\mathbf{a}$, dado que essas são funções arbitrarias. Assim escreve-se a equação (2.36) como:

$$\int_{\Omega} \left\{ \mathbf{a}^{T} \left[\left(\mathbf{m}^{T} - \frac{1}{3K_{s}} \mathbf{m}^{T} \mathbf{D}_{T} \right) \mathbf{\dot{\epsilon}} + \left(\frac{(1-\phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} + \frac{\phi}{K_{\pi}} \right) \mathbf{\dot{\rho}} \right] \right\} d\Omega + \int_{\Omega} (\nabla \mathbf{a})^{T} \frac{\mathbf{k}}{\mu_{\pi}} \nabla \left(p_{\pi} + \rho_{\pi} gh \right) d\Omega + \int_{\Gamma} \mathbf{a}^{T} q d\Gamma = 0$$
(2.37)

Aplicando-se agora o método dos elementos finitos nas equações (2.21) e (2.37), em termos de deslocamentos e poro pressões (incógnitas do problema), utilizando-se as transformações apresentadas em (2.38) e representando o vetor de poro pressões simplesmente por **p** determinam-se as equações de equilíbrio e fluxo monofásico segundo o método de elementos finitos.

$$\mathbf{u} = \mathbf{N}_{u} \mathbf{u}^{*}$$

$$\mathbf{\varepsilon} = \mathbf{B} \mathbf{u}^{*}$$

$$\mathbf{p} = \mathbf{N}_{p} \mathbf{p}^{*}$$
(2.38)

 $N_u \in N_p$ são respectivamente, as funções de forma para deslocamentos e poro pressões, **B** é a matriz de compatibilidade que relaciona deslocamentos e deformações e o símbolo (.)* faz referência ao ponto nodal. Assim, a equação (2.22) é descrita por

$$\delta \mathbf{u}^{T} \left\{ \int_{\Omega} \mathbf{B}^{T} \mathbf{D}_{T} \mathbf{B} d\Omega \frac{d\mathbf{u}^{*}}{dt} - \int_{\Omega} \mathbf{B}^{T} \mathbf{m} \mathbf{N}_{p} d\Omega \frac{d\mathbf{p}^{*}}{dt} + \int_{\Omega} \mathbf{B}^{T} \mathbf{D}_{T} \frac{\mathbf{m}}{3K_{s}} \mathbf{N}_{p} d\Omega \frac{d\mathbf{p}^{*}}{dt} \right\} - \delta \mathbf{u}^{T} \left\{ \int_{\Omega} \mathbf{N}_{u}^{T} \frac{d\mathbf{b}}{dt} d\Omega + \int_{\Gamma} \mathbf{N}_{u}^{T} \frac{d\mathbf{t}}{dt} d\Gamma - \int_{\Omega} \mathbf{B}^{T} \frac{d\mathbf{\sigma}'_{0}}{dt} d\Omega \right\} = 0$$

$$(2.39)$$

E a equação (2.37) como

$$\int_{\Omega} (\nabla \mathbf{a})^{T} \frac{\mathbf{k}}{\mu_{\pi}} \nabla \mathbf{N}_{p} d\Omega \mathbf{p}^{*} + \int_{\Omega} \mathbf{a}^{T} \left(\mathbf{m}^{T} - \frac{1}{3K_{s}} \mathbf{m}^{T} \mathbf{D}_{T} \right) \mathbf{B} d\Omega \frac{d\mathbf{u}^{*}}{dt} +$$

$$\int_{\Omega} \mathbf{a}^{T} \left(\frac{(1-\phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} + \frac{\phi}{K_{\pi}} \right) \mathbf{N}_{p} d\Omega \frac{d\mathbf{p}^{*}}{dt} +$$

$$\int_{\Omega} \mathbf{a}^{T} \nabla^{T} \frac{\mathbf{k}}{\mu_{\pi}} \nabla \rho_{\pi} gh d\Omega + \int_{\Gamma} \mathbf{a}^{T} q d\Gamma = 0$$
(2.40)

O método de Galerkin pode ser aplicado na equação (2.40), dessa maneira substituem-se as funções **a** pelas funções de forma N_u ou N_p .

$$\int_{\Omega} (\nabla \mathbf{N}_{p})^{T} \frac{\mathbf{k}}{\mu_{\pi}} \nabla \mathbf{N}_{p} d\Omega \mathbf{p}^{*} + \int_{\Omega} \mathbf{N}_{u}^{T} \left(\mathbf{m}^{T} - \frac{1}{3K_{s}} \mathbf{m}^{T} \mathbf{D}_{T} \right) \mathbf{B} d\Omega \frac{d\mathbf{u}^{*}}{dt} +$$

$$\int_{\Omega} \mathbf{N}_{p}^{T} \left(\frac{(1-\phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} + \frac{\phi}{K_{\pi}} \right) \mathbf{N}_{p} d\Omega \frac{d\mathbf{p}^{*}}{dt} +$$

$$\int_{\Omega} \mathbf{N}_{p}^{T} \nabla^{T} \frac{\mathbf{k}}{\mu_{\pi}} \nabla \rho_{\pi} gh d\Omega + \int_{\Gamma} \mathbf{N}_{p}^{T} q d\Gamma = 0$$
(2.41)

2.6.2. Acoplamento fluido mecânico com fluxo bifásico

2.6.2.1. Formulação em elementos finitos das equações governantes

A partir da equação (2.10), a velocidade de p pode ser expressa da seguinte forma

$$p = S_w p_w + S_w p_w + S_{nw} p_{nw} + S_{nw} p_{nw}$$
(2.42)

Considerando a definição de pressão capilar e assumindo como variáveis do problema de fluxo bifásico a pressão de fluido da fase não molhante e o grau de saturação da fase molhante, escreve-se

$$\dot{p} = p_{nw} - S_w p_c + S_w p_c$$
(2.43)

Com essas considerações, descrevem-se a partir de (2.21) e (2.29) a equações de equilíbrio e a equação de fluxo bifásico. A equação de equilíbrio sob formulação de elementos finitos é dada por (2.44)

$$\delta \mathbf{u}^{T} \left\{ \int_{\Omega} \mathbf{B}^{T} \mathbf{D}_{T} \mathbf{B} d\Omega \frac{d\mathbf{u}^{*}}{dt} - \int_{\Omega} (1 - S_{nw}) \mathbf{B}^{T} \left(\mathbf{m} - \mathbf{D}_{T} \frac{\mathbf{m}}{3K_{s}} \right) \mathbf{N}_{p} d\Omega \frac{d\mathbf{p}_{c}^{*}}{dt} \right\}$$

$$+ \delta \mathbf{u}^{T} \left\{ \int_{\Omega} p_{c} \mathbf{B}^{T} \left(\mathbf{m} - \mathbf{D}_{T} \frac{\mathbf{m}}{3K_{s}} \right) \mathbf{N}_{p} d\Omega \frac{d\mathbf{S}_{w}^{*}}{dt} \right\}$$

$$- \delta \mathbf{u}^{T} \left\{ \int_{\Omega} \mathbf{B}^{T} \left(\mathbf{m} - \mathbf{D}_{T} \frac{\mathbf{m}}{3K_{s}} \right) \mathbf{N}_{p} d\Omega \frac{d\mathbf{p}_{nw}^{*}}{dt} \right\}$$

$$- \delta \mathbf{u}^{T} \left\{ \int_{\Omega} \mathbf{B}^{T} \left(\mathbf{m} - \mathbf{D}_{T} \frac{\mathbf{m}}{3K_{s}} \right) \mathbf{N}_{p} d\Omega \frac{d\mathbf{p}_{nw}^{*}}{dt} \right\}$$

$$- \delta \mathbf{u}^{T} \left\{ \int_{\Omega} \mathbf{N}_{u}^{T} \frac{d\mathbf{b}}{dt} d\Omega + \int_{\Gamma} \mathbf{N}_{u}^{T} \frac{d\mathbf{t}}{dt} d\Gamma - \int_{\Omega} \mathbf{B}^{T} \frac{d\mathbf{\sigma}'_{0}}{dt} d\Omega \right\} = 0$$

$$(2.44)$$

As transformações utilizadas são as apresentadas em (2.38) e o símbolo (.)* faz referência ao ponto nodal.

A equação de fluxo para fase não molhante pode ser expressa como

$$-\nabla^{T} \left[\mathbf{k} \frac{k_{rmw}}{\mu_{nw} B_{nw}} \nabla(\mathbf{p}_{nw}^{*} + \rho_{nw} gh) \right] - \frac{\phi}{B_{nw}} \frac{\partial S_{w}}{\partial t} - \phi S_{w} \frac{\partial}{\partial t} \left(\frac{1}{B_{nw}} \right) + \frac{S_{nw}}{B_{nw}} \left[\left(\mathbf{m}^{T} - \frac{1}{3K_{s}} \mathbf{m}^{T} \mathbf{D}_{T} \right) \mathbf{\hat{\epsilon}} - (1 - S_{nw}) \left(\frac{(1 - \phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} \right) \frac{d\mathbf{p}_{c}^{*}}{dt} \right] + \frac{S_{nw}}{B_{nw}} \left[\left(\frac{(1 - \phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} \right) \frac{d\mathbf{p}_{w}}{dt} - p_{c} \left(\frac{(1 - \phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} \right) \frac{d\mathbf{S}_{w}}{dt} \right] = 0 \right]$$

$$(2.45)$$

Utilizando-se a condição apresentada em (2.34) para solução do problema de valor de contorno e o teorema de Green para descrever a parcela com derivada segunda, reescreve-se (2.45), eliminando o símbolo (.)* por simplificação da notação, como

$$\begin{split} \int_{\Omega} \mathbf{a}^{T} \left[-\frac{\Phi}{B_{nw}} \frac{\partial \mathbf{S}_{w}}{\partial t} - \Phi \mathbf{S}_{w} \frac{\partial}{\partial t} \left(\frac{1}{B_{nw}} \right) \right] d\Omega + \\ \int_{\Omega} \mathbf{a}^{T} \left\{ \frac{S_{nw}}{B_{nw}} \left[\left(\mathbf{m}^{T} - \frac{1}{3K_{s}} \mathbf{m}^{T} \mathbf{D}_{T} \right) \mathbf{\hat{\epsilon}} \right] \right\} d\Omega + \\ \int_{\Omega} \mathbf{a}^{T} \left\{ \frac{S_{nw}}{B_{nw}} \left[\left(\frac{(1-\Phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} \right) \left(\frac{d\mathbf{p}_{nw}^{*}}{dt} - p_{c} \frac{d\mathbf{S}_{w}^{*}}{dt} - (1-S_{nw}) \frac{d\mathbf{p}_{c}^{*}}{dt} \right) \right] \right\} d\Omega + \\ \int_{\Omega} (\nabla \mathbf{a})^{T} \left[\mathbf{k} \frac{k_{rnw}}{\mu_{nw}B_{nw}} \nabla (\mathbf{p}_{nw} + \rho_{nw}gh) \right] d\Omega - \\ \int_{\Gamma} \left\{ \mathbf{a}^{T} \mathbf{n}^{T} \left[\mathbf{k} \frac{k_{rnw}}{\mu_{nw}B_{nw}} \nabla (\mathbf{p}_{nw} + \rho_{nw}gh) \right] \right\} d\Gamma - \\ \int_{\Gamma} \left\{ \mathbf{b}^{T} \mathbf{n}^{T} \left[\mathbf{k} \frac{k_{rnw}}{\mu_{nw}B_{nw}} \nabla (\mathbf{p}_{nw} + \rho_{nw}gh) \right] + \mathbf{b}^{T} \mathbf{q}_{nw} \right\} d\Gamma = 0 \end{split}$$

$$(2.46)$$

Fazendo-se $\mathbf{b} = -\mathbf{a}$ e utilizando as transformações apresentadas em (2.38), a equação para o fluxo da fase não molhante sob formulação de elementos finitos é descrita por

$$\int_{\Omega} \mathbf{N}_{p}^{T} \left[-\frac{\Phi}{B_{nw}} \right] \mathbf{N}_{p} d\Omega \frac{\partial \mathbf{S}_{w}}{\partial t} - \int_{\Omega} \mathbf{N}_{p}^{T} \left[\Phi \frac{\partial}{\partial t} \left(\frac{1}{B_{nw}} \right) \right] \mathbf{N}_{p} d\Omega \mathbf{S}_{w} - \int_{\Omega} \mathbf{N}_{p}^{T} \left[(1 - S_{nw}) \left(\frac{(1 - \Phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} \right) \frac{S_{nw}}{B_{nw}} \right] \mathbf{N}_{p} d\Omega \frac{d\mathbf{p}_{c}}{dt} + \int_{\Omega} \mathbf{N}_{u}^{T} \frac{S_{nw}}{B_{nw}} \left(\mathbf{m}^{T} - \frac{1}{3K_{s}} \mathbf{m}^{T} \mathbf{D}_{T} \right) \mathbf{B} d\Omega \frac{d\mathbf{u}}{dt} - \int_{\Omega} \mathbf{N}_{p}^{T} \left[p_{c} \left(\frac{(1 - \Phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} \right) \frac{S_{nw}}{B_{nw}} \right] \mathbf{N}_{p} d\Omega \frac{d\mathbf{S}_{w}}{dt} + \int_{\Omega} \mathbf{N}_{p}^{T} \left[\frac{S_{nw}}{B_{nw}} \left(\frac{(1 - \Phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} \right) \right] \mathbf{N}_{p} d\Omega \frac{d\mathbf{p}_{mw}}{dt} + \int_{\Omega} (\nabla \mathbf{N}_{p})^{T} \mathbf{k} \frac{k_{nw}}{\mu_{nw} B_{nw}} \nabla \mathbf{N}_{p} \Delta \mathbf{p}_{nw} - \int_{\Omega} (\nabla \mathbf{N}_{p})^{T} \mathbf{k} \frac{k_{nnw}}{\mu_{nw} B_{nw}} \nabla \mathbf{N}_{p} \rho_{nw} ghd\Omega - \int_{\Omega} \mathbf{N}_{p}^{T} \mathbf{q}_{nw} d\Gamma = 0$$

$$(2.47)$$

A equação para saturação da fase molhante é obtida de maneira análoga, sendo descrita por

$$\begin{split} \int_{\Omega} \mathbf{N}_{p}^{T} \left[-\frac{\Phi}{B_{w}} \right] \mathbf{N}_{p} d\Omega \frac{\partial \mathbf{S}_{w}}{\partial t} + \int_{\Omega} \mathbf{N}_{p}^{T} \left[\Phi \frac{\partial}{\partial t} \left(\frac{1}{B_{w}} \right) \right] \mathbf{N}_{p} d\Omega \mathbf{S}_{w} - \\ \int_{\Omega} \mathbf{N}_{p}^{T} \left[(1 - S_{nw}) \left(\frac{(1 - \Phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} \right) \frac{S_{w}}{B_{w}} \right] \mathbf{N}_{p} d\Omega \frac{d\mathbf{p}_{c}}{dt} + \\ \int_{\Omega} \mathbf{N}_{u}^{T} \frac{(1 - S_{nw})}{B_{w}} \left(\mathbf{m}^{T} - \frac{1}{3K_{s}} \mathbf{m}^{T} \mathbf{D}_{T} \right) \mathbf{B} d\Omega \frac{d\mathbf{u}}{dt} - \\ \int_{\Omega} \mathbf{N}_{p}^{T} \left[p_{c} \left(\frac{(1 - \Phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} \right) \frac{(1 - S_{nw})}{B_{w}} \right] \mathbf{N}_{p} d\Omega \frac{d\mathbf{S}_{w}}{dt} + \\ \int_{\Omega} \mathbf{N}_{p}^{T} \left[\frac{(1 - S_{nw})}{K_{s}} \left(\frac{(1 - \Phi)}{K_{s}} - \frac{1}{9K_{s}^{2}} \mathbf{m}^{T} \mathbf{D}_{T} \mathbf{m} \right) \frac{\mathbf{N}_{p} d\Omega \frac{d\mathbf{p}_{nw}}{dt} + \\ \int_{\Omega} (\nabla \mathbf{N}_{p})^{T} \mathbf{k} \frac{k_{nw}}{\mu_{w} B_{w}} \nabla \mathbf{N}_{p} d\Omega \mathbf{p}_{nw} - \int_{\Omega} (\nabla \mathbf{N}_{p})^{T} \mathbf{k} \frac{k_{nw}}{\mu_{w} B_{w}} \nabla \mathbf{N}_{p} d\Omega \mathbf{p}_{c} - \\ \int_{\Omega} (\nabla \mathbf{N}_{p})^{T} \mathbf{k} \frac{k_{nw}}{\mu_{w} B_{w}} \nabla \mathbf{N}_{p} \rho_{w} ghd\Omega - \int_{\Gamma} \mathbf{N}_{p}^{T} \mathbf{q}_{w} d\Gamma = 0 \end{split}$$

Como se verificou, empregou-se para formulação em elementos finitos o método de Galerkin. Para a equação da pressão a formulação de Galerkin é suficiente para se obter uma aproximação razoável da solução. Entretanto, devido

às características da equação da saturação (equação parabólica-hiperbólica), a formulação de Galerkin pode se mostrar instável, apresentando oscilações numéricas em problemas que apresentam grandes velocidades. De acordo com Brooks e Hughes (1982), para que essas possíveis oscilações não ocorram empregam-se métodos que utilizam uma formulação estabilizada, refina-se a malha de elementos finitos ou se controlam os incrementos de tempo.

Para formulação estabilizada, geralmente utilizam-se métodos da família Petrov-Galerkin. Dentre esses se destaca o método SUPG (Streamline Upwind/Petrov-Galerkin), apresentado numa série de trabalhos desenvolvidos por Hughes e outros, se destacando os trabalhos que apresentam a generalização do SUPG, Hughes e Mallet (1986) e onde se demonstra a convergência do método, Hughes *et al* (1987).

No presente estudo, para se evitar possíveis oscilações se utilizará malhas suficientemente refinadas ou incrementos de tempo pequenos.

2.7.Discretização no tempo

Para solução do problema de valor inicial , Lewis e Schrefler (1998), sugerem a utilização de um esquema em diferenças finitas. Sendo $\mathbf{q} = \{\mathbf{u} \ \mathbf{p}\}^T$ para fluxo monofásico, $\mathbf{q} = \{\mathbf{u} \ \mathbf{p}_{nw} \ \mathbf{S}_w\}^T$ para fluxo bifásico e ${}^{t+\theta} \cdot \mathbf{q} = ({}^{t+\Delta t}\mathbf{q} - {}^t\mathbf{q})/\Delta t$. Utiliza-se o método trapezoidal generalizado para discretização no domínio do tempo, assim:

$$^{t+\theta}\mathbf{q} = (1-\theta)^{t}\mathbf{q} + \theta^{t+\Delta t}\mathbf{q}$$
(2.49)

Onde Δt é o tamanho do passo de tempo, ^t**q** e ^{t+ Δt}**q** correspondem ao vetor **q** nos instantes t e $t + \Delta t$ respectivamente e θ é um parâmetro de integração limitado por $0 \le \theta \le 1$.

2.7.1. Propriedades numéricas da discretização no tempo

A escolha do parâmetro de integração θ deve ser tal que garanta as condições de consistência e estabilidade da solução. Faz-se a seguir, de acordo

com Hughes (1977), um estudo sobre esse parâmetro para um problema quase estático não linear, descrito de forma compacta pela equação seguinte.

$$^{t+\theta}\mathbf{A}(\theta) \overset{t+\theta}{\mathbf{X}} \overset{\bullet}{\mathbf{X}} + {}^{t+\theta}\mathbf{B}(\theta) {}^{t+\theta}\mathbf{X} = {}^{t+\theta}\mathbf{C}$$
(2.50)

A e B são matrizes de coeficientes e X um vetor de incógnitas. Assumi-se que a solução da equação (2.50) pode ser dada por

$$^{t+\theta}\mathbf{X} = \boldsymbol{\psi}^{t+\theta}\mathbf{y} \tag{2.51}$$

$$\overset{t+\theta}{\mathbf{X}} \stackrel{\bullet}{=} \boldsymbol{\psi} \overset{t+\theta}{\mathbf{y}} \stackrel{\bullet}{\mathbf{y}}$$
(2.52)

Sendo $y_i = e^{s_i t}$, s_i =constante e ψ um conjunto de autovetores da matriz ${}^{t+\theta} \mathbf{A}^{-1 t+\theta} \mathbf{B}$. Substituindo $\mathbf{X} \in \mathbf{X}$ dados em (2.51) e (2.52) na equação (2.50) e a premultiplicando por ψ^T , tem-se:

$$\boldsymbol{\psi}^{T \ t+\theta} \mathbf{A}(\theta) \boldsymbol{\psi}^{t+\theta} \mathbf{y}^{T \ t+\theta} \mathbf{B}(\theta) \boldsymbol{\psi}^{t+\theta} \mathbf{y} = \boldsymbol{\psi}^{T \ t+\theta} \mathbf{C}$$
(2.53)

A partir da equação (2.53) pode-se representar o problema, para um grau de liberdade, da seguinte maneira

$${}^{t+\theta} \cdot y_i + {}^{t+\theta} \lambda ({}^{t+\theta} X_i) {}^{t+\theta} y_i = {}^{t+\theta} m_i$$
(2.54)

Onde ${}^{t+\theta}\lambda$ é o maior autovalor da matriz ${}^{t+\theta}\mathbf{A}^{-1}{}^{t+\theta}\mathbf{B}$. Descrevendo-se (2.54) sob a forma sugerida no item referente à discretização no tempo, tem-se

$${}^{t+\theta}y_i = (1-\theta)^t y_i + \theta^{t+\Delta t} y_i \quad e \quad \stackrel{\bullet}{y_i} = \frac{({}^{t+\Delta t}y_i - {}^t y_i)}{\Delta t}$$
(2.55)

Após essas considerações, a seguinte forma de recorrência pode ser escrita

$$^{t+\Delta t}y_{i} = \frac{1 - (1 - \theta)\Delta t^{t+\theta}\lambda}{1 + \Delta t\theta^{t+\theta}\lambda} y_{i} + (1 - \theta)^{t}m_{i} + \theta^{t+\Delta t}m_{i}$$
(2.56)

Para estabilidade da solução é requerido que

$$\left|\frac{1 - (1 - \theta)\Delta t^{t+\theta}\lambda}{1 + \Delta t\theta^{t+\theta}\lambda}\right| \le 1$$
(2.57)

Para $\theta \ge 0.5$ o algoritmo de integração é incondicionalmente estável, tanto para problemas lineares quanto para não lineares. Para $\theta = 0.5$ tem-se precisão de segunda ordem. No caso de $\theta < 0.5$, o algoritmo em questão é incondicionalmente estável se

$$^{t+\theta}\lambda\Delta t \le \frac{2}{(1-2\theta)} \tag{2.58}$$

A partir dessas observações será utilizado nesse trabalho $\theta = 0.5$.