4. Matriz de Sensibilidade dos Controles de Tensão

4.1 Introdução

A matriz de sensibilidade dos controles de tensão, aqui definida e denominada [*VCS*], relaciona as tensões controladas e as grandezas controladoras em um sistema multi-nó. É construída a partir dos índices nodais definidos no Capítulo 3, como será visto a seguir. Neste capítulo apresentam-se os resultados da aplicação de [*VCS*] a sistemas-teste e reais. As características da matriz são apresentadas e discutidas. A análise com base nos autovalores e autovetores associados à matriz é aplicada ao problema de adequação das ações de controle de tensão.

4.2 Sistema de Equações Linearizadas

Para um sistema multi-nó, a forma geral do sistema de equações linearizadas do problema é mostrada em (4.1). Estão presentes as equações de controle analisadas neste trabalho, na ordem, controle de tensão por SVC, gerador ou compensador síncrono, LTC e capacitor / reator.

$$\begin{bmatrix} \Delta P \\ \Delta Q \\ \overline{\Delta V_{SVC}} \\ \Delta V_E \\ \Delta V_t \\ \Delta V_b \end{bmatrix} = \begin{bmatrix} A & B \\ B \\ ------- & D \end{bmatrix} * \begin{bmatrix} \Delta \theta \\ \overline{\Delta V} \\ \overline{\Delta B_{SVC}} \\ \Delta E_G \\ \Delta t \\ \Delta b_{sh} \end{bmatrix}$$
(4.1)

A variação entre a tensão de referência especificada e a tensão calculada no ponto de operação em análise é determinada através de (4.2), (4.3), (4.4) e (4.5), na ordem. No caso do SVC, sem perda de generalidade, optou-se pelo modo de operação "injeção de corrente" e pela susceptância como variável de controle.

$$\Delta V_{SVC} = V_{esp} + X_{SL} * B_{SVC} * V_t - V_{cont}$$
(4.2)

$$\Delta V_E = V_E^{esp} - V_E^{calc} \tag{4.3}$$

$$\Delta V_t = V_t^{esp} - V_t^{calc} \tag{4.4}$$

$$\Delta V_b = V_b^{esp} - V_b^{calc} \tag{4.5}$$

A equação (4.1) pode ser reescrita compactamente por:

$$\begin{bmatrix} \Delta P \\ \Delta Q \\ \overline{\Delta V} \end{bmatrix} = \begin{bmatrix} A \mid B \\ C \mid D \end{bmatrix} * \begin{bmatrix} \Delta \theta \\ \Delta V \\ \overline{\Delta C} \end{bmatrix}$$
(4.6)

onde $\Delta V e \Delta C$ são dados por:

$$\Delta V = \begin{bmatrix} \Delta V_{SVC} \\ \Delta V_E \\ \Delta V_{LTC} \\ \Delta V_{bsh} \end{bmatrix}$$
(4.7)

$$\Delta C = \begin{bmatrix} \Delta B_{SVC} \\ \Delta E_G \\ \Delta t \\ \Delta b_{sh} \end{bmatrix}$$
(4.8)

Como o interesse é a análise simultânea da adequação de todas as ações de controle, variações de carga não são consideradas. Variações são permitidas na geração de potência ativa na barra de referência angular e na geração de potência reativa nas barras de tensão controlada, em ambos os casos para lidar com as variações de perdas ativas e reativas decorrentes das variações das tensões especificadas (variações infinitesimais, quando se analisa somente a matriz [*VCS*]). Assim, considera-se $\Delta P = \Delta Q = 0$ em (4.6), obtendo-se:

$$[\Delta V] = [VCS] * [\Delta C] \tag{4.9}$$

onde a matriz [VCS] é calculada por:

$$[VCS] = [D] - [C] * [A]^{-1} * [B]$$
(4.10)

Os índices de adequação das ações de controle de tensão são obtidos da diagonal da matriz de (4.9), enquanto que os termos fora da diagonal traduzem a interação entre as diversas ações de controle do sistema e as tensões controladas.

A matriz de [*VCS*] também possibilita obter os valores dos parâmetros de controle, ΔC , a partir dos valores das novas tensões, ΔV . Isto é possível resolvendo-se (4.9) como um sistema do tipo Ax = b.

Neste trabalho considera-se somente o caso de um equipamento controlando a tensão em uma barra. Daí a dimensão de [VCS] ser (nc x nc), onde nc é o número de barras de tensão controlada na área do sistema em análise. Assim, nc é também o número de equipamentos existentes. O caso de mais de um equipamento controlando a tensão em uma única barra, através da coordenação dos controles, é uma extensão a ser considerada.

4.3 Aplicação em Sistemas-Teste e Reais

4.3.1 Introdução

Os resultados a serem apresentados nesta seção foram obtidos para sistemas de pequeno, médio e grande porte. O objetivo é fazer uma comparação entre os resultados obtidos usando-se o ambiente MATLAB e os obtidos pelo programa de adequação dos controles de tensão (AdeConT), desenvolvido em FORTRAN e acoplado ao pacote computacional ANAREDE [36]. Esta comparação é feita através da observação dos valores dos elementos da matriz de [*VCS*] calculada pelos dois programas. Os resultados também são comparados com os obtidos pelo programa ANAREDE, para a validação da metodologia proposta. Isto será realizado através de testes numéricos envolvendo variações nos valores das tensões especificadas, de maneira similar as que foram feitas no Capítulo 3, Seções 3.3.2, 3.4.2, 3.5.2 e 3.6.3. Esta última comparação somente é feita para os sistemas onde a matriz [*VCS*] é calculada para geradores em conjunto com

outros tipos de equipamentos de controle de tensão – esta análise não foi realizada em [38].

4.3.2 Sistema-Teste de 5 Barras

A primeira etapa realizada para o desenvolvimento deste trabalho consistiu em definir as equações necessárias para os dispositivos controladores de tensão: gerador / compensador síncrono, LTC, capacitor / reator em derivação e SVC. Assim, cada índice foi calculado individualmente com o uso de programas desenvolvidos em MATLAB. Em seguida, com o auxílio desses programas também, se determinou [*VCS*], passando-se a considerar a atuação dos controles simultaneamente. Os resultados foram comparados com os apresentados em [38]. A segunda etapa foi o desenvolvimento do programa AdeConT. Os resultados obtidos da aplicação deste programa foram comparados com os obtidos anteriormente.

O sistema de equações lineares montado para o sistema-teste de 5 barras mostrado na Figura 4.1, considerando a ação dos controles de tensão feita pelos LTCs conectados entre as barras 1-3 e 2-4, bem como pelo capacitor em derivação ligado à barra 5, é dado por (4.11).

Figura 4.1 – Diagrama Unifilar do Sistema-Teste de 5 Barras

onde

$$\Delta V_3 = V_3^{esp} - V_3^{calc} \tag{4.12}$$

$$\Delta V_4 = V_4^{esp} - V_4^{calc} \tag{4.13}$$

$$\Delta V_5 = V_5^{esp} - V_5^{calc} \tag{4.14}$$

As variáveis V_3 , V_4 e V_5 são consideradas através de (4.12) a (4.14), enquanto existir controle do módulo da tensão nas barras 3, 4 e 5 respectivamente.

A matriz [*VCS*] é obtida através de (4.10), considerando-se os valores de $\Delta P_2 = \Delta P_3 = \Delta P_4 = \Delta P_5 = \Delta Q_3 = \Delta Q_4 = \Delta Q_5 = 0$, obtendo-se a equação (4.15).

$$\begin{bmatrix} \Delta V_3 \\ \Delta V_4 \\ \Delta V_5 \end{bmatrix} = \begin{bmatrix} VCS \end{bmatrix} * \begin{bmatrix} \Delta t_{13} \\ \Delta t_{24} \\ \Delta b_{sh} \end{bmatrix}$$
(4.15)

A matriz [*VCS*] calculada com o uso do programa desenvolvido em MATLAB, para o ponto de operação dado na Tabela 4.1, é dada em (4.16).

Ba	arra	Tei	nsão	Ger	ração	Ca	irga	Shunt
Nº	Tipo	V (pu)	θ (graus)	P (MW)	Q (Mvar)	P (MW)	Q (Mvar) Q (Mvar)
1	Vθ	1,050	0,0	200,0	-11,1	-	-	-
2	PV	1,010	7,6	600,0	74,2	-	-	-
3	PQ	1,000	-2,3	-	-		-	-
4	PQ	1,000	0,8	-	-	-	-	-
5	PQ	1,018	-9,8	-	-	800,0	300,0	440,0
				t ₁₃ = 1,053	e t ₂₄ = 1,00	2 pu		
De	Pai	ra Res	sistência (%)	Reat	ância (%)	Suscept	. (%)	Bar. Controlada
1	3		0,00		2,00	0,00)	3
2	4		0,00		2,00	0,00)	4
3	4		0,00		4,00	0,00)	-
3	5		0,00		4,00	0,00)	-
4	5		0,00		4,00	0,00)	-

Tabela 4.1 – Dados do Sistema-Teste de 5 Barras

$$\begin{bmatrix} \Delta V_3 \\ \Delta V_4 \\ \Delta V_5 \end{bmatrix} = \begin{bmatrix} 0,7370 & 0,3890 & 0,0144 \\ 0,3617 & 0,8049 & 0,0146 \\ 0,6709 & 0,7297 & 0,0423 \end{bmatrix} * \begin{bmatrix} -\Delta t_{13} \\ -\Delta t_{24} \\ \Delta b_{sh} \end{bmatrix}$$
(4.16)

Os valores dos elementos de [ΔC] referentes ao controle de tensão feito por LTCs, nas linhas 1 e 2 de (4.16), têm seus sinais trocados em função da lógica de controle desse equipamento [ver (3.6) e (3.7)].

O valor da matriz de [*VCS*], calculada através do programa AdeConT, é dada em (4.17).

$$\begin{bmatrix} VCS \end{bmatrix} = \begin{bmatrix} 0,7371 & 0,3867 & 0,0144 \\ 0,3618 & 0,8000 & 0,0146 \\ 0,6712 & 0,7255 & 0,0423 \end{bmatrix}$$
(4.17)

A diferença existente entre os valores dos elementos de [*VCS*], apresentados em (4.16) e (4.17), ocorre porque os valores dos dados de entrada para o primeiro caso, usando-se o programa desenvolvido em MATLAB, são limitados a quatro casas decimais, que corresponde à precisão dos dados do relatório de saída fornecido pelo programa ANAREDE, através da utilização do código de execução

PRES [36]. No segundo caso, usando-se o programa AdeConT, a precisão usada é igual a dos valores armazenados internamente pelo programa ANAREDE, dupla precisão.

Os valores positivos dos elementos da matriz de sensibilidade dos controles de tensão, dados em (4.17), indicam que o sistema está operando na região de operação definida como sendo normal. Portanto, as ações de controle de tensão terão o efeito usual, isto é, conforme o esperado.

O segundo ponto de operação analisado para o sistema-teste de 5 barras, mostrado na Figura 4.1, é dado pela Tabela 4.2. Os dados de linha não foram alterados.

B	arra	Tei	nsão	Gei	ração	Cá	arga	Shunt		
Nº	Tipo	V (pu)	heta (graus)	P (MW)	Q (Mvar)	P (MW)	Q (Mvar)	Q (Mvar)		
1	Vθ	1,050	0,0	1090,0	-	-	-	-		
2	PV	1,010	-7,5	600,0	-	-	-	-		
3	PQ	0,984	-9,7	-	-	-	-	-		
4	PQ	0,917	-14,2	-	-	-	-	-		
5	PQ	0,571	-50,4	-	-	1690,0	633,8	440,0		
	t ₁₃ = 0,800 e t ₂₄ = 0,900 pu									

Tabela 4.2 – Dados do Sistema-Teste de 5 Barras / Região B

A matriz [*VCS*] calculada com o uso do programa desenvolvido em MATLAB, para o ponto de operação dado na Tabela 4.2, é dada em (4.18).

$$\begin{bmatrix} \Delta V_{3} \\ \Delta V_{4} \\ \Delta V_{5} \end{bmatrix} = \begin{bmatrix} 0,5499 & -0,1010 & -0,0061 \\ -0,1339 & 0,4112 & -0,0059 \\ -0,8871 & -0,6487 & -0,0123 \end{bmatrix} * \begin{bmatrix} -\Delta t_{13} \\ -\Delta t_{24} \\ \Delta b_{sh} \end{bmatrix}$$
(4.18)

A matriz de sensibilidade dos controles de tensão [*VCS*], calculada com o uso do programa AdeConT, é dada em (4.19).

$$\begin{bmatrix} VCS \end{bmatrix} = \begin{bmatrix} 0,5513 & -0,1001 & -0,0061 \\ -0,1327 & 0,4119 & -0,0059 \\ -0,8844 & -0,6463 & -0,0123 \end{bmatrix}$$
(4.19)

A diferença existente entre os valores dos elementos de [*VCS*], apresentados em (4.18) e (4.19), ocorre em conseqüência da precisão de valores dos dados de entrada para cada programa, conforme explicado anteriormente.

O valor negativo do elemento diagonal (3,3) da matriz de sensibilidade dos controles de tensão, dado em (4.19), indica que a barra 5, onde está instalado o capacitor em derivação, está na região de operação definida como sendo anormal. Os valores positivos dos elementos diagonais (1,1) e (2,2) indicam que o controle de tensão feito pelos dois LTCs ocorre conforme esperado. Entretanto, os valores negativos dos elementos fora da diagonal, em toda matriz, mostram que qualquer ação de controle de tensão feito pelos fora da diagonal, em toda matriz, mostram que qualquer ação de controle de tensão feito pelos dos feita por qualquer um dos LTCs, ou através da susceptância em derivação, terá efeito conflitante com as outras barras de tensão controlada, conforme será demonstrado na Seção 4.3.3.

As interações entre as barras com tensão controlada, descritas no parágrafo anterior, e representadas pela matriz [*VCS*] de (4.19), são apresentadas nas Tabelas 4.3 e 4.4.

№ e Nome da Barra de Tensão Controlada i	Tipo do Equip. de Controle da Tensão da Barra i	Tipo do Controle da Tensão na Barra i	№ e Nome das Barras Terminais dos Equipamentos de Controle de Tensão i
		Balla	
3 Barra3	LTC	Local	4 Barra4, 5 Barra5
4 Barra4	LTC	Local	3 Barra3, 5 Barra5
5 Barra5	Shunt	Local	3 Barra3, 4 Barra4, 5 Barra5*

Tabela 4.3 – Equipamentos de Controle de Tensão com Efeito Oposto na Tensão da Barra Controlada i para [*VCS*] de (4.19)

*denota a barra terminal do equipamento associado à própria barra de tensão controlada

Tabela 4.4 – Barras de Tensão Controlada Afetadas de Forma Oposta pelo Equipamento de Controle de Tensão j para [*VCS*] de (4.19)

Barra Terminal do Equip. de Controle de Tensão j	Tipo do Equip. de Controle de Tensão j	Tipo do Controle de Tensão	№ e Nome das Barras de Tensão Controlada
3 Barra3	LTC	Local	4 Barra4, 5 Barra5
4 Barra4	LTC	Local	3 Barra3, 5 Barra5
5 Barra5	Shunt	Local	3 Barra3, 4 Barra4, 5 Barra5*

* denota a barra de tensão controlada associado ao próprio equipamento de controle de tensão

A avaliação das barras com tensão controlada por gerador deve ser feita considerando-se a inclusão do modelo de regime permanente, tensão atrás da reatância síncrona. Na Figura 4.2, mostra-se o sistema-teste de 5 barras, avaliado anteriormente, após a inclusão da barra interna dos geradores conectados às barras 1 e 2. Observa-se que foram adicionadas duas barras ao sistema, barras 6 (G_1) e 7 (G_2) , controlando remotamente a tensão das barras 1 e 2, respectivamente. Portanto, segundo a prática usada em problemas de fluxo de carga, as barras incluídas 6 e 7, são barras do tipo θ e P respectivamente [41]. Por outro lado, as barras 1 e 2 passam a ser do tipo PQV.

Figura 4.2 – Diagrama Unifilar do Sistema-Teste de 5 Barras Incluindo o Modelo dos Geradores

O sistema de equações lineares, construído para representar o sistema-teste de 7 barras mostrado na Figura 4.2, considerando também o controle de tensão realizado pelos geradores conectados às barras 1 e 2, é dado por (4.20).

$$\begin{bmatrix} \Delta P_{1} \\ \Delta P_{2} \\ \Delta P_{3} \\ \Delta P_{4} \\ \Delta P_{5} \\ \Delta P_{5} \\ \Delta P_{4} \\ \Delta P_{5} \\ \Delta$$

PUC-Rio - Certificação Digital Nº 0220894/CA

Δ

2

onde

$$\Delta V_1 = V_1^{esp} - V_1^{calc} \tag{4.21}$$

$$\Delta V_2 = V_2^{esp} - V_2^{calc} \tag{4.22}$$

$$\Delta V_3 = V_3^{esp} - V_3^{calc} \tag{4.23}$$

$$\Delta V_4 = V_4^{esp} - V_4^{calc} \tag{4.24}$$

$$\Delta V_5 = V_5^{esp} - V_5^{calc} \tag{4.25}$$

A matriz [*VCS*] é obtida considerando-se os valores de $\Delta P_1 = \Delta P_2 = \Delta P_{G2} = \Delta P_3 = \Delta P_4 = \Delta P_5 = \Delta Q_1 = \Delta Q_2 = \Delta Q_3 = \Delta Q_4 = \Delta Q_5 = 0$ em (4.20) e, através do procedimento de redução descrito em (4.10), obtém-se:

$$\begin{bmatrix} \Delta V_{1} \\ \Delta V_{2} \\ \Delta V_{3} \\ \Delta V_{4} \\ \Delta V_{5} \end{bmatrix} = \begin{bmatrix} VCS \end{bmatrix} * \begin{bmatrix} \Delta E_{G1} \\ \Delta E_{G2} \\ \Delta t_{13} \\ \Delta t_{24} \\ \Delta b_{sh} \end{bmatrix}$$
(4.26)

O ponto de operação apresentado na Tabela 4.5 é o mesmo da Tabela 4.1. A idéia foi manter as características da rede original após a inserção do modelo das máquinas. Considerando que o fluxo chegando à barra terminal dos geradores é o mesmo nas duas redes, foi possível calcular as perdas ativa e reativa na reatância síncrona. Assim, ficou determinada a tensão interna de cada máquina, em módulo e ângulo.

Tabela 4.5 - Dados do Sistema-Teste de 7 Barras

В	arra	Te	ensão	Ger	ação	Ca	arga	Shunt	
N ^o	Tipo	V (pu)	heta (graus)	P (MW)	Q (Mvar)	P (MW)	Q (Mvar)	Q (Mvar)	
1	PQV	1,050	0,0	-	-	-	-	-	
2	PQV	1,010	7,6	-	-	-	-	-	
3	PQ	1,000	-2,3	-	-		-	-	
4	PQ	1,000	0,8	-	-	-	-	-	
5	PQ	1,018	-9,8	-	-	800,0	300,0	440,0	
6	θ	1,049	4,2	200,0	3,5	-	-	-	
7	Р	1,066	20,5	600,0	217,5	-	-	-	
	t ₁₃ = 1,053 e t ₂₄ = 1,002 pu								

De	Para	Resistência (%)	Reatância (%)	Suscept. (%)	Bar. Controlada
1	3	0,00	2,00	0,00	3
2	4	0,00	2,00	0,00	4
3	4	0,00	4,00	0,00	-
3	5	0,00	4,00	0,00	-
4	5	0,00	4,00	0,00	-
6	1	0,00	4,00	0,00	1
7	2	0,00	4,00	0,00	2

A matriz [*VCS*] calculada com o uso do programa desenvolvido em MATLAB, para o ponto de operação dado na Tabela 4.5, é dada em (4.27).

$$\begin{bmatrix} \Delta V_{1} \\ \Delta V_{2} \\ \Delta V_{3} \\ \Delta V_{4} \\ \Delta V_{5} \end{bmatrix} = \begin{bmatrix} 1,0189 & 0,5791 & 0,0144 & 0,5220 & 0,0444 \\ 0,5661 & 1,1025 & 0,5620 & -0,0142 & 0,0470 \\ 0,9709 & 0,8517 & 0,9639 & 0,7677 & 0,0653 \\ 0,8197 & 1,0862 & 0,8138 & 0,9791 & 0,0681 \\ 1,0938 & 1,1841 & 1,0859 & 1,0673 & 0,1060 \end{bmatrix} * \begin{bmatrix} \Delta E_{G1} \\ \Delta E_{G2} \\ -\Delta t_{13} \\ -\Delta t_{24} \\ \Delta b_{sh} \end{bmatrix}$$
(4.27)

O valor da matriz de [VCS], calculada com a utilização do programa desenvolvido em FORTRAN, AdeConT, foi:

$$\begin{bmatrix} VCS \end{bmatrix} = \begin{bmatrix} 1,0182 & 0,5786 & 0,0141 & 0,5212 & 0,0444 \\ 0,5655 & 1,1026 & 0,5616 & -0,0143 & 0,0470 \\ 0,9697 & 0,8508 & 0,9630 & 0,7665 & 0,0652 \\ 0,8185 & 1,0854 & 0,8128 & 0,9778 & 0,0680 \\ 1,0926 & 1,1833 & 1,0850 & 1,0660 & 0,1060 \end{bmatrix}$$
(4.28)

A comparação entre os valores apresentados em (4.27) e (4.28), mostra que o programa AdeConT é capaz de calcular todos os índices da matriz de [*VCS*] corretamente para a região de operação definida como sendo normal, já que todos os elementos diagonais são positivos.

Nota-se, tanto em (4.27) e (4.28), um valor negativo no elemento (2,4). Isso indica controle conflitante entre o gerador da barra 2 com o LTC entre as barras 2-4, no que diz respeito ao controle de tensão da barra 2.

O ponto de operação apresentado na Tabela 4.6 é o mesmo da Tabela 4.2. O objetivo é verificar se o programa desenvolvido é capaz de calcular [VCS]

corretamente, quando aplicado a redes apresentando problemas de estabilidade de tensão. Sabe-se que nesses casos a dificuldade de convergência dos programas de fluxo de carga é maior.

В	arra	Te	nsão	Ger	ração	Cá	arga	Shunt	
N ^o	Tipo	V (pu)	heta (graus)	P (MW)	Q (Mvar)	P (MW)	Q (Mvar)	Q (Mvar)	
1	PQV	1,050	0,0	-	-	-	-	-	
2	PQV	1,010	-7,4	-	-	-	-	-	
3	PQ	0,984	-9,7	-	-	-	-	-	
4	PQ	0,917	-14,1	-	-	-	-	-	
5	PQ	0,571	-50,4	-	-	1690,0	633,8	440,0	
6	θ	1,952	12,3	1090,0	4519,1	-	-	-	
7	Р	1,498	1,7	600,0	1875,2	-	-	-	
	t ₁₃ = 0,800 e t ₂₄ = 0,900 pu								

Tabela 4.6 - Dados do Sistema-Teste de 7 Barras / Região B

A matriz [*VCS*], calculada com o uso do programa desenvolvido em MATLAB para o ponto de operação dado na Tabela 4.6, é dada em (4.29).

$$\begin{bmatrix} \Delta V_{1} \\ \Delta V_{2} \\ \Delta V_{3} \\ \Delta V_{4} \\ \Delta V_{5} \end{bmatrix} = \begin{bmatrix} 0,3546 & -0,0308 & -1,2682 & -0,0170 & -0,0049 \\ -0,0311 & 0,3949 & -0,0039 & -0,9044 & -0,0047 \\ 0,1517 & -0,0482 & 0,0189 & -0,0266 & -0,0077 \\ -0,0473 & 0,1480 & -0,0059 & 0,0816 & -0,0071 \\ -0,2211 & -0,2067 & -0,0276 & -0,1140 & -0,0063 \end{bmatrix} * \begin{bmatrix} \Delta E_{G1} \\ \Delta E_{G2} \\ -\Delta t_{13} \\ -\Delta t_{24} \\ \Delta b_{sh} \end{bmatrix}$$
(4.29)

O valor da matriz de [*VCS*], calculada com o programa desenvolvido em FORTRAN, é dada em (4.30).

$$\begin{bmatrix} VCS \end{bmatrix} = \begin{bmatrix} 0,3546 & -0,0308 & -1,2682 & -0,0170 & -0,0049 \\ -0,0311 & 0,3948 & -0,0039 & -0,9045 & -0,0047 \\ 0,1517 & -0,0482 & 0,0190 & -0,0266 & -0,0077 \\ -0,0473 & 0,1480 & -0,0059 & 0,0816 & -0,0071 \\ -0,2211 & -0,2067 & -0,0276 & -0,1140 & -0,0063 \end{bmatrix}$$
(4.30)

A comparação entre os valores apresentados em (4.29) e (4.30) mostra que o programa desenvolvido neste trabalho também calcula os índices da matriz de [*VCS*] corretamente para a região de operação definida como sendo anormal.

Portanto, a utilização do programa AdeConT também é válida para sistemas com problemas de controle de tensão, como a relação oposta à usual entre a susceptância em derivação da barra 5 e a tensão nesta mesma barra.

As interações entre as barras com tensão controlada, representadas pela matriz [*VCS*] de (4.30), são apresentadas nas Tabelas 4.7 e 4.8.

№ e Nome da Barra de Tensão Controlada i	Tipo do Equip. de Controle da Tensão da Barra i	Tipo do Controle da Tensão na Barra i	№ e Nome das Barras Terminais dos Equipamentos de Controle de Tensão j
1 Barra1	Gerador	Remoto	2 Barra2, 3 Barra3, 4 Barra4, 5 Barra5
2 Barra2	Gerador	Remoto	1 Barra1, 3 Barra3, 4 Barra4, 5 Barra5
3 Barra3	LTC	Local	2 Barra2, 4 Barra4, 5 Barra5
4 Barra4	LTC	Local	1 Barra1, 3 Barra3, 5 Barra5
5 Barra5	Shunt	Local	1 Barra1, 2 Barra2, 3 Barra3 4 Barra4, 5 Barra5*

Tabela 4.7 – Equipamentos de Controle de Tensão com Efeito Oposto na Tensão da Barra Controlada i para [*VCS*] de (4.30)

*denota a barra terminal do equipamento associado à própria barra de tensão controlada

Tabela 4.8 – Barras de Tensão Controlada Afetadas de Forma Oposta pelo Equipamento de Controle de Tensão j para [*VCS*] de (4.30)

Barra Terminal do Equip. de Controle de Tensão j	Tipo do Equip. de Controle de Tensão j	Tipo do Controle de Tensão	№ e Nome das Barras de Tensão Controlada
1 Barra1	Gerador	Remoto	2 Barra2, 4 Barra4, 5 Barra5
2 Barra2	Gerador	Remoto	1 Barra1, 3 Barra3, 5 Barra5
3 Barra3	LTC	Local	1 Barra1, 2 Barra2, 4 Barra4, 5 Barra5
4 Barra4	LTC	Local	1 Barra1, 2 Barra2, 3 Barra3, 5 Barra5
5 Barra5	Shunt	Local	1 Barra1, 2 Barra2, 3 Barra3, 4 Barra4, 5 Barra5

* denota a barra de tensão controlada associado ao próprio equipamento de controle de tensão

Na Tabela 4.7, observa-se que a barra 1 terá sua tensão reduzida em função de um aumento de tensão nas barras 2, 3 e 4. Por outro lado, a tentativa de se aumentar o valor da tensão da barra 5, através do aumento da susceptância em derivação, provocaria uma diminuição de sua própria tensão e também das outras barras da rede, inclusive da barra 1, conforme se pode observar na Tabela 4.8. Portanto, aumento de tensão da barra 5, usando-se o capacitor em derivação

instalado na própria barra, só é possível através da redução de b_{sh}, que também aumentaria a tensão nas outras barras.

A análise da matriz de (4.30) apresentada na Tabela 4.8 mostra que a ação de controle que consiste em aumentar a tensão da barra cuja tensão seja a de referência, local ou remota conforme explicitado na tabela, terá o efeito esperado, excetuando-se a barra 5, que tem elemento diagonal negativo. Entretanto, essa mesma ação provocaria a redução de tensão em outras barras da rede. Por exemplo, se a ação for aumentar E_{G1} , haverá redução da tensão nas barras 2, 4 e 5; se houver aumento de E_{G2} , as tensões das barras 1, 3 e 5 serão reduzidas; a troca de tapes de qualquer um dos LTCs, no sentido de aumentar a tensão de tensão nas demais barras. Estas afirmações foram feitas considerando-se somente a atuação individual de cada equipamento para facilitar o entendimento da interação entre as barras com tensão controlada do sistema avaliado. Para analisar o efeito de várias ações de controle simultaneamente, seria necessário resolver (4.29).

4.3.3 Interação Entre os Equipamentos Controladores de Tensão

Os testes são feitos através de variação em um dos equipamentos de controle de tensão. Os outros dispositivos de controle de tensão têm seus valores mantidos como no ponto de operação original. O ponto de operação resultante é obtido por um algoritmo de fluxo de carga.

O sistema a ser avaliado é o sistema-teste de 7 barras já mostrado na Figura 4.2. O primeiro ponto de operação a ser considerado é o já apresentado na Tabela 4.5, referente à região normal de operação. A matriz de sensibilidade dos controles de tensão para este ponto de operação é a já dada em (4.28).

Os valores do módulo da tensão, apresentados na Tabela 4.9, correspondem ao ponto de operação resultante da ação de controle que consistiu em aumentar o valor da tensão de referência da barra 2 em 0,01 pu. Nesta mesma tabela estão mostrados os valores da variação de tensão nas barras do sistema, obtidos

através do programa de fluxo de carga e com o uso da matriz [*VCS*] de (4.9). Nesse caso, o vetor ΔC foi obtido calculando-se a diferença entre os valores do ponto de operação antes e após a ação de controle. Esses valores são apresentados na Tabela 4.10. A barra 5 é a única cuja tensão não é controlada para o sistema usado nesta seção. Logo, ΔV foi calculado com $\Delta b_{sh} = 0$. Isto porque a versão usada do programa ANAREDE neste trabalho não possui controle de tensão automático por meio deste tipo de equipamento. Entretanto, a sua inclusão no sistema de equações de [*VCS*] é importante, pois possibilita a avaliação da sua interação com os outros dispositivos do sistema.

N/ ^O	Módulo da [·]	Tensão (pu)	ΔV		
Bar.	V ₂ =1,010	V ₂ =1,020	Fluxo de Carga	Equação (4.9)	
1	1,050	1,050	0,000	0,0001	
2	1,010	1,020	0,010	0,0103	
3	1,000	1,004	0,004	0,0042	
4	1,000	1,000	0,000	0,0003	
5	1,018	1,020	0,002	0,0027	

Tabela 4.9 – ΔV Após Aumento de 0,01 pu na Tensão da Barra 2

A comparação entre os resultados apresentados na Tabela 4.9, mostra que o valor das tensões controladas no restante do sistema pode ser estimado com o uso da matriz de [*VCS*]. Os resultados apresentados na Tabela 4.10 foram obtidos com a inversão do procedimento anterior, ou seja, desta vez foi calculado o valor da variação dos parâmetros de controle a partir da variação da tensão nas barras controladas. A equação (4.9) foi usada novamente.

	Controle (Δ	C	
Tipo	V ₂ =1,010	V ₂ =1,020	Fluxo de Carga	Equação (4.9)
E_{G1}	1,049	1,054	0,005	0,0055
E_{G2}	1,066	1,069	0,003	0,0031
t ₁₃	1,053	1,046	-0,007	-0,0074
t ₂₄	1,002	1,015	0,013	0,0129
\mathbf{b}_{sh}	4,400	4,400	0,000	-0,0180

Tabela 4.10 – ΔC Após Aumento de 0,01pu na Tensão da Barra 2

A comparação entre os resultados apresentados na Tabela 4.10 mostra que os valores dos parâmetros de controle de tensão do sistema podem ser estimados com o uso da matriz de [*VCS*]. Observa-se também, que para se obter o aumento de tensão na barra 2, as tensões internas das máquinas foram aumentadas, confirmando que a barra está operando na região normal de operação. Um aumento na tensão E_{G2} resultou em um acréscimo do valor de sua tensão terminal V_2 . É importante observar que o valor da tensão E_{G1} também aumentou, mesmo não ocorrendo variação de sua tensão terminal. Entretanto, houve mudança no ângulo de E_{G1} de forma a reduzir a geração de potência reativa, a qual também acompanha a redução dos fluxos nos ramos de transmissão. A troca de tapes dos LTCs também foi apontada corretamente.

A partir da comparação entre os valores obtidos pelo programa de fluxo de carga e os calculados com o uso da matriz de [*VCS*], conclui-se que a análise simultânea das ações de controle de tensão, onde geradores e outros dispositivos são avaliados, pode ser realizada.

O segundo teste numérico consiste em reduzir o valor da tensão de referência do gerador 2 em 0,01 pu. Os resultados são apresentados nas Tabelas 4.11 e 4.12.

۸ <i>۱</i> ۵	Módulo da [°]	Tensão (pu)	ΔV		
Bar.	V ₂ =1,010	V ₂ =1,000	Fluxo de Carga	Equação (4.9)	
1	1,050	1,050	0,000	-0,0001	
2	1,010	1,000	-0,010	-0,0103	
3	1,000	0,996	-0,004	-0,0042	
4	1,000	1,000	0,000	-0,0003	
5	1,018	1,015	-0,003	-0,0027	

Tabela 4.11 – ΔV Após Redução de 0,01 pu na Barra 2

Os valores do módulo das tensões internas das máquinas foram reduzidos, acompanhando o decréscimo de tensão na barra 2, confirmando que a barra está operando na região normal de operação, uma vez que a redução na tensão E_{G2} resultou em uma diminuição do valor de sua tensão terminal V₂. Observe que o valor da tensão E_{G1} também diminuiu, mesmo com sua tensão terminal tendo variação nula. A variação ocorrida foi na fase de E_{G1} de forma a reduzir a geração

de potência reativa que também acompanha a redução dos fluxos nos ramos de transmissão.

Controle (pu)			ΔC		
Tipo	V ₂ =1,010	V ₂ =1,000	Fluxo de Carga	Equação (4.9)	
E_{G1}	1,049	1,044	-0,005	-0,0046	
E_{G2}	1,066	1,063	-0,003	-0,0021	
t ₁₃	1,053	1,060	0,007	0,0068	
t ₂₄	1,002	0,989	-0,013	-0,0134	
\mathbf{b}_{sh}	4,400	4,400	0,000	-0,0228	

Tabela 4.12 – ΔC Após Redução de 0,01 pu na Tensão da Barra 2

A análise numérica realizada anteriormente é repetida para o ponto de operação onde o sistema avaliado encontra-se na região de operação definida como sendo anormal, Tabela 4.6. O objetivo é verificar se o método de avaliação também é válido quando o sistema apresenta uma ou mais barras com controle de tensão, localizadas na região de operação classificada como sendo anormal, ou melhor, quando ao menos um dos equipamentos da rede apresenta controle de tensão reverso.

Os valores apresentados nas Tabelas 4.13 e 4.14 são referentes ao sistema mostrado na Figura 4.2, antes e após o aumento de tensão na barra 2 em 0,01 pu. A matriz de sensibilidade [*VCS*] usada para o cálculo dos vetores $\Delta V e \Delta C$ já foi dada em (4.30).

٨P	Módulo da	Tensão (pu)	ΔV		
Bar.	V ₂ =1,010	V ₂ =1,020	Fluxo de Carga	Equação (4.9)	
1	1,050	1,050	0,000	-0,0000	
2	1,010	1,020	0,010	0,0103	
3	0,984	0,983	-0,001	-0,0008	
4	0,917	0,921	0,004	0,0034	
5	0,571	0,566	-0,005	-0,0053	

Tabela 4.13 – ΔV Após Aumento de 0,01 pu na Tensão da Barra 2 – Região B

O resultado obtido para $\Delta V \mod o$ uso da matriz [*VCS*] está em conformidade com os valores obtidos pelo programa de fluxo de carga. Observa-se que mesmo aumentando-se o valor da tensão de referência da barra 2, o valor da tensão na barra 5 é reduzido, o que está de acordo com o sinal negativo no elemento (5,2). A variação de tensão da barra 5 (Tabela 4.13), resultante da ação de controle de tensão feita pelos dois geradores e pelo LTC conectado entre as barras 2 e 4, é dado por:

$$\Delta V_5 = [VCS_{(5,1)}] * \Delta E_{G1} + [VCS_{(5,2)}] * \Delta E_{G2} + [VCS_{(5,4)}] * (-\Delta t_{24}) = -0,0053 \text{ pu} \quad (4.31)$$

onde, os elementos da matriz de [VCS] foram extraídos de (4.30), e os de ΔC da Tabela 4.14.

Os resultados apresentados na Tabela 4.14 mostram que a determinação da variação dos parâmetros dos equipamentos de controle de tensão através da matriz de [*VCS*] é coerente. A diferença existente entre os resultados obtidos pelo programa de fluxo de carga e o calculado através de [*VCS*], pode ser reduzida considerando-se que não há variação no valor da susceptância em derivação ligada à barra de carga 5. Entretanto, a inclusão desta barra na matriz de sensibilidade, permite verificar a variação de sua tensão em função da variação dos parâmetros de controle dos outros dispositivos. Outra aplicação seria avaliar variações de tensão nas barras com tensão controlada em função de variações em b_{sh}. Portanto, possibilita estabelecer as interações existentes entre todos os dispositivos de controle de tensão que compõem o sistema avaliado.

Controle (pu)			ΔC		
Tipo	V ₂ =1,010	V ₂ =1,020	Fluxo de Carga	Equação (4.9)	
E _{G1}	1,952	1,954	0,002	-0,0001	
E_{G2}	1,498	1,522	0,024	0,0253	
t ₁₃	0,800*	0,800*	0,000	0,0005	
t ₂₄	0,900	0,901	0,001	-0,0002	
\mathbf{b}_{sh}	4,400	4,400	0,000	-0,0328	

Tabela 4.14 – ΔC Após Aumento de 0,01 pu na Barra 2 – Região B

* Limite inferior atingido.

Os valores apresentados nas Tabelas 4.15 e 4.16 são referentes ao sistema mostrado na Figura 4.2, antes e após a redução de tensão da barra 2 em 0,01 pu.

ΛP	Módulo da	Tensão (pu)	ΔV		
Bar.	V ₂ =1,010	V ₂ =1,000	Fluxo de Carga	Equação (4.9)	
1	1,050	1,050	0,000	0,0006	
2	1,010	1,000	-0,010	-0,0097	
3	0,984	0,984	0,000	0,0006	
4	0,918	0,914	-0,004	-0,0035	
5	0,571	0,577	0,006	0,0061	

Tabela 4.15 – ΔV Após Redução de 0,01 pu na Barra 2 – Região B

O resultado obtido para $\Delta V \mod 0$ uso da matriz [*VCS*] está em conformidade com os valores obtidos pelo programa de fluxo de carga. Observa-se que a redução da tensão da barra 2 resultou em um aumento de tensão na barra 5, mais uma vez de acordo com o sinal negativo do elemento (5,2).

Controle (pu)			ΔC		
Tipo	V ₂ =1,010	V ₂ =1,000	Fluxo de Carga	Equação (4.9)	
E _{G1}	1,952	1,948	-0,004	-0,0048	
E_{G2}	1,498	1,473	-0,025	-0,0255	
t ₁₃	0,800*	0,801	0,001	0,0010	
t ₂₄	0,900	0,900	0,000	0,0002	
\mathbf{b}_{sh}	4,400	4,400	0,000	0,0624	

Tabela 4.16 – ΔC Após Redução de 0,01 pu na Barra 2 – Região B

* Limite inferior atingido.

Os resultados apresentados na Tabela 4.16 mostram que a determinação da variação dos parâmetros dos equipamentos de controle de tensão através da matriz de [*VCS*], também é coerente quando o sistema está operando em condições de instabilidade de tensão, isto é, quando há no sistema equipamento(s) apresentando controle de tensão usual e / ou reverso.

A variação da tensão interna do gerador conectado à barra 2 (ΔC_2), calculada conhecendo-se também as variações de ΔC (Tabela 4.16), é dada por:

$$\Delta E_{G2} = (\Delta V_2 - [VCS_{(2,1)}] * \Delta E_{G1} + [VCS_{(2,3)}] * (-\Delta t_{13})) / [VCS_{(2,2)}] = -0,0250 \text{ pu} (4.32)$$

onde os elementos da matriz de [*VCS*] foram extraídos de (4.30), os de ΔV da Tabela 4.15.

4.3.4 Esforço Computacional para Sistemas de Grande Porte

O objetivo é avaliar a capacidade do programa desenvolvido em FORTRAN quando aplicado a sistemas reais e de grande porte, como é o caso do sistema elétrico brasileiro. Algumas das características do sistema analisado nesta seção são mostradas na Tabela 4.17. O ponto de operação é referente ao mês de abril de 1997 e, foi obtido usando-se as tolerâncias originalmente definidas pelo programa de análise de redes ANAREDE (potência ativa 1 MW, reativa 1 Mvar, erro da barra de tensão controlada 0,5%).

Parâmetros	Quantidade
Áreas	23
Barras	1.758
Circuitos	2.507
Geradores / Controle Remoto de Tensão	169 / 4
Transformadores / LTCs	692 / 205
Capacitor em derivação	309
Carga Ativa Total	27.904,6 MW
Carga Reativa Total	13.157,9 Mvar

Tabela 4.17 - Características do Sistema S-SE-CO Brasileiro

A solução desse sistema considera o funcionamento de todos os dispositivos de controle de tensão listados na Tabela 4.17. Os limites de geração de potência reativa dos geradores e compensadores síncronos também são considerados.

A principal razão da escolha desse sistema ocorreu em virtude de representar o ponto de operação algumas horas antes da ocorrência de um blecaute, motivado por problemas de segurança de tensão.

A dimensão da matriz de [*VCS*] para esse sistema foi de 81, onde foram avaliadas as seguintes barras com tensão controlada da área rio:

- i. Gerador / compensador síncrono com controle remoto de tensão: 19;
- ii. LTCs com controle local ou remoto: 28;
- iii. Capacitor em derivação: 34.

Os dois focos da análise realizada nesta seção foram levantar as características da matriz [*VCS*], e avaliar o comportamento do programa quando aplicado a sistemas de grande porte: testar algoritmo de armazenamento compacto, tempo de solução e principalmente, verificar se a solução apresentada é correta. A escolha da área Rio foi feita para a avaliação apresentada na seção 4.5.4.

O tempo gasto para se fazer o cálculo de [*VCS*] para a rede avaliada nesta seção foi de 3 décimos de segundo, tempo inferior ao gasto para a solução do fluxo de carga pelo programa ANAREDE, que obteve convergência após realizar duas iterações usando-se o método de Newton – Raphson, em 1 segundo e 35 décimos. As principais características do microcomputador usado são: microprocessador Pentium IV; CPU de 2,80 GHz e 1,00 Gb de memória RAM.

O armazenamento dos elementos da matriz de [VCS] foi feito utilizando-se um método de compactação aplicado a matrizes esparsas. Entretanto, os resultados obtidos para esse sistema mostraram que a matriz de [VCS] não é esparsa. Mesmo considerando-se como sendo nulos elementos com módulo inferior a 0,000001, a redução do espaço de armazenamento não chegou a 10% do que se necessitaria para armazenar toda a matriz. Diminuindo-se a tolerância para 0,00005, obteve-se uma economia de 12,56%. Esta redução também não justifica o esforço computacional necessário para se fazer o armazenamento compactado.

A restrição da análise a uma determinada área do sistema apontada pelo programa computacional EstabTen, de cálculo das condições nodais de estabilidade de tensão, talvez através da utilização de redes equivalentes para as

outras áreas, certamente resolveria a questão de espaço de armazenamento. Entretanto, falta investigar o que a análise usando-se autovalores e autovetores sobre a matriz [*VCS*] irá indicar. Em [42] esta técnica foi utilizada com sucesso para a determinação da existência ou não de controles conflitantes, inclusive em sistemas apresentando grande quantidade de equipamentos de controle de tensão atuando simultaneamente.

Outra possibilidade consiste na restrição do número de equações de controle (nc), em função do estabelecimento de prioridade para a atuação dos equipamentos. Pode-se selecionar inicialmente aqueles que apresentarem maior influência sobre a(s) área(s) com problemas de estabilidade de tensão, apontadas pelo programa computacional EstabTen, como já dito.

4.4 Análise Modal da Matriz [VCS]

A essência da análise modal reside na determinação da estrutura modal de uma determinada matriz *A*, isto é, no cálculo dos seus autovalores e autovetores associados, os quais caracterizam a estabilidade local de um determinado ponto de operação do sistema.

4.4.1 Autovalores

Os autovalores de uma matriz *A* são dados pelos valores do parâmetro escalar λ para o qual existem soluções não triviais para (4.33):

$$A \cdot \phi = \lambda \cdot \phi \tag{4.33}$$

onde *A* é uma matriz (n x n) e real para sistemas físicos tal como um sistema elétrico, e ϕ é um vetor de dimensão (n x 1).

Para encontrar os autovalores, (4.33) pode ser reescrita da seguinte forma:

$$(A - \lambda I) \cdot \phi = 0 \tag{4.34}$$

de solução não trivial:

$$\det \left(A - \lambda I \right) = 0 \tag{4.35}$$

A expansão de (4.34) fornece a equação característica, da qual as n soluções $\lambda = \lambda_1, \lambda_2, ..., \lambda_n$ são os autovalores da matriz *A*. Esses autovalores podem ser reais ou complexos. Se *A* for real, os autovalores complexos ocorrerem sempre em pares conjugados. Os autovalores e autovetores de uma matriz simétrica são reais [3].

4.4.2 Autovetores

Para qualquer autovalor λ_i , o vetor coluna ϕ_i que satisfaz (4.33) é definido como sendo o autovetor à direita da matriz *A* associado ao autovalor λ_i . Desta forma, tem-se:

$$A \cdot \phi_i = \lambda_i \cdot \phi_i \qquad i = 1, 2, \dots, n \qquad (4.36)$$

onde,

 $\phi_{i} = \begin{bmatrix} \phi_{1i} \\ \phi_{2i} \\ \vdots \\ \phi_{ni} \end{bmatrix}$ (4.37)

Define-se a matriz ϕ constituída a partir dos autovetores à direita da matriz A:

$$\phi = \begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_n \end{bmatrix}$$
(4.38)

O mesmo procedimento é aplicado para definir o vetor linha, de dimensão (1 x n), que satisfaz (4.39), como sendo o autovetor à esquerda da matriz *A* associado ao autovalor λ_i . Desta forma, tem-se:

 $\psi_i \cdot A = \psi_i \cdot \lambda_i$

onde,

$$\psi_{i} = \begin{bmatrix} \psi_{i1} & \psi_{i2} & \cdots & \psi_{in} \end{bmatrix}$$
(4.40)

(4.39)

$$\Psi = \begin{bmatrix} \Psi_1 \\ \Psi_2 \\ \vdots \\ \Psi_n \end{bmatrix}$$
(4.41)

A partir do cálculo dos autovalores da matriz *A* e dos autovetores à direita e à esquerda associados, é também possível determinar os fatores de participação das variáveis de estado para os modos críticos do sistema. O fator de participação é definido como sendo o produto, elemento por elemento, dos autovetores à direita e à esquerda da matriz *A*. Se λ_i é o *i*-ésimo autovalor de *A* e, ϕ_i e ψ_i são, respectivamente, os autovetores à direita e à esquerda associados a λ_i , o fator de participação (*FP*) da variável de estado *n* no modo *i* é definido por:

$$FP_{ni} = \phi_{in} \cdot \psi_{ni} \tag{4.42}$$

Os fatores de participação são quantidades adimensionais que representam a quantificação da participação relativa de cada estado dentro de um certo modo crítico em análise.

4.5 Fator de Participação de Equipamentos Controladores de Tensão

O objetivo principal é verificar se a análise modal aplicada à matriz de sensibilidade dos controles de tensão proporcionará uma análise mais simples e rica do que a inspeção da própria matriz [VCS]. Por exemplo, um ponto importante é saber quais equipamentos de controle apresentam maior eficácia durante o reforço de tensão. Esta informação permitirá selecionar quais barras com tensão controlada da rede deverão fazer parte da matriz de [VCS], reduzindo-se sua dimensão. É verdade que para isto, [VCS] já deve ter sido determinada, porém poderá reduzir o esforço computacional durante a fatoração, caso seja evidenciado que a ação de uma parcela significativa dos controles envolvidos possa ser dispensada. É possível também determinar os autovalores da matriz sem que esta seja determinada explicitamente [21].

As interações entre os diversos dispositivos de controle também deverão ser evidenciadas, permitindo evitar que ações de controle conflitantes ou redundantes sejam feitas. Para isto, deve-se determinar os fatores de participação associados aos autovalores críticos de [*VCS*], isto é, para os menores autovalores.

A participação de cada dispositivo de controle dentro do respectivo modo fornece informações importantes sobre quais equipamentos deverão ser selecionados para efetuar medidas de correção do perfil de tensão do sistema. Estas informações também são obtidas através da análise dos autovetores à direita e à esquerda, associados aos autovalores críticos, com magnitude próxima a zero, da matriz de sensibilidade dos controles de tensão.

A análise de (4.43), a chamada fórmula de Schür [22], permite concluir que a matriz Jacobiana expandida [*J*] torna-se singular no mesmo ponto em que uma das duas matrizes, [*A*] ou [*VCS*], torna-se singular. Este resultado permite afirmar que a singularidade da matriz Jacobiana expandida seja avaliada através da singularidade da matriz de sensibilidade dos controles de tensão [*VCS*], que pode ser originada pela dependência linear das equações que modelam os equipamentos de controle.

$$det [J] = det [A] \cdot det [VCS]$$
(4.43)

Na avaliação da participação dos equipamentos de controle de tensão considerase que o sistema não esteja em seu ponto de máximo carregamento. Portanto, tem-se que det [*A*] é diferente de zero. Desta forma, é possível avaliar a singularidade da matriz [*J*] a partir da análise modal da matriz de sensibilidade de controles [*VCS*]. Quando det [*VCS*] for nulo, det [*J*] também será, pelo menos teoricamente.

Supondo-se que a matriz de [*VCS*] tenha todos os seus autovalores distintos e representados por $\lambda_1, \lambda_2, ..., \lambda_{nc}$, onde nc é o número total de barras com tensão controlada, esta poderá ser representada por uma matriz diagonal através da transformação de similaridade descrita anteriormente. De (4.9) pode-se escrever que:

$$[\Delta C] = [VCS]^{-1} \cdot [\Delta V] \tag{4.44}$$

A matriz de sensibilidade dos controles de tensão [VCS], pode ser expressa por:

$$[VCS] = \phi \cdot \Lambda \cdot \psi \tag{4.45}$$

onde,

autovetor à direita de [VCS]

 ψ autovetor à esquerda de [*VCS*]

Λ matriz diagonal constituída pelos autovalores de [VCS]

De (4.45), tem-se que:

$$[VCS]^{-1} = \phi \cdot \Lambda^{-1} \cdot \psi \tag{4.46}$$

De (4.44) e (4.46), pode-se escrever:

$$\Delta C = \phi \cdot \Lambda^{-1} \cdot \psi \cdot \Delta V \tag{4.47}$$

ou:

$$\Delta C = \sum_{i} \frac{\phi_{i} \cdot \psi_{i}}{\lambda_{i}} \cdot \Delta V$$
(4.48)

onde ϕ_i é a i-ésima coluna do autovetor à direita da matriz de [*VCS*], e ψ_i a i-ésima linha do autovetor à esquerda. Cada autovalor λ_i , e os correspondentes autovetores à direita e à esquerda, definem o i-ésimo modo do sistema. A i-ésima variação de tensão modal é dada por:

$$\Delta V_{mi} = \kappa_i \cdot \phi_i \tag{4.49}$$

onde,

$$\kappa_i^2 = \sum_j \phi_{ji}^2 = 1 \tag{4.50}$$

com ϕ_{ii} sendo o j-ésimo elemento de ϕ_1

A i-ésima variação de controle modal correspondente é:

$$\Delta C_{mi} = \frac{1}{\lambda_i} \cdot \Delta V_{mi}$$
(4.51)

A equação (4.51) indica que quando a variação de tensão ocorre no mesmo sentido de ϕ_i , a variação correspondente de controle também ocorre no mesmo sentido, e o valor é amplificado por um fator que é igual ao inverso do valor de λ_i . Neste sentido, o valor de cada autovalor λ_i determina a debilidade do controle modal correspondente. Quanto menor for o valor de λ_i mais frágil é o controle modal correspondente. Se $|\lambda_i| = 0$, o i-ésimo controle modal entra em colapso porque qualquer mudança no valor da tensão modal causaria uma variação infinita no parâmetro de controle [21].

Em (4.48), fazendo-se $\Delta V = e_k$, onde todos os elementos de e_k são nulos, exceto o k-ésimo, que é igual a 1:

$$\Delta C = \sum_{i} \frac{\phi_{ki} \cdot \psi_{ik}}{\lambda_{i}}$$
(4.52)

onde ψ_{ik} é o k-ésimo elemento de ψ_i .

A relação de sensibilidade entre a variável de controle de estado associada à barra com tensão controlada k, é dada por:

$$\frac{\partial C_{k}}{\partial V_{k}} = \sum_{i} \frac{\phi_{ki} \cdot \psi_{ik}}{\lambda_{i}} = \sum_{i} \frac{FP_{ki}}{\lambda_{i}}$$
(4.53)

De (4.53) pode-se constatar que para não se ter grandes variações em ΔC , devese atribuir variações mínimas, ou até mesmo nulas, para as barras onde $|\lambda|$ é muito pequeno, próximo a zero. Por outro lado, na prática, há um valor mínimo de incremento em ΔC para cada barra com tensão controlada. Portanto, as que apresentarem elementos de ΔC com valores inferiores a esse mínimo, deverão ser desconsideradas. Verifica-se também em (4.53) que a sensibilidade da variável de estado adicional, C_k em relação ao erro da equação de controle V_k, é obtida através de uma combinação de todos os autovalores (modos) da matriz de sensibilidade dos controles de tensão [*VCS*]. O numerador do somatório da equação (4.53) é igual ao fator de participação FP_{ki}. Em outras palavras, ele determina a participação do k-ésimo dispositivo de controle no modo λ e viceversa. A partir de (4.47), pode-se escrever que:

$$\psi \cdot \Delta \mathsf{V} = \Lambda \cdot \psi \cdot \Delta \mathsf{C} \tag{4.54}$$

fazendo-se:

$$\mathbf{v} = \mathbf{\Lambda} \cdot \boldsymbol{\varsigma} \tag{4.55}$$

com v sendo o vetor da variação modal das barras com tensão controlada, e o vetor ς representando a variação modal das variáveis de estado em relação aos equipamentos de controle. Para o i-ésimo modo, tem-se que:

$$v_{i} = \lambda_{i} \cdot \varsigma_{i} \tag{4.56}$$

Se $\lambda_i = 0$ qualquer variação em C_i não exerce nenhuma variação sobre v_i, logo não seria possível alterar o valor da variação modal da equação de controle (tensão modal). A presença de um autovalor nulo também indica que sua linha na matriz transformada é nula. Então, há pelo menos uma equação linearmente dependente das outras e, portanto, o sistema é indeterminado [42]. Por outro lado, quando existir pelo menos um autovalor com sinal negativo, para um certo modo i, uma variação positiva em _{Gi} resultaria em uma variação negativa em v_i. Portanto, a análise com base nos autovalores e autovetores associados à matriz de sensibilidade dos controles de tensão [*VCS*], pode ser utilizada para determinar quais são os equipamentos controladores de tensão da rede elétrica que apresentam efeito de ação de controle de forma oposta à usual.

4.5.1 Sistema-Teste de 5 Barras

O cálculo dos autovalores e de seus respectivos autovetores à esquerda e à direita, foi feito através da função *eig* do programa MATLAB, versão 6.5. A normalização dos autovetores também é realizada por este programa. A função *eig* utiliza o método conhecido como QR, que determina todos os autovalores de uma matriz assimétrica. Este algoritmo é indicado para sistemas de pequeno e médio porte e, portanto, o seu uso aqui é feito com o intuito de verificar o que essa análise pode fornecer sobre a matriz de [*VCS*]. Para sistemas de grande

porte existem métodos específicos, como por exemplo, o algoritmo de solução parcial de autovalores (SPA) [42].

A determinação dos fatores de participação foi feita através de um algoritmo desenvolvido no mesmo ambiente do programa MATLAB. A verificação da convergência para o cálculo dos autovetores também foi testada com a utilização deste algoritmo.

Os dados da matriz [*VCS*] foram transportados do programa de adequação dos controles de tensão (AdeConT) com dupla precisão.

O primeiro sistema a ser analisado é o mostrado na Figura 4.1, para o ponto de operação definido como sendo pertencente à região normal, dado pela Tabela 4.1. A matriz de sensibilidade dos controles de tensão determinada para esse ponto de operação, é dada em (4.17). Na Tabela 4.18, mostram-se os resultados obtidos através da avaliação dos autovalores e de seus respectivos autovetores associados.

Tabela 4.18 – Resultados da Análise Modal para a Matriz de (4.17)

Autova- lores (λ _i)	Autov. à Direita (∳₁)	Fator de Part. (FP₁)	Autov. à Direita (ϕ_2)	Fator de Part. (FP ₂)	Autov. à Direita (_{Ø3})	Fator de Part. (FP ₃)
λ ₁ = 1,1620	0,5168	0,4513	0,7453	0,5405	-0,0134	0,0083
$\lambda_2 = 0,3932$	0,5432	0,5328	-0,6648	0,4595	-0,0125	0,0077
$\lambda_3 = 0,0242$	0,6617	0,0159	0,0512	0,0001	0,9998	0,9840

Os autovalores calculados são mostrados na primeira coluna da Tabela 4.18. Observe que o somatório dos valores dos elementos do vetor fator de participação é unitário, isto é, igual a 100%. O fator de participação *FP*₃ calculado em função do menor autovalor de [*VCS*], ou seja, λ_3 , indica que a maior parcela, 98,40%, é referente à barra 5, onde está instalado o capacitor em derivação, terceira linha de (4.17). Portanto, esta é a barra que se encontra mais próxima da região de operação anormal. Os resultados para os autovalores 1 e 2 mostram que a participação dos LTCs é praticamente a mesma em todos os modos. Os valores positivos de λ estão de acordo com o valor do determinante da matriz de [*VCS*] para o ponto de operação analisado, det [*VCS*] = 0,0111. Isto vem a confirmar que todos os equipamentos estão operando na região definida como sendo normal.

O menor autovalor λ_3 indica que existe uma barra do sistema avaliado apresentando forte sensibilidade a variações de parâmetros usados para controle de tensão, o que representa um modo crítico a ser estudado. O fator de participação calculado para este autovalor, *FP*₃, indica que a barra que apresenta maior representatividade para este modo é a barra 5, a qual está conectada a susceptância em derivação. Esta afirmação pode ser comprovada substituindo-se o resultado apresentado na Tabela 4.18 em (4.51). Portanto, uma pequena variação no valor de b_{sh} provocaria significativa alteração no valor da tensão da barra 5 e vice-versa.

A partir da análise dos autovetores à direita pode-se verificar o comportamento de todas as grandezas do sistema (variáveis de estado), quando um determinado modo é perturbado [37]. O resultado apresentado pelo autovetor à direita ϕ_3 , que corresponde ao *mode-shape* (ou fator de observabilidade), cuja visualização gráfica pode ser feita através da Figura 4.3, mostra que a resposta das variáveis de estado em relação a uma perturbação do modo em estudo é coerente com os resultados obtidos a partir da análise dos fatores de participação, mostrados graficamente na Figura 4.4.

Figura 4.3 – *Mode-Shape* de λ_3 da Matriz de (4.17)

Figura 4.4 – Fator de Participação Calculado para λ_3 da Matriz de (4.17)

Os resultados da análise modal aplicada à matriz [*VCS*], para a região de operação definida como sendo anormal, são mostrados na Tabela 4.19, onde se observa que o menor autovalor λ_3 , é também o que possui sinal negativo. A presença deste valor negativo está de acordo com o valor do determinante da matriz de [*VCS*], que para (4.19) é de –0,0080. O elemento do vetor fator de participação com maior valor (94,54%) aponta diretamente para a terceira linha da matriz de [*VCS*], indicando que a causa do problema de instabilidade está na barra 5, cujos índices das adequações de controle de tensão, estão representados na terceira linha / coluna da matriz de (4.19).

Autova-lores (λ_i)	Autov. à Direita (φ₁)	Fator de Part. (FP₁)	Autov. à Direita (φ₂)	Fator de Part. (FP ₂)	Autov. à Direita (ø₃)	Fator de Part. (FP ₃)
λ ₁ = 0,6181	0,7120	0,7720	0,1531	0,2036	0,0133	0,0242
λ ₂ = 0,3678	-0,4425	0,2249	0,3370	0,7447	0,0171	0,0304
λ_3 = -0,0351	-0,5452	0,0031	-0,9290	0,0517	0,9998	0,9454

Tabela 4.19 – Resultados da Análise Modal para a Matriz de (4.19)

O resultado apresentado pelo autovetor à direita ϕ_3 , está em conformidade com o resultado obtido a partir da análise do fator de participação, conforme se pode constatar através das Figuras 4.5 e 4.6.

Figura 4.5 – Fator de Participação Calculado para λ_3 da Matriz de (4.19)

Figura 4.6 – *Mode-Shape* de λ_3 da Matriz de (4.19)

O segundo sistema a ser analisado nesta seção é o sistema-teste de 7 barras mostrado na Figura 4.2, modificado através da inclusão das reatâncias internas das máquinas. Para o ponto de operação definido como sendo pertencente à região normal, dado pela Tabela 4.3, foi determinada a matriz de [*VCS*] dada em (4.28). Na Tabela 4.20, mostram-se os resultados obtidos através do cálculo dos autovalores e dos autovetores associados ao menor autovalor.

Tabela 4.20 – Resultados da Análise Modal para a Matriz de (4.28)

Autovalores $(\lambda_i)^*$	Autovetor à Direita (ø₅)	Autovetor à Esquerda (ψ₅)	Fator de Parti- cipação (FP₅)
λ ₁ = 2,7971	-0,0239	0,0153	-0,0004
$\lambda_2 = 0,6771$	-0,0245	0,0151	-0,0004
λ ₃ = 0,3345 + j 0,2826	-0,0128	-0,6164	0,0079
λ ₄ = 0,3345 – j 0,2826	-0,0119	-0,6152	0,0073
$\lambda_5 = 0,0242$	0,9993	0,9862	0,9855

*det[VCS] = 0,0088

O fator de participação foi calculado para o menor autovalor em módulo, λ_5 . Observe que os valores dos autovalores $\lambda_3 e \lambda_4$ são complexos conjugados, e que a barra 5 continua sendo apontada como tendo a maior participação neste modo. O resultado apresentado pela avaliação do autovetor à direita ϕ_5 indica o mesmo resultado da análise do fator de participação, conforme se pode observar nas Figuras 4.7 e 4.8.

Figura 4.7 – Fator de Participação Calculado para λ_5 da Matriz de (4.28)

Figura 4.8 – *Mode-Shape* de λ_5 da Matriz de (4.28)

Os resultados da análise modal aplicada à matriz [VCS], para a região de operação definida como sendo anormal, são mostrados na Tabela 4.21.

Autovalores $(\lambda_i)^*$	Autovetor à Direita (ø₅)	Autovetor à Esquerda (ψ_5)	Fator de Parti- cipação (FP₅)
λ ₁ = 0,2217 + j 0,4311	0,0694	0,0472	0,0032
λ ₂ = 0,2217 – j 0,4311	0,0523	0,0502	0,0029
λ ₃ = 0,2176 + j 0,2966	0,0153	1,7973	0,0268
λ ₄ = 0,2176 – j 0,2966	0,0180	1,7293	0,0325
$\lambda_5 = -0,0349$	0,9959	0,9392	0,9346

Tabela 4.21 – Resultados da Análise Modal para a Matriz de (4.30)

^{*}det [VCS] = -0,0011

O vetor fator de participação calculado para o menor dos autovalores em módulo, λ_5 , também aponta para a barra 5. O sinal negativo deste autovalor confirma que a barra 5 está na região de operação anormal. A análise do autovetor à direita ϕ_5 , também apresenta o mesmo resultado, como se pode constatar comparando-se os dois resultados mostrados nas Figuras 4.9 e 4.10.

Figura 4.9 – Fator de Participação Calculado para λ_5 da Matriz de (4.30)

Figura 4.10 – *Mode-Shape* de λ_5 da Matriz de (4.30)

Os resultados apresentados nesta seção mostram que a análise com base nos autovalores e autovetores associados, aplicada à matriz de [VCS], pode indicar corretamente se uma rede tem ou não problemas de controle de tensão. Por outro lado, o fator de participação associado ao menor autovalor, permite estabelecer a participação relativa de cada equipamento de controle de tensão para o respectivo modo. Portanto, possibilita identificar qual a barra controlada com

maior problema. Outro resultado importante, em função da existência de autovalores com sinal negativo, é saber-se que ações de controle de tensão têm conseqüência oposta à usual.

4.5.2 Sistema-Teste de 12 Barras

A configuração do sistema-teste de 12 barras analisado nesta seção é mostrada na Figura 4.11. O ponto de operação para a análise desse sistema é mostrado na Tabela 4.22.

Figura 4.11 – Diagrama Unifilar do Sistema-Teste de 12 Barras

Ba	arra	Te	ensão	Ger	ação	Ca	arga	Shunt	
N ^o	Tipo	V (pu)	heta (graus)	P (MW)	Q (Mvar)	P (MW)	Q (Mvar)	Q (Mvar)	
1	PQV	1,040	0,0	_	_	_	_	_	
2	PQV	1,025	9,3	_	_	_	_	_	
3	PQV	1,025	4,7	-	-	-	_	-	
4	PQ	1,026	-2,2	-	-	-	_	-	
5	PQ	0,996	-4,0	_	_	125,0	50,0	_	
6	PQ	1,013	-3,7	_	_	90,0	30,0	_	
7	PQ	1,026	3,7	_	_	-	_	_	
8	PQ	1,016	0,7	_	_	100,0	35,0	_	
9	PQ	1,032	2,0	-	-	_	_	-	
10	θ	1,101	7,2	71,6	37,9	-	_	_	
11	Ρ	1,086	26,3	163,0	57,3	-	_	_	
12	Р	1,017	14,0	85,0	3,1	_	_	_	
	t ₁₄ = t ₂₇ = t ₃₉ = 1,000 pu								

Tabela 4.22 - Dados do Sistema-Teste de 12 Barras

De	Para	Resistência (%)	Reatância (%)	Suscept. (%)	Bar. Controlada
1	4	-	5,76	-	4
2	7	-	6,25	-	7
3	9	-	5,86	-	9
4	5	1,00	8,50	17,60	-
4	6	1,70	9,20	15,80	-
5	7	3,20	16,10	30,60	-
6	9	3,90	17,00	35,80	-
7	8	0,85	7,20	14,90	-
8	9	1,19	10,80	20,90	-
10	1	-	20,00	-	-
11	2	-	20,00	-	-
12	3	-	20,00	-	-

A tolerância para o erro de potência ativa e reativa foi ajustada para 0,01 MW e Mvar respectivamente. Na primeira avaliação feita para esse sistema considerouse o controle de tensão apenas por geradores, isto é, com os LTCs fixos. A matriz de sensibilidade dos controles de tensão [*VCS*], calculada para o ponto de operação mostrado na Tabela 4.22, é dada em (4.57).

$$\begin{bmatrix} \Delta V_1 \\ \Delta V_2 \\ \Delta V_3 \end{bmatrix} = \begin{bmatrix} 0,7816 & 0,3870 & 0,3496 \\ 0,3558 & 0,8471 & 0,3766 \\ 0,3347 & 0,3915 & 0,7545 \end{bmatrix} * \begin{bmatrix} \Delta E_{G1} \\ \Delta E_{G2} \\ \Delta E_{G3} \end{bmatrix}$$
(4.57)

Os valores positivos dos elementos de [*VCS*] indicam que o sistema está operando na região de operação definida como sendo normal. Os fatores de participação calculados em função de cada autovalor λ_i para a matriz de sensibilidade dos controles de tensão, dada em (4.57), são apresentados na Tabela 4.23. O objetivo é verificar a possibilidade de se estabelecer uma relação entre os autovalores e os geradores.

Tabela 4.23 – Resultados	s da Análise	Modal para	a Matriz de	(4.57)
--------------------------	--------------	------------	-------------	--------

_				
	Autovalores $(\lambda_i)^*$	Fator de Parti- cipação (FP₁)	Fator de Parti- cipação (FP ₂)	Fator de Parti- cipação (FP ₃)
	λ ₁ = 1,5285	0,3135	0,6359	0,0507
	$\lambda_2 = 0,4429$	0,3803	0,3393	0,2804
	$\lambda_3 = 0,4118$	0,3062	0,0248	0,6690
_				

*det [VCS] = 0,2788
Os resultados mostram que o gerador ligado à barra 3 é o maior responsável, 66,90%, pelo menor autovalor λ_3 . O fator de participação calculado para o segundo menor autovalor, λ_2 , indica que ele é referente ao gerador conectado à barra 1. E por fim, *FP*₁ aponta uma maior participação do gerador da barra 2. Os resultados da análise dos autovetores à direita, calculados para os três autovalores da matriz de [*VCS*] dada em (4.57), conferem com os resultados da análise dos fatores de participação calculados para a mesma matriz, conforme se pode observar através das Figuras 4.12, 4.13 e 4.14. Entretanto, observa-se na Figura 4.13 que as variáveis de estado associadas aos geradores 2 e 3 têm comportamento oposto à variável associada ao gerador 1, em relação a uma perturbação do modo em estudo.

A interpretação deste resultado pode ser elaborada a partir da análise do comportamento de geradores em relação a variações de fluxo de potência nos ramos de transmissão. Considerando-se, por exemplo, a elevação da tensão de referência da barra 1, através do aumento de E_{G1} , os geradores 2 e 3 tenderiam a responder através de redução de suas tensões de excitação, E_{G2} e E_{G3} , para manter as suas respectivas tensões de referência no valor especificado. Em outras palavras, um aumento da geração de potência reativa do gerador 1 possibilita uma redução de potência reativa dos geradores 2 e 3. Esta análise pode ser feita diretamente sobre a matriz de [*VCS*] dada em (4.57). Nas Figuras 4.12 e 4.14, também se pode observar que o gerador 2 é mais suscetível a variações de tensão (maior ΔE_{G2}). Na Figura 4.13, observa-se que E_{G1} terá maior variação do que E_{G3} , quando ocorrer uma mudança em E_{G2} .

Figura 4.12 – *Mode-Shape* de λ_1 da Matriz de (4.57)

Figura 4.13 – *Mode-Shape* de λ_2 da Matriz de (4.57)

Figura 4.14 – *Mode-Shape* de λ_3 da Matriz de (4.57)

A carga do sistema foi aumentada gradativamente com o intuito de se investigar o comportamento dos autovalores quando há aumento da demanda de carga do sistema de forma homogênea. Na Tabela 4.24, mostram-se os autovalores calculados em função deste aumento. A visualização gráfica dos resultados apresentados nesta tabela pode ser feita na Figura 4.15.

Tabela 4.24 – Autovalores do Sistema-Teste de 12 Barras para Diversos Níveis de Carga

Carga (%)	150	160	170	180	185	187,5	189	189,10	189,15
λ_1	2,3695	2,9458	4,1482	8,0274	17,045	42,338	529,84	2384,8	-3168,6
λ_2	0,4829	0,4941	0,5055	0,5168	0,5223	0,5250	0,5267	0,5268	0,5268
λ_3	0,4048	0,4029	0,4010	0,3990	0,3980	0,3975	0,3971	0,3971	0,3971

Figura 4.15 – Autovalores do Sistema-Teste de 12 Barras vs. Aumento Percentual da Carga

Observando-se os gráficos apresentados na Figura 4.15, verifica-se claramente que ao se aumentar o carregamento da rede, um dos autovalores de [VCS] (o maior), tem seu valor aumentado de forma exponencial, enquanto que os outros dois (os menores), permanecem praticamente constantes. Este aumento ocorre até o ponto em que há uma mudança súbita de sinal do maior autovalor (para 89,15% de aumento da carga da rede), indicando que o controle de tensão em uma das barras do sistema passa a ocorrer de forma reversa. Portanto, o autovalor que apresenta maior módulo, também pode caminhar em direção à região de instabilidade quando se considera que a carga do sistema é aumentada de forma homogênea. Mais uma vez, comprova-se que não é adequado monitorar somente os menores autovalores.

Os autovalores e os fatores de participação correspondentes calculados após o aumento da carga do sistema em 50 e 89,15% são mostrados na Tabela 4.25.

Carga	150%	150% FP ₁		FP ₃	189,15%	FP ₁	FP_2	FP ₃
λ1	2,3695	0,4313	0,5639	0,0048	-3168,6	0,5699	0,4291	0,0010
λ_2	0,4829	0,3110	0,2975	0,3916	0,5268	0,2331	0,3464	0,4205
λ_3	0,4048	0,2577	0,1386	0,6037	0,3971	0,1970	0,2245	0,5785

Tabela 4.25 – FPs Após Aumento da Carga do Sistema-Teste de 12 Barras

O fator de participação FP_1 , calculado p ara o menor autovalor após aumento de 89,15%, mostra que o gerador conectado a barra 1 é o responsável pelo pior modo da rede. Entretanto, para os outros pontos de operação, ou seja, quando o carregamento da rede é inferior a 189,10%, este mesmo gerador está vinculado ao melhor modo, isto é, todos os fatores de participação calculados para o maior autovalor FP_1 , apontaram para ele. Portanto, medidas corretivas deveriam ser tomadas para as barras relacionadas aos autovalores mais suscetíveis a variações da rede, no caso deste exemplo, da carga. A dificuldade é que não se sabe, a priori, qual é esse autovalor.

Um outro teste numérico ilustrativo utiliza os dados apresentados na Tabela 4.26, que foram obtidos após o aumento em 50% da carga do sistema de 12 barras apresentado na Figura 4.11, mas agora a atuação dos LTCs é considerada. Os dados de linha não foram alterados e já foram apresentados na Tabela 4.22. Os valores da tensão especificada para as barras com tensão controlada correspondem aos apresentados na Tabela 4.26.

В	arra	Te	nsão	Gei	ração	Ca	rga	Shunt
N ^o	Tipo	V (pu)	heta (graus)	P (MW)	Q (Mvar)	P (MW)	Q (Mvar)	Q (Mvar)
1	PQV	1,040	0,0			_	_	_
2	PQV	1,025	-2,2	_	_	_	_	_
3	PQV	1,025	1,025 –6,4		_	_	_	_
4	PQ	1,026 –7,0		_	_	_	_	-
5	PQ	0,976	-13,0	_	_	187,5	75,0	_
6	PQ	0,998	-12,1	_	_	135,0	45,0	-
7	PQ	1,026	-7,7	-	-	_	-	-
8	PQ	1,005	-11,6	_	_	150,0	52,5	_
9	PQ	1,032	-9,0	_	_	_	_	_
10	θ	1,278	20,4	231,1	193,5	_	_	-
11	Р	1,141	14,0	163,0	89,1	_	_	_
12 P 1,059 2,7				85,0	24,5	_	_	_
			$t_{14} = 0,$	978 ; t ₂₇ = 0	0,983 ; t ₃₉ = 0),989 pu		

Tabela 4.26 – Dados do Sistema-Teste de 12 Barras

Os resultados da aplicação do programa EstabTen para todas as barras do sistema-teste de 12 barras, são apresentados na Tabela 4.27. Nesta tabela,

observa-se que todas as barras com tensão controlada possuem índices positivos, o que significa dizer que o sistema está trabalhando na região de operação definida como sendo normal.

Nº da	Nome	Tensão	Equip	Tino	Si	Sm	β	М
Barra	Nome	(pu)	Lyuip.	npo	(MW)	(MW)	(graus)	(%)
1	BARRA01	1,040	Р	0	-	5,3	134,9	-
2	BARRA02	1,025	Р	0	-	3,3	109,4	-
3	BARRA03	1,025	Р	0	-	3,4	119,2	-
4	BARRA04	1,026	Р	0	-	4,0	144,6	-
5	BARRA05	0,976	L	0	2,019	3,5	147,9	42,2
6	BARRA06	0,998	L	0	1,423	3,3	145,0	56,8
7	BARRA07	1,026	Р	0	-	3,1	126,8	-
8	BARRA08	1,005	L	0	1,589	3,3	134,1	51,4
9	BARRA09	1,032	Р	0	-	3,3	129,5	-
10	EG01	1,278	G	2	3,014	3,0	0,0	0,0
11	EG02	1,141	G	1	1,858	1,8	-10,9	-2,5
12	EG03	1,059	G	1	0,885	1,2	108,1	27,1

Tabela 4.27 – Relatório da Avaliação das Condições de Estabilidade de Tensão do Sistema-Teste de 12 Barras

A matriz de sensibilidade dos controles de tensão, determinada para o ponto de operação apresentado na Tabela 4.26, é dada em (4.58).

$\left[\Delta V_{1}\right]$		[1,2963	0,6845	0,6175	-0,1723	0,5768	0,6034		ΔE_{G1}	
ΔV_2		0,6906	1,0390	0,5610	0,4745	-0,1675	0,5483		ΔE_{G2}	
ΔV_3		0,6493	0,5833	0,9219	0,4461	0,4915	- 0,1359	*	ΔE_{G3}	(1 58)
ΔV_4	-	1,2977	0,8418	0,7596	0,8916	0,7093	0,7423	~	$-\Delta t_{14}$	(4.50)
ΔV_7		0,8854	1,0137	0,7193	0,6083	0,8541	0,7029		$-\Delta t_{27}$	
ΔV_9		0,8376	0,7525	0,8964	0,5755	0,6341	0,8760		$-\Delta t_{39}$	

As interações entre as barras com tensão controlada representadas pela matriz [*VCS*] de (4.58), são apresentadas nas Tabelas 4.28 e 4.29.

Tabela 4.28 – Equipamentos de Controle de Tensão com Efeito Oposto na Tensão da Barra Controlada i para [VCS] de (4.58)

№ e Nome da Barra de Tensão Controlada i	Tipo do Equip. de Controle da Tensão da Barra i	Tipo do Controle da Tensão na Barra i	№ e Nome das Barras Terminais dos Equipamentos de Controle de Tensão j
1 Barra1	Gerador	Remoto	4 Barra4
3 Barra3	Gerador	Remoto	9 Barra9

*denota a barra terminal do equipamento associado à própria barra de tensão controlada

Os elementos da diagonal da matriz [*VCS*] de (4.58) são positivos. Portanto, qualquer ação de controle de tensão, realizada por qualquer um dos equipamentos do sistema avaliado, no sentido de se aumentar a tensão especificada, terá efeito positivo. Entretanto, conforme mostrado na Tabela 4.29, a barra 1 terá sua tensão reduzida caso haja variação de tapes do LTC responsável pelo controle da tensão da barra 4. Nas demais barras haverá aumento de tensão, de acordo com o sistema de (4.58). O mesmo ocorrerá para as barras 2 e 3, se houver troca de tapes dos LTCs que controlam a tensão das barras 7 e 9 respectivamente. O controle de tensão dos três geradores não apresenta conflito com nenhuma barra da rede; sempre que houver um ajuste na sua tensão de referência, a variação de tensão nas outras barras ocorrerá no mesmo sentido.

Tabela 4.29 – Barras de Tensão Controlada Afetadas de Forma Oposta pelo Equipamento de Controle de Tensão j para [*VCS*] de (4.58)

Barra Terminal do Equip. de Controle de Tensão j	Tipo do Equip. de Controle de Tensão j	Tipo do Controle de Tensão	№ e Nome das Barras de Tensão Controlada
4 Barra4	LTC	Local	1 Barra1
7 Barra7	LTC	Local	2 Barra2
9 Barra9	LTC	Local	3 Barra3

* denota a barra de tensão controlada associado ao próprio equipamento de controle de tensão

Os valores dos autovalores e de seus respectivos fatores de participação, calculados para a matriz de sensibilidade dos controles de tensão dada em (4.58), são mostrados na Tabela 4.30, onde o maior valor de cada coluna está destacado em negrito.

Tabela 4.30 – Resultados da Análise Modal para a Matriz de (4.58)

Autovalores $(\lambda_i)^*$	FP ₅	Autov. à direita ϕ_5
3,8202	-0,0000 + j 0,0001	0,0033 + j 0,0126
0,7341	0,2253 – j 0,0908	0,5891 – j 0,0576
0,3601 + j 0,4378	0,2736 – j 0,0504	-0,6360
0,3601 – j 0,4378	–0,0001 + j 0,0001	0,0070 + j 0,0001
0,3022 + j 0,3666	0,2355 + j 0,0559	0,0666 – j 0,3241
0,3022 – j 0,3666	0,2658 – j 0,0852	-0,0921 + j 0,3564
	Autovalores (λ _i)* 3,8202 0,7341 0,3601 + j 0,4378 0,3601 - j 0,4378 0,3022 + j 0,3666 0,3022 - j 0,3666	Autovalores $(\lambda_i)^*$ FP_5 3,8202 $-0,0000 + j 0,0001$ 0,73410,2253 - j 0,09080,3601 + j 0,4378 0,2736 - j 0,0504 0,3601 - j 0,4378 $-0,0001 + j 0,0001$ 0,3022 + j 0,3666 0,2355 + j 0,05590,3022 - j 0,36660,2658 - j 0,0852

*det [VCS] = 0,2034

Os valores positivos dos autovalores estão de acordo com os resultados apresentados pelo programa EstabTen, dados na Tabela 4.27, embora não haja uma relação direta entre eles, já que representam sensibilidades entre grandezas diferentes. O fator de participação calculado para o menor autovalor, λ_5 , indica que há participação dos geradores conectados às barras 2 e 3, e dos LTCs ligados entre as barras 2 e 7; 3 e 9. O resultado apresentado pela análise do autovetor à direita ϕ_5 , calculado para λ_5 , mostra que a resposta da variáveis de estado associadas ao gerador 3 e o LTC ligado entre as barras 3 e 9 ocorre de forma contrária, conforme se pode observar na Figura 4.17. Este resultado é coerente com a operação do sistema avaliado, conforme se pode observar na topologia do sistema-teste de 12 barras apresentada na Figura 4.11, e com base na matriz [VCS] de (4.58): verifica-se que se houver uma redução de tensão da barra 3 (através da diminuição de E_{G3}), por exemplo, o LTC conectado entre as barras 3 e 9 para manter o valor de sua tensão de referência no valor especificado, realizará troca de tapes como se fosse aumentá-la. Em outras palavras, uma redução de E_{G3} provocaria um aumento de t₃₉. A mesma análise pode ser aplicada ao ramo formado pelo gerador 2 e o LTC entre as barras 2 e 7.

Figura 4.16 – Fatores de Participação do Autovalor λ_5 da Matriz de (4.58)

Figura 4.17 – *Mode-Shape* do Autovalor λ_5 da Matriz de (4.58)

O resultado da análise do autovetor à direita ϕ_5 , calculado para λ_5 de (4.58), quanto à participação relativa de cada barra com tensão controlada, é o mesmo da análise dos fatores de participação.

O resultado da análise modal aplicada ao sistema-teste de 12 barras comprova que o método é capaz de identificar corretamente os equipamentos de controle responsáveis pelo autovalor crítico da matriz [*VCS*], bem como estabelecer a participação relativa de cada barra dentro de um certo modo. O método também permite estabelecer se a relação de sensibilidade entre a tensão controlada e a grandeza controladora é a usual ou oposta.

4.5.3 Sistema-Teste New England

O sistema a ser analisado nesta seção, cuja configuração é mostrada na Figura 4.18, é usado com freqüência em diversos estudos na área de sistemas de energia. Ele é composto por 39 barras, 46 circuitos e 10 geradores. Os dados de barra e linha usados para obtenção do ponto de operação, levados em consideração para a avaliação desse sistema pelo programa AdeConT, são mostrados no Apêndice B. Os dados dispostos na coluna referente às tensões das barras da Tabela B.1.1 correspondem aos valores de tensão especificados para as barras com tensão controlada.

Figura 4.18 - Diagrama Unifilar do Sistema-Teste New England

Os resultados da aplicação do programa EstabTen para todas as barras com tensão controlada e tensão de excitação dos geradores, são apresentados na Tabela 4.31.

N ^º da Barra	Nome	Tensão (pu)	Equip.	Tipo	S _i (MW)	Sm (MW)	β (graus)	М (%)
2	BUS02	1,027	Р	0	-	26,9	96,2	-
6	BUS06	0,998	Р	0	-	21,3	95,2	-
10	BUS10	1,006	Р	0	-	20,9	89,8	-
12	BUS12	0,983	L	0	0,885	13,0	91,1	93,2
19	BUS19	1,022	Р	0	-	19,6	86,1	-
20	BUS20	1,018	L	0	6,878	16,7	89,7	58,7
22	BUS22	1,020	Р	0	-	20,3	82,7	-
23	BUS23	1,017	L	0	2,872	19,5	83,7	85,3
25	BUS25	1,040	L	0	2,289	25,8	97,4	91,1
29	BUS29	1,037	L	0	2,858	30,9	117,9	90,7
30	BUS30	1,040	Р	0	-	22,6	89,1	-
31	BUS31	1,040	L	0	0,103	17,1	79,4	99,4
32	BUS32	1,040	Р	0	-	19,0	77,0	-
33	BUS33	1,040	Р	0	-	18,8	77,1	-

Tabela 4.31 – Relatório da Avaliação das Condições de Estabilidade de Tensão do Sistema-Teste New England

N ^º da Barra	Nome	Tensão (pu)	Equip.	Tipo	S _i (MW)	Sm (MW)	β (graus)	M (%)
34	BUS34	1,040	Р	0	_	12,9	78,8	-
35	BUS35	1,040	Р	0	-	19,3	75,3	-
36	BUS36	1,040	Р	0	-	16,0	71,8	-
37	BUS37	1,040	Р	0	-	20,1	79,7	-
38	BUS38	1,040	Р	0	-	45,2	109,5	-
39	BUS39	1,040	L	0	11,320	65,1	93,8	82,6
130	BUS-EG-30	1,068	G	1	2,686	10,9	81,4	75,4
131	BUS-EG-31	1,172	G	1	6,796	11,2	57,7	39,3
132	BUS-EG-32	1,135	G	1	7,467	12,1	57,4	38,4
133	BUS-EG-33	1,108	G	1	6,866	11,2	55,6	38,8
134	BUS-EG-34	1,295	G	1	6,514	9,0	40,7	27,2
135	BUS-EG-35	1,122	G	1	7,249	11,9	55,4	38,9
136	BUS-EG-36	1,128	G	1	6,207	9,8	49,0	36,6
137	BUS-EG-37	1,082	G	1	6,666	11,0	53,0	39,2
138	BUS-EG-38	1,064	G	2	7,896	7,9	180,0	0,0
139	BUS-EG-39	1,043	G	1	10,171	15,4	95,8	33,8

Os valores de β são positivos, portanto, pode-se dizer que o sistema está trabalhando na região de operação definida como sendo normal, considerando variações infinitesimais na injeção nodal de potência ativa e reativa e seus efeitos sobre o ângulo e o módulo da tensão no mesmo nó. Dentre as barras de geração, a que possui menor margem é a barra 134 com 27,2%. Este gerador controla remotamente a tensão da barra 34.

A avaliação da adequação de ações de controle de tensão nesse sistema foi dividida em duas partes, onde a primeira consistiu em se determinar a matriz [*VCS*] considerando-se o controle de tensão somente por geradores, enquanto que, na segunda parte, a matriz de [*VCS*] foi calculada levando-se também em conta a atuação dos LTCs. O resultado da primeira etapa é apresentado em (4.59).

PUC-Rio - Certificação Digital Nº 0220894/CA
--

Γ	۷V ₃₀		0,5372	0,0493	0,0636	0,0576	0,0240	0,0580	0,0400	0,1334	0,0884	0,1859		ΔE_{G30}
4	۵V ₃₁		0,0707	0,5427	0,1917	0,0718	0,0299	0,0724	0,0499	0,0567	0,0573	0,2331		ΔE _{G31}
	V ₃₂		0,0661	0,1389	0,6194	0,0728	0,0304	0,0734	0,0506	0,0534	0,0554	0,1865		ΔE_{G32}
4	۷V ₃₃		0,0614	0,0536	0,0750	0,6177	0,1383	0,1245	0,0858	0,0536	0,0695	0,1000		ΔE_{G33}
	۷V ₃₄	_	0,0710	0,0619	0,0867	0,3831	0,4241	0,1439	0,0991	0,0619	0,0803	0,1155	*	ΔE_{G34}
4	۷V ₃₅	_	0,0605	0,0527	0,0738	0,1216	0,0507	0,6095	0,1842	0,0527	0,0684	0,0984	~	ΔE_{G35}
4	۷V ₃₆		0,0558	0,0487	0,0682	0,1122	0,0468	0,2469	0,5956	0,0487	0,0631	0,0908		ΔE_{G36}
	۷V ₃₇	с я	0,1550	0,0456	0,0593	0,0578	0,0241	0,0582	0,0401	0,5753	0,1126	0,1617		ΔE_{G37}
2	V ₃₈		0,0656	0,0306	0,0407	0,0495	0,0207	0,0500	0,0345	0,0741	0,8447	0,0790		ΔE_{G38}
	∆V ₃₉		0,0113	0,0098	0,0109	0,0057	0,0024	0,0057	0,0039	0,0085	0,0065	0,9694		ΔE_{G39}

(4.59)

Os valores de todos os elementos diagonais da matriz [*VCS*] de (4.59) são positivos, o que está em conformidade com os índices de estabilidade de tensão apresentados na Tabela 4.31, embora não haja uma relação direta entre eles, já que representam sensibilidades entre grandezas diferentes. Qualquer ação de controle de tensão deverá ter o efeito esperado, sentido usual, isto é, um aumento / redução de E_{Gi} provocará também aumento / redução da tensão de referência V_i.

O resultado da análise modal da matriz de [*VCS*], dada em (4.59), é apresentado na Tabela 4.32. Os autovalores com sinal positivo indicam que não há problemas de controle de tensão no sistema.

Gerador	FP para λ_4 = 0,2711	Autovetor à direita ϕ_4	Autovalores
30	0,0000	-0,0016	1,2440
31	0,0000	-0,0017	0,9476
32	0,0000	-0,0016	0,8008
33	0,3021	-0,3676	0,2711
34	0,6978	0,9300	0,3878
35	0,0001	-0,0049	0,4135
36	0,0000	-0,0021	0,4095
37	0,0000	-0,0010	0,6663
38	0,0000	-0,0007	0,5935
39	0,0000	-0,0000	0,6015

Tabela 4.32 – Resultados da Análise Modal Aplicada à Matriz [VCS] de (4.59)

O fator de participação calculado para o menor autovalor, $\lambda_4 = 0,2711$, aponta diretamente para o gerador de número 34. O elemento diagonal da matriz de [*VCS*] referente a este gerador é o menor, [VCS_(5,5)] = 0,4241.

Os resultados apresentados pelo programa EstabTen indicam que este gerador é o que apresenta menor margem, 27,2% (Tabela 4.31), e também menor β , 40,7°. Portanto, a análise modal corrobora os resultados apresentados pelos programas EstabTen e AdeConT.

A análise do resultado apresentado pelo autovetor à direita ϕ_4 , calculado para o menor autovalor, mostra que a resposta das variáveis de estado em relação a uma perturbação do modo em estudo é coerente com os resultados obtidos a partir da análise dos fatores de participação. A visualização gráfica dos resultados destas análises pode ser feita através das Figuras 4.19 e 4.20.

Figura 4.19 – Fatores de Participação do Autovalor λ_4 = 0,2711 da Matriz [VCS] de (4.59)

Figura 4.20 – *Mode-Shape* do Autovalor $\lambda_4 = 0,2711$ da Matriz [*VCS*] de (4.59)

A resposta contrária por parte do gerador 33, mostrada na Figura 4.20, é coerente com os valores positivos dos elementos da matriz [*VCS*] avaliada. Se houver variação da variável de estado associada ao gerador 34, ocorrerá variação no sentido oposto por parte do gerador 33 e vice-versa. A interpretação deste resultado já foi apresentada na seção anterior para a matriz de (4.57), em função do comportamento de geradores em relação a variações de fluxo de potência nos ramos de transmissão. Aplicada neste caso, considerando-se, por exemplo, a elevação da tensão de referência da barra 34, através do aumento de E_{G34} , o gerador 33 seria o único a responder através de redução de sua tensão de excitação, E_{G33} , de forma significativa. Segundo esta análise, a variação da tensão de autovetor ϕ_4 . Por inspeção do diagrama unifilar da Figura 4.18, pode-se chegar à mesma conclusão.

O primeiro exercício numérico, realizado para validar a matriz de [VCS] apresentada em (4.59), consistiu em aumentar o valor da tensão de referência da barra 34 em 0,01 pu. A variação nas tensões internas dos geradores é apresentada na Tabela 4.33.

				E _{Gi} Final				
Barra i	E _{Gi} Inicial	ΔV_i	∆E _{Gi}	E_{Gi} + ΔE_{Gi}	Fluxo de Carga			
30	1,068	-	-0,0003	1,0677	1,067			
31	1,172	-	-0,0004	1,1716	1,172			
32	1,135	-	-0,0004	1,1346	1,135			
33	1,108	-	-0,0063	1,1017	1,102			
34	1,295	0,010	0,0300	1,3250	1,325			
35	1,122	-	-0,0009	1,1211	1,121			
36	1,128	-	-0,0007	1,1273	1,127			
37	1,082	-	-0,0003	1,0817	1,082			
38	1,064	-	-0,0002	1,0638	1,064			
39	1,043	-	-0,0000	1,0430	1,043			

Tabela 4.33 – Variação nas Tensões Internas dos Geradores após Aumento da Tensão da Barra 34 em 0,01 pu

A comparação entre os resultados apresentados pelo programa AdeConT, coluna 5 da Tabela 4.33, onde $\Delta E_{Gi} = [VCS]^{-1} * \Delta V_i$, e pelo programa de fluxo de carga, coluna 6 da mesma tabela, comprova que a matriz [*VCS*] traduz perfeitamente a variação das tensões internas das máquinas para efetuar o ajuste de tensão nas barras previamente selecionadas. Este resultado pode ser melhorado usando-se valores de E_{Gi} com maior precisão, como foi feito para o segundo exemplo numérico, que consistiu em reduzir o valor da tensão da barra 39 em 0,01 pu, cujo resultado é apresentado na Tabela 4.34. Novamente, os resultados fornecidos pelo programa AdeConT estão perfeitamente de acordo com os resultados obtidos pelo programa de fluxo de carga.

Tabela 4.34 – Variação nas Tensões Internas dos Geradores após Redução da Tensão da Barra 39 em 0,01 pu

Porro i	E. Inicial	417	45	EG _i F	inal
Dalla I	E _{Gi} IIIICiai	ΔV_i	∆ ⊏ _{Gi}	$EG_i + \Delta EG_i$	F. Carga
30	1,0677	-	0,0025	1,0702	1,070
31	1,1723	-	0,0031	1,1754	1,175
32	1,1352	-	0,0018	1,1370	1,137
33	1,1084	-	0,0005	1,1089	1,109
34	1,2948	-	0,0006	1,2954	1,295
35	1,1223	-	0,0005	1,1228	1,123
36	1,1277	-	0,0004	1,1280	1,128
37	1,0821	-	0,0016	1,0837	1,084
38	1,0643	-	0,0004	1,0647	1,065
39	1,0434	-0,010	-0,0104	1,0330	1,033

A matriz de [VCS] determinada considerando-se a atuação dos LTCs para o sistema-teste New England é apresentada em (4.60).

$\left[\Delta V_2\right]$	0,268	0,050	0,072	-0,011	-0,017	-0,030	0,030	-0,020	0,069	0,039	0,165	0,101	$\int \Delta t_{2-30}$	
ΔV_6	0,097	0,184	0,213	-0,026	0,013	0,004	0,073	0,006	0,086	0,053	0,063	0,062	Δt_{6-31}	
ΔV_{10}	0,094	0,144	0,283	-0,005	-0,010	0,006	0,079	0,007	0,091	0,056	0,061	0,062	Δt_{10-32}	
ΔV_{12}	0,100	0,152	0,267	0,483	0,478	0,006	0,083	0,008	0,096	0,059	0,065	0,066	Δt_{12-11}	
ΔV_{12}	0,100	0,152	0,267	0,483	0,478	0,006	0,083	0,008	0,096	0,059	0,065	0,066	Δt_{12-13}	
ΔV ₁₉	0,078	0,049	0,077	-0,002	-0,013	0,077	0,372	0,070	0,140	0,088	0,053	0,070	Δt_{19-20}	(4 60)
ΔV_{19}	0,078	0,049	0,077	-0,002	-0,013	0,077	0,372	0,070	0,140	0,088	0,053	0,070	Δt_{19-33}	(4.00)
ΔV_{20}	0,074	0,046	0,073	-0,001	-0,013	-0,899	0,354	0,111	0,133	0,083	0,051	0,067	Δt_{20-34}	
ΔV_{22}	0,077	0,048	0,076	-0,002	-0,013	0,021	0,130	0,020	0,360	0,193	0,053	0,069	Δt_{22-35}	
ΔV_{23}	0,078	0,049	0,076	-0,002	-0,013	0,021	0,131	0,020	0,307	0,246	0,053	0,070	Δt_{23-36}	
ΔV_{25}	0,224	0,046	0,066	-0,006	-0,011	-0,014	0,045	-0,008	0,069	0,041	0,224	0,125	Δt_{25-37}	
ΔV_{29}	0,085	0,026	0,038	-0,034	-0,039	-0,144	-0,085	-0,106	0,044	0,012	0,045	0,529	Δt_{29-38}	

A matriz [*VCS*] de (4.60) possui dois pares de linhas iguais, linhas 4 e 5; 6 e 7. Isto ocorre porque as barras 12 e 19 são controladas por dois LTCs, circuitos 12-11 e 12-13; 19-20 e 19-33; conforme pode ser observado na topologia da rede mostrada na Figura 4.18. Se há dois ou mais equipamentos controlando a tensão de uma só barra, a influência exercida sobre a própria barra e a "outra" é a mesma, assim como a influência sofrida por qualquer outro equipamento da rede.

O resultado da análise modal para este caso é mostrado na Tabela 4.35, de onde se pode observar a existência de dois autovalores nulos, que segundo os fatores de participação 11 e 12, ocorrem em conseqüência dos dois pares de linhas iguais.

Ramo	Bar PQV	FP ₁₁	\$ 11	FP ₁₂	ϕ_{12}	λ_i	Autovalores
2-30	2	-0,0000	-0,0868	0,0000	-0,1096	1	0,9078 + j 0,1479
6-31	6	0,0000	0,2212	-0,0000	0,2619	2	0,9078 – j 0,1479
10-32	10	0,0000	-0,1150	0,0000	-0,1194	3	0,5380
12-11	12	0,2103	0,3852	0,2851	0,4294	4	0,3577
12-13	12	0,2144	-0,3928	0,2903	-0,4372	5	0,2858
19-20	19	0,0910	-0,0345	0,0753	-0,0318	6	0,2303 + j 0,1327
19-33	19	0,4844	0,1837	0,3493	0,1475	7	0,2303 – j 0,1327
20-34	20	0,0000	-0,7533	0,0000	-0,6947	8	0,0538
22-35	22	-0,0000	-0,0145	0,0000	-0,0022	9	0,0511
23-36	23	0,0000	-0,0155	-0,0000	-0,0024	10	0,0524
25-37	25	-0,0000	0,1017	0,0000	0,0944	11	0,0000
29-38	29	-0,0000	-0,1205	0,0000	-0,1234	12	-0,0000

Tabela 4.35 – Resultados da Análise Modal Aplicada à Matriz [VCS] de (4.60)

O resultado da análise do autovetor à direita, mostra que há conflito de controle nos dois casos, mas para a barra 12 a oposição é praticamente simétrica, conforme se pode observar nas Figuras 4.21 a 4.24. A impedância e tape dos LTCs envolvidos nas duas situações são iguais, entretanto, as barras 11 e 13 têm a mesma tensão e, conforme pode ser constatado através dos dados de linha do sistema avaliado apresentados no Apêndice B, a admitância das duas barras só não são iguais em razão da diferença existente entre as impedâncias das linhas 6-11 e 13-14. Portanto, os elementos do vetor *B*, que constitui parte da matriz Jacobiana aumentada de (4.6), para os dois LTCs são próximos. A admitância das barras 33 e 20 são diferentes, logo a resposta destes equipamentos não ocorre de forma simétrica.

Figura 4.21 – Fatores de Participação do Autovalor λ_{11} da Matriz [VCS] de (4.60)

 $\Delta t_{6\text{-}31} \quad \Delta t_{10\text{-}32} \quad \Delta t_{12\text{-}11} \quad \Delta t_{12\text{-}13} \quad \Delta t_{19\text{-}20} \quad \Delta t_{19\text{-}33} \quad \Delta t_{20\text{-}34} \quad \Delta t_{29\text{-}38}$

Figura 4.22 – *Mode-Shape* do Autovalor λ_{11} da Matriz [*VCS*] de (4.60)

Figura 4.23 – Fatores de Participação do Autovalor λ_{12} da Matriz [VCS] de (4.60)

Figura 4.24 – *Mode-Shape* do Autovalor λ_{12} da Matriz [*VCS*] de (4.60)

A matriz de [*VCS*] determinada considerando-se a atuação conjunta de geradores e LTCs é dada em (4.61). Os LTCs pertencentes aos ramos 12-13 e 19-33 não foram incluídos nesta avaliação para que a matriz de sensibilidade dos controles de tensão não se tornasse singular.

ΓΔ	V ₃₀]	0,543	0,049	0,064	0,058	0,024	0,058	0,040	0,133	0,088	0,186	- 0,494	0,032	0,047	- 0,007	- 0,020	- 0,013	0,045	0,025	0,107	0,066	ΔE_{G30}	
	V ₃₁	0,071	0,543	0,192	0,072	0,030	0,072	0,050	0,057	0,057	0,233	0,067	- 0,562	0,147	- 0,018	0,003	0,004	0,059	0,037	0,043	0,043	ΔE_{G31}	
	N ₃₂	0,066	0,139	0,619	0,073	0,030	0,073	0,051	0,053	0,055	0,186	0,062	0,095	- 0,479	- 0,003	0,004	0,005	0,060	0,037	0,041	0,041	ΔE_{G32}	
Δ	V ₃₃	0,061	0,054	0,075	0,618	0,138	0,125	0,086	0,054	0,069	0,100	0,058	0,036	0,056	- 0,001	0,057	0,052	0,103	0,065	0,039	0,052	ΔE_{G33}	
Δ	V ₃₄	0,071	0,062	0,087	0,383	0,424	0,144	0,099	0,062	0,080	0,115	0,067	0,042	0,065	- 0,001	- 0,806	- 0,813	0,119	0,075	0,045	0,060	ΔE_{G34}	
	V ₃₅	0,060	0,053	0,074	0,122	0,051	0,610	0,184	0,053	0,068	0,098	0,057	0,035	0,056	- 0,001	0,015	0,015	- 0,484	0,142	0,039	0,051	ΔE_{G35}	
Δ	V ₃₆	0,056	0,049	0,068	0,112	0,047	0,247	0,596	0,049	0,063	0,091	0,052	0,033	0,051	- 0,001	0,014	0,014	0,207	– 0,519	0,036	0,047	ΔE_{G36}	
Δ	N ₃₇	0,155	0,046	0,059	0,058	0,024	0,058	0,040	0,575	0,113	0,162	0,149	0,030	0,044	- 0,004	- 0,009	- 0,005	0,046	0,027	- 0,544	0,084	ΔE_{G37}	
	V ₃₈	0,066	0,031	0,041	0,049	0,021	0,050	0,034	0,074	0,845	0,079	0,052	0,015	0,022	- 0,030	- 0,130	- 0,096	0,023	0,001	0,018	– 0,359	ΔE_{G38}	
	V ₃₉	0,011	0,010	0,011	0,006	0,002	0,006	0,004	0,008	0,006	0,969	0,011	0,007	0,008	- 0,001	- 0,001	- 0,001	0,005	0,003	0,007	0,005	ΔE_{G39}	(4 61)
12	$V_2 =$	0,281	0,076	0,098	0,088	0,037	0,089	0,061	0,205	0,136	0,286	0,268	0,050	0,072	- 0,011	- 0,030	- 0,020	0,069	0,039	0,165	0,101	Δt_{2-30}	(1.01)
2	V_6	0,102	0,286	0,278	0,104	0,043	0,105	0,072	0,082	0,083	0,337	0,097	0,184	0,123	- 0,026	0,004	0,006	0,086	0,053	0,063	0,062	Δt_{6-31}	
Δ	V ₁₀	0,100	0,210	0,368	0,110	0,046	0,111	0,076	0,081	0,084	0,282	0,094	0,144	0,283	- 0,005	0,006	0,007	0,091	0,056	0,061	0,062	Δt_{10-32}	
Δ	V ₁₂	0,106	0,222	0,347	0,116	0,048	0,117	0,081	0,085	0,088	0,298	0,100	0,152	0,267	- 0,483	0,006	0,008	0,096	0,059	0,065	0,066	Δt_{12-11}	
	V ₁₉	0,083	0,073	0,102	0,450	0,188	0,169	0,116	0,073	0,094	0,136	0,078	0,049	0,077	- 0,001	0,077	0,070	0,140	0,088	0,053	0,070	Δt_{19-20}	
Δ	V ₂₀	0,079	0,069	0,097	0,427	0,295	0,160	0,111	0,069	0,090	0,129	0,074	0,046	0,073	- 0,001	- 0,899	0,111	0,133	0,083	0,051	0,066	Δt_{20-34}	
Δ	V ₂₂	0,082	0,072	0,101	0,166	0,069	0,431	0,251	0,072	0,093	0,134	0,078	0,048	0,076	- 0,001	0,021	0,020	0,360	0,193	0,053	0,069	Δt_{22-35}	
Δ	V ₂₃	0,083	0,072	0,101	0,167	0,070	0,367	0,321	0,072	0,094	0,135	0,078	0,049	0,066	- 0,001	0,021	0,020	0,307	0,246	0,053	0,070	Δt_{23-36}	
	V ₂₅	0,232	0,068	0,089	0,087	0,036	0,087	0,060	0,289	0,169	0,242	0,224	0,046	0,083	- 0,006	- 0,014	- 0,008	0,069	0,041	0,024	0,125	Δt_{25-37}	
Δ	V ₂₉	0,102	0,047	0,063	0,077	0,032	0,077	0,053	0,115	0,713	0,123	0,085	0,026	0,038	- 0,034	- 0,144	- 0,106	0,044	0,012	0,045	0,529	Δt_{29-38}	

Os elementos da matriz da matriz de sensibilidade dos controles de tensão dada em (4.61) estão perfeitamente coerentes com a topologia da rede apresentada na Figura 4.18. Os elementos das colunas representam a influência que um gerador ou LTC exerce sobre outras barras com tensão controlada conectadas na sua vizinhança. Na coluna 1, por exemplo, corresponde ao gerador ligado da barra 30, observa-se que além da influência sobre sua própria barra de tensão controlada, o elemento diagonal, a maior influência ocorre sobre a tensão da barra 2 (linha 11), controlada pelo LTC entre as barras 30 e 2, e sobre a tensão da barra 25 (linha 19), controlada pelo LTC entre as barras 25 e 37. Na mesma coluna, também se verifica que as linhas referentes às barras de tensão controlada 37, 6, 10, e 12, formam um "segundo grupo" de barras influenciadas pelo gerador 30.

As colunas de 11 a 20 representam o controle de tensão feito por LTCs. Nelas observa-se que os elementos com maior magnitude, fora da diagonal, têm sinal negativo e são correspondentes aos geradores ligados a uma das extremidades de cada LTC, ou na sua vizinhança, com exceção da coluna 14, que representa o LTC que controla a tensão da barra 12, onde não há nenhum gerador conectado diretamente a seu terminal. Tomando-se, como exemplo, a última coluna, correspondente ao LTC entre as barras 29 e 38, observa-se que o maior elemento fora da diagonal é o da linha correspondente ao gerador 38. Na mesma coluna, nota-se uma influência considerável sobre a barra de tensão controlada 25, que está próxima a barra 29, como pode ser observado na Figura 4.18.

Os resultados obtidos da análise modal da matriz [VCS] de (4.61) são apresentados na Tabela 4.36.

Bar PQV	FP ₁₄	ϕ_{14}	λ_i	Autov.	λ_i
30	0,0008	0,0518	1	1,0323	1,0323
31	-0,0000	-0,0096	2	0,8941 + j 0,3284	0,9525
32	-0,0001	-0,0100	3	0,8941 – j 0,3284	0,9525
33	0,5394	-0,3175	4	0,1636 + j 0,5489	0,5728
34	0,1176	0,9286	5	0,1636 – j 0,5489	0,5728
35	-0,0002	-0,0111	6	0,6543 + j 0,4290	0,7825
36	-0,0007	-0,0264	7	0,6543 – j 0,4290	0,7825
37	0,0000	-0,0624	8	0,5066 + j 0,4212	0,6588
38	0,0001	0,0214	9	0,5066 – j 0,4212	0,6588
39	-0,0000	-0,0001	10	0,4406 + j 0,3794	0,5815

Tabela 4.36 – Resultados da Análise Modal Aplicada à Matriz [VCS] de (4.61)

Bar PQV	FP ₁₄	ϕ_{14}	λ_i	Autov.	λ _i
2	-0,0009	0,0140	11	0,4406 – j 0,3794	0,5815
6	0,0001	-0,0026	12	0,6708	0,6708
10	0,0001	-0,0031	13	0,4919	0,4919
12	-0,0000	0,0007	14	0,2104	0,2104
19	0,3090	0,1548	15	0,2321 + j 0,1030	0,2539
20	0,0338	-0,0654	16	0,2321 – j 0,1030	0,2539
22	0,0001	-0,0016	17	0,2336 + j 0,1120	0,2590
23	0,0009	-0,0083	18	0,2336 – j 0,1120	0,2590
25	-0,0000	-0,0194	19	0,2225 + j 0,1277	0,2565
29	-0,0000	0,0001	20	0,2225 – j 0,1277	0,2565

O fator de participação calculado para o menor autovalor λ_{14} , *FP*₁₄, indica que o gerador da barra 33 é o principal responsável pelo pior modo. O LTC conectado à barra 19 também apresenta contribuição considerável para o pior modo, conforme aponta o 15° elemento de *FP*₁₄. O gerador da barra 34 também aparece neste modo, mas com menor participação. Os resultados apresentados na Tabela 4.32, quando se estudou o controle somente por geradores, também mostraram que estes dois geradores estão ligados ao pior modo.

A análise do resultado apresentado pelo autovetor à direita ϕ_{14} , calculado para o menor autovalor, aponta para as mesmas barras indicadas a partir da análise dos fatores de participação, conforme se pode observar nas Figuras 4.25 e 4.26. Entretanto, ela mostra que a barra 34 é mais propensa a perturbações para o modo estudado. Este resultado está mais coerente com os apresentados pela avaliação dos índices de estabilidade de tensão e pela própria análise modal, apresentados nas Tabelas 4.31 e 4.32 respectivamente. Através da inspeção da topologia do sistema avaliado, apresentada na Figura 4.18, constata-se além da barra 19 ter sua tensão controlada por dois LTCs, as tensões das barras que formam o ramo de transmissão 19-20-34 também são controladas, conforme destacado na figura. Portanto, esta parte da rede pertence ao pior modo.

Figura 4.25 – Fatores de Participação do Autovalor λ_{14} = 0,2104 da Matriz [VCS] de (4.61)

Figura 4.26 – *Mode-Shape* do Autovalor λ_{14} = 0,2104 da Matriz [*VCS*] de (4.61)

O próximo exercício numérico, que consiste em alterar o valor de tensões especificadas, outra vez tem o objetivo de comprovar a utilização da matriz [*VCS*] para adequação das ações de controle de tensão. O primeiro teste realizado consistiu em aumentar o valor da tensão da barra 2 em 0,008 pu. O resultado deste teste é apresentado na Tabela 4.37, onde o resultado da avaliação do programa AdeConT, coluna 5, é dado por: $\Delta C_i = [VCS]^{-1} * \Delta V_i$. É importante lembrar que o controle de tensão das barras de 2 a 29, coluna um da Tabela 4.37, é feito por meio de LTCs.

Barra	C _i Inicial	/	10	<i>C</i> _{<i>i</i>} <i>F</i>	inal
PQV	(E _{Gi} / tap _i)	ΔV_i	ΔC_i	$C_i + \Delta C_i$	F. Carga
30	1,068	-	0,0438	1,1118	1,111
31	1,172	-	- 0,0045	1,1675	1,168
32	1,135	-	- 0,0018	1,1332	1,133
33	1,108	-	-0,0000	1,1080	1,108
34	1,295	-	- 0,0042	1,2908	1,291
35	1,122	-	- 0,0011	1,1209	1,122
36	1,128	-	- 0,0010	1,1270	1,127
37	1,082	-	- 0,0381	1,0439	1,045
38	1,064	-	- 0,0013	1,0627	1,064
39	1,043	-	- 0,0003	1,0427	1,043
2	1,000	0,008	- 0,0310	1,0310	1,031
6	1,000	-	- 0,0024	0,9976	0,998
10	1,000	-	- 0,0010	0,9990	0,999
12	1,000	-	- 0,0002	0,9998	1,000
19	1,000	-	- 0,0005	0,9995	1,000
20	1,000	-	- 0,0007	0,9993	0,999
22	1,000	-	-0,0004	0,9996	1,000
23	1,000	-	- 0,0005	0,9995	1,000
25	1,000	-	- 0,0210	0,9790	0,979
29	1,000	-	- 0,0005	0,9995	1,000

Tabela 4.37 – Variação nas Tensões Internas dos Geradores e nos Tapes dos LTCs Após Aumento da Tensão da Barra 2 em 0,008 pu

A comparação entre os valores das colunas 5 e 6 da Tabela 4.37 demonstra a eficiência da aplicação da matriz de [*VCS*] para a definição das ações de controle de tensão necessárias para efetuar o ajuste de tensão na barra desejada, também quando LTCs são incluídos na avaliação juntamente com geradores.

O segundo teste realizado consistiu em aumentar o valor da tensão da barra 12 em 0,01 pu. O resultado deste teste é mostrado na Tabela 4.38, onde se pode constatar que a partir da matriz de [*VCS*], é possível determinar com precisão, o procedimento correto para se atingir o nível de tensão desejado em qualquer barra com tensão controlada do sistema avaliado.

Tabela 4.38 – Variação nas Tensões Internas dos Geradores e nos Tapes dos LTCs Após Aumento da Tensão da Barra 12 em 0,017 pu

Barra	C _i Inicial	417	10	C _i F	inal
PQV	(EG _i / tap _i)	ΔV_i	ΔC_i	$C_i + \Delta C_i$	F. Carga
30	1,068	-	0,0011	1,0691	1,068
31	1,172	-	0,0050	1,1770	1,178
32	1,135	-	-0,0025	1,1325	1,133
33	1,108	-	0,0000	1,1080	1,108
34	1,295	-	-0,0007	1,2943	1,295
35	1,122	-	-0,0002	1,1218	1,122
36	1,128	-	-0,0002	1,1278	1,128

Barra	C _i Inicial	.) /	10	$C_i F$	inal
PQV	(EG _i / tap _i)	$\Delta \mathbf{V}_i$	ΔC_i	$C_i + \Delta C_i$	F. Carga
37	1,082	-	-0,0013	1,0807	1,081
38	1,064	-	0,0013	1,0653	1,064
39	1,043	-	0,0000	1,0430	1,043
2	1,000	-	0,0006	1,0006	1,000
6	1,000	-	0,0026	1,0026	1,003
10	1,000	-	-0,0014	0,9986	0,999
12	1,000	0,017	0,0345	1,0345	1,035
19	1,000	-	-0,0001	0,9999	1,000
20	1,000	-	-0,0001	0,9999	1,000
22	1,000	-	-0,0001	0,9999	1,000
23	1,000	-	-0,0001	0,9999	1,000
25	1,000	-	-0,0007	0,9993	0,999
29	1,000	-	0,0003	1,0003	1,000

O estudo dos testes numéricos realizados nesta seção mostrou que a determinação da variação dos parâmetros dos equipamentos de controle de tensão através da matriz de [VCS] é coerente. A análise modal permitiu identificar quais foram as barras com tensão controlada por geradores e LTCs mais próximas ou além do limite de estabilidade de tensão. Na Seção 4.5.5, entre outros objetivos, será verificado se sua aplicação é extensiva a sistemas complexos e de grande porte, onde compensadores síncronos também serão incorporados à análise.

4.5.4 Avaliação do Sistema-Teste SAGE 35 Barras

O sistema utilizado nesta seção foi utilizado no ambiente do Sistema Aberto de Gerenciamento de Energia (SAGE) do CEPEL para fins de demonstração, cujo diagrama unifilar é mostrado na Figura 4.27. Este sistema é composto por 34 barras, 42 linhas, 12 transformadores, 5 geradores e 11 capacitores em derivação. As barras 25 e 26 representam um sistema equivalente de grande porte. Os dados de barras e linhas do sistema analisado nesta seção são apresentados no Apêndice B, de onde se pode, também, extrair os dados utilizados para a representação em regime permanente das máquinas do sistema. A escolha deste sistema foi feita para se verificar as características da matriz de sensibilidade dos controles de tensão quando determinada para várias barras com capacitor / reator em derivação instalado. Sabe-se que, nesse sistema, os

reatores são fixos e existem para evitar sobre-tensões exageradas no evento de perda de carga. Para fins de ilustração, no entanto, considera-se que são chaveáveis e que controlam a tensão nas respectivas barras onde estão conectados.

Figura 4.27 - Diagrama Unifilar do Sistema-Teste SAGE 35 Barras

O resultado da avaliação das condições de estabilidade de tensão pelo programa EstabTen é mostrado na Tabela 4.39, de onde se pode observar que as barras de 5 a 13 possuem ângulo β negativo, logo são as barras que apresentam problemas de estabilidade de tensão. Dentre as barras cuja tensão é controlada por gerador, a 26 possui β mais próximo de zero.

Tabela 4.39 – Relatório da Avaliação das Condições de Estabilidade de Tensão do Sistema-Teste SAGE 35 Barras

Bar №	Nome	Tensão (pu)	Equip.	Tipo	S _i (MW)	Sm (MW)	β (graus)	M (%)
1	BUS00120	1,030	L	0	0,080	21,1	19,7	99,6
2	BUS002-500	1,012	Р	0	0,000	23,3	15,2	-
3	BUS003-500	1,011	Р	0	0,000	23,4	15,0	-
4	BUS004-750	0,951	R	0	0,000	26,1	11,4	100,0
5	BUS005-750	0,916	R	0	0,000	-16,8	-26,1	–Infini

Bar N ^o	Nome	Tensão (pu)	Equip.	Tipo	S _i (MW)	Sm (MW)	β (graus)	M (%)
6	BUS006-750	0,915	R	0	0,000	-16,8	-26,1	–Infini
7	BUS007-750	0,932	R	0	0,000	-54,3	-2,7	–Infini
8	BUS008-750	0,987	R	0	0,000	-24,0	-61,8	–Infini
9	BUS009-750	0,987	R	0	0,000	-24,1	-61,3	–Infini
10	BUS010-750	0,906	R	0	0,000	-28,2	-5,2	–Infini
11	BUS011-750	0,921	Р	0	0,000	-17,4	-31,2	-
12	BUS012-750	0,922	Р	0	0,000	-17,4	-31,2	-
13	BUS013-750	0,882	R	0	0,000	-27,9	-4,3	–Infini
14	BUS014-500	0,966	Р	0	0,000	-49,2	-1,7	-
15	BUS015-500	0,876	Р	0	0,000	40,6	17,2	-
16	BUS016-500	0,879	Р	0	0,000	38,4	23,7	-
17	BUS017-500	0,999	L	0	0,044	15,6	155,5	99,7
18	BUS018-500	1,037	Р	0	0,000	15,7	152,1	-
19	BUS019-500	1,050	L	0	14,998	22,1	155,4	32,2
20	BUS020-500	1,052	Р	0	0,000	16,0	154,3	-
21	BUS021-500	1,075	LR	0	0,028	14,1	161,1	99,8
22	BUS022-500	1,076	LR	0	0,024	13,2	158,4	99,8
23	BUS023-500	1,067	LR	0	6,890	12,0	156,1	42,6
24	BUS024-500	1,037	P	0	0,000	85,9	0,7	-
25	BUS025-500	1,093	L	0	66,017	81,1	2,6	18,6
26	BUS026-500	1,100	Р	0	0,000	43,4	3,0	-
27	BUS027-500	0,990	Р	0	0,000	65,2	1,1	-
28	BUS028-345	0,869	Р	0	0,000	-42,1	-2,0	-
29	BUS029-345	0,878	L	0	34,707	-57,0	-0,8	-264,3
30	BUS030-345	0,929	Р	0	0,000	17,7	35,5	-
31	BUS03120	1,007	L	0	0,017	11,9	134,8	99,9
32	BUS03220	1,058		0	0,000	13,5	134,9	-
33	BUS03320	1,059	P D	0	0,000	13,5	130,9	-
04 101	BUS03420	1,049	P C	1	0,000	14,0	100,0	-
101	EG1 EG26	2 2 10	G	1	44,477 83.017	40,4 84 6	23,5	4,2 1 0
120	EG20 EG31	1 255	G	1	16 539	16 1	51.9	1,9
132	EG32	1,200	G	1	18 006	20.2	-01,0 7/ 1	-2,9 10 3
133	EG33	1,505	G	1	18 844	20,2	78 5	10,5
134	EG34	2.284	G	2	32,598	32.6	0.0	0.0

A matriz de [*VCS*] em (4.62) representa a sensibilidade entre as tensões internas dos geradores e dos reatores com as tensões controladas.

Os elementos com maior módulo são os que compõem as colunas de 1 a 6, correspondentes ao controle de tensão por geradores. Os elementos diagonais destas colunas são todos positivos, indicando que o controle de tensão de cada gerador ocorre de forma usual, isto é, um aumento / redução de E_{Gi} resulta em aumento / redução de V_i. Os elementos diagonais negativos da matriz de (4.62) são correspondentes aos reatores em derivação instalados nas barras 8, 9, 11 e 12.

Há inúmeros elementos negativos fora da diagonal. Por exemplo, na segunda coluna, correspondente ao gerador 26, há elementos cujo módulo é superior ao elemento da diagonal. Portanto, a realização de um ajuste da tensão de excitação desta barra terá influência negativa de porte sobre a tensão controlada de todas as outras barras, exceto a barra 13.

Há também grupos de linhas / colunas formadas por elementos muito próximos: 7, 8, 9 e 10; 11 e 12; 16 e 17. Portanto, a existência de controle conflitante é muito provável, uma vez que a matriz [*VCS*], neste caso, apresenta tendência à singularidade, porque obviamente linhas ou colunas iguais implicam em autovalores nulos.

 ΔE_{G1} ΔV_1 0.524 - 0.119 - 0.041 - 0.029 - 0.027 - 0.033 0.004 - 0.003 - 0.003 0.000 0.002 0.002 - 0.002 - 0.003 - 0.003 - 0.003 - 0.003 ΔE_{G26} ΔV_{26} -0,235 0,405 -0,292 -0,207 -0,194 -0,231 -0,004 -0,004 -0,004 -0,004 -0,007 -0,007 -0,001 0,004 -0,019 -0,018 -0,019 ΔV_{31} ΔE_{G31} -0.305 -0.566 0,783 0,359 0,302 0,404 -0,005 -0,005 -0,005 -0,005 0,002 0,002 -0,001 -0,015 0,033 0,030 0.033 ΔV_{32} ΔE_{G32} 0,437 0,536 0,294 0,347 -0,004 -0,004 -0,005 0,002 0,002 -0,009 -0,013 0,029 0,027 0.029 -0.263 -0.489 ΔE_{G33} ΔV_{33} -0,253 -0,470 0,380 0,303 0,503 0,333 -0,004 -0,004 -0,004 -0,004 0.001 0,001 - 0,009 - 0,012 0,028 0,027 0.028 ΔE_{G34} ΔV_{34} -0.493 -0.828 0,619 0,433 0,400 0,869 -0,008 -0,008 -0,008 -0,008 0.001 0,001 - 0,016 - 0,021 0,059 0,050 0,057 ΔV_4 0,273 - 0,139 - 0,048 - 0,034 - 0,032 - 0,038 0,004 - 0,003 - 0,003 0,000 0,002 0,002 -0,003 -0,004 -0,003 -0,003 -0,003 Δb_{sh4} Δb_{sh5} ΔV_5 -0,224 -0,145 -0,050 -0,036 -0,033 -0,040 -0,004 -0,009 0,002 0,000 0,002 0,002 - 0,003 - 0,004 - 0,003 - 0,003 - 0,003 Δb_{sh6} -0,223 - 0,145 - 0,050 - 0,036 - 0,034 - 0,040 - 0,004 0,002 - 0,009 0,0000.002 0.002 - 0.003 - 0.004 - 0.003 - 0.003 - 0.003 ΔV_6 (4.62) -0,025 -0,154 -0,053 -0,038 -0,036 -0,042 0,000 0,000 0,000 0,000 0,002 0,002 -0,003 -0,004 -0,004 -0,003 -0,004 Δb_{sh7} ΔV_7 ΔV_8 0,091-0,263 0,084 0,060 0,056 0,066 0,002 0,001 0,001 0,002 -0,006 0,010 -0,005 -0,007 0,006 0,005 0.006 Δb_{sh8} 0,091 - 0,263 0,084 0,060 0,056 0,066 0,002 0,001 0,001 0,002 0,010 - 0,006 - 0,005 - 0,007 0,006 0,005 $\Delta \rm b_{sh9}$ ΔV_9 0.006 ΔV_{10} -0,134 -0,019 -0,180 -0,128 -0,120 -0,142 -0,002 -0,002 -0,002 -0,002 -0,004 -0,004 0,000 -0,001 -0,012 -0,011 -0,012 Δb_{sh10} ΔV_{13} -0,219 0,156 -0.275 -0.196 -0.183 -0.218 -0.004 -0.003 -0.003 -0.004 -0.006 -0.006 -0.001 0.004 -0.018 -0.017 -0.018 Δb_{sh13} ΔV_{21} -0,438 -0,762 0,611 0,429 0,398 0,698 -0,007 -0,007 -0,007 -0,008 0,001 0,001 -0,014 -0,019 0,058 0,049 0.055 Δb_{sh21} ΔV_{22} Δb_{sh22} 0,569 0,414 0,399 0,611 - 0,007 - 0,007 - 0,007 - 0,007 0,001 - 0,014 - 0,018 0,051 0,052 -0,402 -0,710 0.001 0.054 Δb_{sh23} ΔV_{23} -0,447 -0,784 0,629 0,450 0,426 0,695 -0,007 -0,007 -0,007 -0,008 0,001 0,001 -0,015 -0,020 0,058 0,054 0,077

Na Tabela 4.40 são mostrados os resultados da análise modal aplicada a matriz [*VCS*] dada em (4.62).

Bar PQV	FP_6	ϕ_6	FP ₉	ϕ_9	λ_i	Diag. [VCS]	Autov.
1	0,0814	-0,0439	0,0000	-0,0000	1	0,5245	2,3218
26	0,3298	-0,1386	0,0000	0,0000	2	0,4046	0,6297
31	0,0188	-0,0415	0,0000	-0,0000	3	0,7825	0,3400
32	0,0126	-0,0371	0,0000	-0,0000	4	0,5362	0,2831
33	0,0151	-0,0410	0,0000	-0,0000	5	0,5030	0,2145
34	0,0182	-0,0893	-0,0000	0,0000	6	0,8689	-0,1071
4	0,0217	-0,1910	0,0000	-0,0001	7	0,0045	0,0799
5	0,0989	-0,4223	0,0000	-0,0003	8	-0,0091	0,0340
6	0,0985	-0,4216	0,0000	-0,0003	9	-0,0091	-0,0154
7	0,0608	-0,3276	0,0000	-0,0001	10	-0,0004	-0,0086
8	0,0181	-0,1796	0,4996	-0,7069	11	-0,0058	-0,0111
9	0,0182	-0,1796	0,5004	0,7073	12	-0,0058	0,0083
10	0,1038	-0,4370	0,0000	0,0002	13	-0,0001	0,0088
13	0,0905	-0,4208	0,0000	0,0001	14	0,0037	-0,0016
21	0,0045	-0,1090	-0,0000	0,0000	15	0,0579	0,0031
22	0,0052	-0,1090	-0,0000	0,0000	16	0,0519	0,0039
23	0,0039	-0,0995	-0,0000	0,0000	17	0,0774	0,0017

Tabela 4.40 – Resultados da Análise Modal Aplicada à Matriz [VCS] de (4.62)

O fator de participação calculado para o menor autovalor λ_6 , *FP*₆, indica que o gerador da barra 26 é o principal responsável pelo pior modo. As outras barras do sistema não participam desse modo porque toda a geração da barra 26 é consumida na barra 25.

Em relação ao segundo menor autovalor, λ_9 , a análise do fator de participação *FP*₉, indica os reatores das barras 8 e 9, como mostrado na Figura 4.28. Já a análise do autovetor à direita ϕ_9 , indica que as barras 8 e 9 têm controle conflitantes: as variáveis de estado associadas às duas barras são simetricamente opostas, conforme se pode observar através da Figura 4.29. De fato, pela análise do diagrama unifilar, isto pode ser confirmado.

Em relação ao terceiro menor autovalor, λ_{11} , a análise do fator de participação FP_{11} , indica os reatores das barras 5 e 6. Já a análise do autovetor à direita ϕ_{11} , indica que as barras 5 e 6 têm controle conflitante: as variáveis de estado associadas às duas barras são simetricamente opostas. De fato, novamente pela análise do diagrama unifilar, isto pode ser confirmado.

Figura 4.28 – Fatores de Participação do Autovalor $\lambda_9 = -0,0154$ da Matriz [VCS] de (4.62)

Figura 4.29 – *Mode-Shape* do Autovalor $\lambda_9 = -0,0154$ da Matriz [*VCS*] de (4.62)

A comprovação da eficácia da utilização da matriz [VCS] para adequação das ações de controle de tensão nesta seção é feita através da variação do valor da susceptância em derivação, cálculo da variação de tensão nas barras com tensão controlada do sistema resolvendo-se (4.62), e, por fim, simulação do fluxo de carga para validação dos resultados.

O primeiro teste realizado consistiu em aumentar o valor da susceptância em derivação da barra 8 em 0,5 pu (50 Mvar). O valor nominal é de -3,3 pu (-330 Mvar), conforme pode ser observado nos dados de barra da rede apresentados no Apêndice B. O resultado deste teste é apresentado na Tabela 4.41, onde o resultado da avaliação do programa AdeConT, coluna 5, é dado por: $\Delta V_i = [VCS] * \Delta C_i$.

Barra	V Inicial	10	(V _i Final			
PQV	v _i miciai	ΔC_i	ΔV_i	$V_i + \Delta V_i$	F. Carga		
1	1,030	-	0,0010	1,0310	1,031		
26	1,100	-	-0,0034	1,0966	1,096		
31	1,007	-	0,0009	1,0079	1,008		
32	1,058	-	0,0008	1,0588	1,059		
33	1,059	-	0,0007	1,0597	1,060		
34	1,049	-	0,0004	1,0494	1,050		
4	0,951	-	0,0011	0,9521	0,953		
5	0,916	-	0,0012	0,9172	0,917		
6	0,915	-	0,0012	0,9162	0,917		
7	0,932	-	0,0012	0,9332	0,933		
8	0,987	0,5	-0,0029	0,9841	0,984		
9	0,987	-	0,0048	0,9918	0,992		
10	0,906	-	-0,0021	0,9039	0,904		
13	0,882	-	-0,0032	0,8788	0,879		
21	1,075	-	0,0006	1,0756	1,075		
22	1,076	-	0,0007	1,0767	1,076		
23	1,067	-	0,0007	1,0677	1,067		

Tabela 4.41 – Variação nas Tensões Controladas por Geradores e Reatores Após Aumento da Susceptância da Barra 8 em 0,5 pu

A comparação entre os valores das colunas 5 e 6 da Tabela 4.41 demonstra a eficiência da aplicação da matriz de [*VCS*] para a definição das ações de controle de tensão necessárias para efetuar o ajuste de tensão na barra desejada, também quando reatores são incluídos na avaliação juntamente com geradores. A variação de tensão na barra 9 foi de 0,0048 pu, exatamente o dobro, em módulo, da variação de tensão da barra 8 onde foi feito o ajuste de b_{sh8}. Este resultado é inesperado, considerando-se os efeitos usuais de ações de controle de tensão.

A redução de b_{sh8} em -0,5 pu (-50 Mvar), resulta na mesma variação de tensão apresentada na Tabela 4.41, mas com sinal trocado. Na barra 8, por exemplo, a variação foi de 0,0029 pu, e na barra 9 de -0,0048 pu. Isto vem a comprovar a resposta contrária das variáveis de estado associadas a estas barras, apresentada pela análise modal. O aumento de tensão das duas barras, através do ajuste de b_{sh} , só é possível se for feito nas duas barras, como será visto a seguir.

O segundo teste realizado consistiu em aumentar o valor da susceptância das barras 8 e 9 em 1,0 pu. O resultado deste teste é mostrado na Tabela 4.42.

Barra	V/ Inicial	10		V _i Final			
PQV	v _i iniciai	ΔC_i	ΔV_i	$V_i + \Delta V_i$	F. Carga		
1	1,030	-	0,0038	1,0338	1,034		
26	1,100	-	-0,0137	1,0863	1,086		
31	1,007	-	0,0035	1,0105	1,012		
32	1,058	-	0,0031	1,0611	1,062		
33	1,059	-	0,0030	1,0620	1,063		
34	1,049	-	0,0015	1,0505	1,052		
4	0,951	-	0,0045	0,9555	0,956		
5	0,916	-	0,0046	0,9206	0,921		
6	0,915	-	0,0047	0,9197	0,920		
7	0,932	-	0,0049	0,9369	0,937		
8	0,987	1,0	0,0039	0,9909	0,991		
9	0,987	1,0	0,0039	0,9909	0,991		
10	0,906	-	-0,0085	0,8975	0,898		
13	0,882	-	-0,0130	0,8690	0,869		
21	1,075	-	0,0025	1,0775	1,078		
22	1,076	-	0,0029	1,0789	1,079		
23	1,067	-	0,0029	1,0699	1,071		

Tabela 4.42 – Variação nas Tensões Controladas por Geradores e Reatores Após Aumento da Susceptância das Barras 8 e 9 em 1,0 pu

Os testes numéricos realizados nesta seção mostraram que a análise modal também permite identificar quais são as barras com controles conflitantes. Os resultados da análise da adequação das ações de controle de tensão usando-se a matriz de [*VCS*], aplicada ao sistema-teste SAGE 35 barras, foram totalmente coerentes com aqueles obtidos da simulação de fluxo de carga.

4.5.5 Avaliação do Sistema S-SE Brasileiro

A comparação entre os resultados obtidos através da avaliação modal da matriz de [*VCS*], e os resultados apresentados pelo programa EstabTen, realizada para todos os sistemas avaliados até o momento, permite afirmar que existe uma forte relação entre as barras com piores índices de estabilidade de tensão, menor β , e as apontadas como pertencentes ao pior modo, calculado para o menor autovalor de cada matriz de [*VCS*]. Portanto, a seleção das barras com tensão controlada de sistemas de grande porte para a avaliação das condições de segurança de tensão, pode ser feita tanto pela análise modal, quanto pela avaliação dos índices de estabilidade de tensão. Entretanto, esta última análise, não contempla barras com tensão controlada por LTCs.

A exclusão de barras com pouca ou nenhuma influência do sistema de equações dado em (4.9), não necessariamente é feita somente para reduzir a dimensão desta matriz, mas também para direcionar as ações de controle de tensão, reforço, àquelas barras que apresentarem maior influência para o ponto de operação em análise. Nesta seção, entre outros objetivos, será verificado se isto poderá ser aplicado a sistemas reais.

Os resultados da avaliação dos índices de estabilidade de tensão aplicada ao Sistema S-SE brasileiro, cujas características foram apresentadas na Seção 4.3.4, são mostrados na Tabela 4.43. O ponto de operação é correspondente a minutos antes do blecaute ocorrido em abril de 1997.

Bar	Nome	Tensão	Equip	Tino	Si	Sm	β	М
Nº	Nome	(pu)	Lyuip.	npo	(MW)	(MW)	(graus)	(%)
10	ANGRA1MQ	1,034	Р	0	0,000	99,1	93,3	-
12	LCBARRET-5MQ	1,040	L	0	0,058	27,9	78,3	99,8
14	FUNIL2MQ	1,039	L	0	0,011	9,4	57,4	99,9
16	FURNAS7MQ	1,050	L	0	0,075	25,8	77,7	99,7
18	ITUMBIAR5MQ	1,035	L	0	0,065	31,3	74,1	99,8
22	M.MOR.A6MQ	1,020	L	0	0,018	21,4	81,9	99,9
24	M.MOR.B4MQ	1,000	L	0	0,012	8,2	79,6	99,9
28	P.COLOMB-4MQ	1,030	L	0	0,016	5,7	58,6	99,7
30	SCRUZ-191MQ	0,998	Р	0	0,000	-52,5	-2,4	-
203	UCAMPOS-0MQ	1,034	L	0	0,012	2,8	77,6	99,6
250	N.PECANH-GER	1,048	Р	0	0,000	117,7	1,0	-
253	FONTESGER	1,048	Р	0	0,000	12,3	41,6	-
255	P.PASSOS-GER	1,048	Р	0	0,000	7,5	52,6	-
257	I.POMBOS-GER	1,008	Р	0	0,000	15,0	16,2	-
501	ISOLTE-19MAQ	1,035	Р	0	0,000	67,0	130,3	-
44	GRAJAU2CS	0,974	L	0	0,026	-15,1	-92,4	-68113,0
48	IBIUNA3CS	1,040	Р	0	0,000	44,2	38,0	-
1107	ITAIPU607MQ	1,032	L	0	0,080	-10,1	-16,4	-12736,9
20	MARIMB7MQ	1,044	L	0	0,043	23,9	66,0	99,8
1	ANGRAEG	2,168	G	1	14,217	18,3	56,6	22,3
2	LCBARRETEG	1,525	G	1	12,769	15,4	27,5	17,2
3	FUNILEG	1,674	G	1	2,262	3,6	49,8	36,7
4	FURNASEG	1,406	G	1	13,348	17,8	39,8	25,1
5	ITUMBIAREG	1,322	G	1	23,768	27,7	29,8	142
7	M.MOREG	1,318	G	1	4,583	5,3	15,4	14,2
8	M.MOREG	1,368	G	1	1,841	3,0	41,9	39,0
9	P.COLOMBEG	1,231	G	1	2,991	3,4	10,3	11,8
11	SCRUZEG	1,188	G	1	1,538	1,8	14,7	15,7
13	UCAMPEG	1,058	G	1	0,079	1,1	76,4	93,1
15	N.PECANHEG	2,117	G	1	8,376	10,7	46,6	22,0
17	FONTESEG	2,284	G	1	1,908	2,6	49,0	26,7
19	P.PASSOSEG	1,825	G	1	1,764	2,4	38,3	26,3
21	I.POMBOSEG	1,615	G	1	2,757	4,2	42,5	35,0

Tabela 4.43 – Relatório da Avaliação das Condições de Estabilidade de Tensão do S-SE Brasileiro às 18 horas

Bar N ^o	Nome	Tensão (pu)	Equip.	Tipo	S _i (MW)	Sm (MW)	β (graus)	M (%)
504	ISOLTEEG	1,185	G	2	28,400	28,4	0,0	0,0
46	GRAJAUEG	0,972	Q	1	0,006	2,1	80,3	99,7
47	IBIUNAEG	1,323	Q	1	1,983	7,5	86,2	73,7
1105	ITAIPU60EG	1,586	G	1	83,563	52,8	-139,0	-36,9
6	MARIMBONEG	1,401	G	1	18,938	19,0	0,5	0,3
86	IBIUNA345	1,039	LC	0	60,239	-114,2	-5,9	-289,6
178	GRAJAU138	0,998	Р	0	0,000	-14,9	–102,4	-

As barras 86 e 178 são controladas remotamente pelos compensadores síncronos instalados nas barras 47 e 46 respectivamente. As barras 44 e 48 são as barras terminais destes compensadores síncronos. Da Tabela 4.43, observa-se que a barra com tensão controlada em pior situação é a de número 1107 ITAIPU60--7MQ, seguida pelas barras 178 GRAJAU--138, 86 IBIUNA--345 e 30 SCRUZ-19-1MQ.

A matriz de [VCS] calculada para representar a sensibilidade entre as tensões internas e as tensões controladas pelas 19 máquinas relacionadas na Tabela 4.43 é apresentada em (4.63). Nesta matriz observa-se que há vários elementos negativos bem como valor em módulo elevado, o que está de acordo com o ponto de operação, ponto de colapso de tensão, para o qual a matriz foi determinada.

A análise dos elementos diagonais da matriz de (4.63) mostra que as máquinas que controlam as tensões das barras 10, 30, 203, 353, 178, 86 e 1107, possuem relação de sensibilidade $E_{Gi}V_i$ de forma contrária. Os elementos da coluna 18, correspondentes à barra de 1107 ITAIPU60--7MQ, mostram que pequenas variações em E_{G1107} provocarão grandes variações de tensão em todas as barras avaliadas, onde a maior será na barra 1107 e de forma oposta à usual, conforme mencionado anteriormente. É importante lembrar que os elementos da coluna da matriz [*VCS*] fora da diagonal denotam a influência que um equipamento controlador de tensão exerce sobre as demais barras com tensão controlada da rede elétrica em análise.

ΔV ₁₀]	Γ	- 0,243	- 0,175	- 0,141	- 0,401	- 0,112	- 0,096	- 0,019	0,005	- 0,274	- 0,089	- 0,307	- 0,060	- 0,095	- 0,195	0,313	- 0,233	0,132	12,417	– 0,153	ΔE _{G10}]
ΔV_{12}		- 0,086	0,196	- 0,030	0,011	0,016	0,031	0,010	0,019	- 0,057	- 0,018	- 0,065	- 0,013	- 0,020	- 0,040	0,076	- 0,049	0,028	2,028	0,011	ΔE_{G12}	
ΔV_{14}		- 0,466	-0,204	0,025	-0,469	- 0,131	- 0,112	- 0,023	0,007	- 0,318	- 0,104	- 0,307	- 0,060	- 0,096	- 0,226	0,374	- 0,268	0,156	14,709	– 0,181	ΔE_{G14}	
ΔV_{16}		- 0,141	0,009	- 0,050	0,243	-0,006	0,007	0,004	0,017	- 0,094	- 0,030	-0,108	-0,021	- 0,033	-0,066	0,119	- 0,081	0,047	3,730	– 0,016	ΔE_{G16}	
ΔV_{18}		- 0,022	0,005	-0,008	-0,005	0,435	0,002	0,001	0,004	- 0,015	- 0,004	- 0,017	- 0,003	- 0,005	-0,010	0,023	- 0,013	0,007	0,519	0,018	ΔE_{G18}	
ΔV ₂₂		-0,098	0,065	-0,034	0,019	0,013	0,139	0,018	0,030	- 0,065	- 0,020	- 0,074	- 0,014	- 0,023	- 0,045	0,088	- 0,056	0,032	2,338	0,006	ΔE_{G22}	
ΔV_{24}		- 0,043	0,049	- 0,015	0,030	0,019	0,042	0,213	0,110	- 0,028	- 0,008	- 0,032	- 0,006	- 0,010	- 0,019	0,060	- 0,024	0,012	0,580	0,015	ΔE_{G24}	
ΔV_{26}		0,008	0,045	0,003	0,054	0,023	0,034	0,051	0,671	0,008	0,003	0,008	0,002	0,002	0,006	0,043	0,007	- 0,007	- 1,242	0,025	ΔE_{G28}	
ΔV_{30}		- 0,759	- 0,323	- 0,267	-0,743	-0,207	- 0,177	- 0,035	0,014	- 0,301	- 0,165	- 0,573	-0,111	- 0,177	-0,363	0,622	- 0,430	0,260	24,309	– 0,290	ΔE_{G30}	
ΔV ₂₀₁	=	- 0,209	- 0,085	-0,074	- 0,199	-0,054	- 0,047	- 0,009	0,005	- 0,140	0,598	- 0,159	- 0,031	- 0,049	-0,089	0,172	- 0,120	0,072	6,665	– 0,078 🛛 *	ΔE_{G201}	(4.63)
ΔV ₂₀₃		- 0,513	-0,223	- 0,154	- 0,512	-0,143	- 0,122	- 0,024	0,008	- 0,345	- 0,113	- 0,196	- 0,061	- 0,099	- 0,246	0,416	- 0,291	0,174	16,284	– 0,200	ΔE_{G203}	
ΔV_{253}		- 0,521	-0,227	- 0,157	- 0,521	- 0,145	- 0,125	- 0,025	0,008	- 0,351	- 0,115	- 0,320	- 0,008	-0,100	- 0,250	0,423	- 0,296	0,177	16,564	– 0,203	ΔE_{G253}	
ΔV_{255}		- 0,531	- 0,231	- 0,162	-0,530	- 0,148	- 0,127	- 0,025	0,009	– 0,358	- 0,117	- 0,332	- 0,064	0,034	- 0,255	0,413	- 0,301	0,180	16,877	– 0,207	ΔE_{G255}	
ΔV_{257}		- 0,516	- 0,218	- 0,182	- 0,503	- 0,139	- 0,120	- 0,023	0,010	- 0,347	-0,100	- 0,390	- 0,076	- 0,120	0,003	0,423	- 0,296	0,177	16,514	– 0,196	ΔE_{G257}	
ΔV_{501}		0,049	0,023	0,018	0,052	0,020	0,013	0,004	0,005	0,036	0,012	0,039	0,008	0,012	0,026	0,375	0,031	- 0,025	– 2,374	0,021	ΔE_{G501}	
ΔV ₁₇₈		- 0,629	- 0,271	- 0,219	- 0,624	- 0,174	- 0,149	- 0,030	0,011 -	- 0,420	- 0,138	- 0,470	-0,091	- 0,145	-0,302	0,515	- 0,352	0,215	20,170	– 0,243	ΔE_{G178}	
ΔV ₈₆		0,152	0,068	0,055	0,156	0,042	0,037	0,007	- 0,004	0,109	0,035	0,120	0,023	0,037	0,077	- 0,140	0,092	- 0,034	- 6,170	0,060	ΔE_{G86}	
ΔV ₁₁₀₇		0,933	0,312	0,334	0,799	0,191	0,174	0,023	- 0,074	0,658	0,211	0,732	0,142	0,226	0,465	- 1,083	0,560	- 0,433	– 31,315	0,123	ΔE_{G1107}	
ΔV_{20}		- 0,037	0,009	- 0,013	-0,007	0,031	0,003	0,002	0,006	- 0,025	- 0,008	- 0,028	- 0,006	- 0,009	- 0,017	0,048	- 0,021	0,011	0,211	0,529	ΔE_{G20}	

Na Tabela 4.44 são mostrados os resultados da análise modal aplicada a matriz de [*VCS*] dada em (4.63).

Bar PQV	FP ₁	ϕ_1	FP_5	ϕ_5	FP9	ϕ_9	λ_i	Diag. [VCS]	Autov.
10	0,0109	-0,2085	0,1381	0,2722	0,0682	-0,1544	1	-0,2435	-33,880
12	0,0006	-0,0345	0,0144	0,0615	0,0003	-0,0079	2	0,1956	0,7317
14	0,0046	-0,2458	0,0192	0,1845	0,0047	-0,0756	3	0,0247	0,6446
16	0,0028	-0,0629	0,0249	0,0683	0,0015	-0,0136	4	0,2425	0,5892
18	0,0001	-0,0088	0,0007	0,0085	0,0000	-0,0013	5	0,4352	-0,0825
22	0,0004	-0,0398	0,0100	0,0736	0,0005	-0,0135	6	0,1394	0,4545
24	0,0000	-0,0105	0,0014	0,0432	0,0000	-0,0008	7	0,2127	0,4409
28	0,0001	0,0195	0,0008	0,0225	0,0000	0,0012	8	0,6714	0,4024
30	0,0149	-0,4061	0,0471	0,2624	0,0442	-0,2070	9	-0,3015	0,0412
203	0,0013	-0,1099	0,0007	0,0288	0,0002	-0,0119	10	0,5981	0,0614
250	0,0111	-0,2719	0,0334	0,1722	0,0132	-0,0880	11	-0,1961	0,1101
253	0,0022	-0,2771	0,0142	0,2574	0,0900	-0,5255	12	-0,0077	0,1140
255	0,0035	-0,2817	0,0095	0,1680	0,0038	-0,0868	13	0,0341	0,1329
257	0,0072	-0,2756	0,0195	0,1638	0,0108	-0,1002	14	0,0034	0,1625
501	0,0023	0,0386	0,0144	0,0410	-0,0001	-0,0012	15	0,3746	0,1847
178	0,0106	-0,3389	0,3475	0,7032	0,5890	0,7463	16	-0,3519	0,1982
86	0,0027	0,1118	0,2594	0,3939	0,1735	-0,2618	17	-0,0336	0,2520
1107	0,9247	0,5262	0,0280	0,0333	0,0000	0,0001	18	-31,315	0,2286
20	0,0000	-0,0046	0,0167	0,0499	0,0000	-0,0019	19	0,5291	0,2248

Tabela 4.44 – Resultados da Análise Modal Aplicada à Matriz [VCS] de (4.63)

O fator de participação *FP*₁, calculado para o menor autovalor λ_1 , indica claramente que a barra responsável pelo pior modo é a barra 1107 ITAIPU60--7MQ. O fator de participação *FP*₅, calculado para o segundo menor autovalor λ_5 , aponta para as barras de 44 GRAJAU--2CS e 48 IBIUNA--3CS. Estes resultados conferem com os apresentados pela avaliação dos índices de estabilidade de tensão na Tabela 4.43.

A análise dos resultados apresentados pelos autovetores à direita ϕ_1 , ϕ_5 , $\phi_{9,}$, mostra que a resposta das variáveis de estado em relação a uma perturbação do modo em estudo foi coerente com os resultados obtidos a partir da análise dos respectivos fatores de participação.

A avaliação para o ponto de operação, do mesmo sistema avaliado anteriormente, três horas antes do mesmo dia, precisamente às 15 horas, já apresentava o mesmo cenário de problemas de segurança de tensão, conforme se pode comprovar observando-se os resultados do relatório de estabilidade de tensão para este ponto de operação, apresentado na Tabela 4.45.
Nº Nome (pu) Lqup. npo (MW) (MW) (graus) 10 ANGRA1MQ 1,022 P 0 0,000 -138,9 -177,3 12 LCBARRET-5MQ 1,000 L 0 0,058 26,8 79,3 14 FUNIL2MQ 1,053 L 0 0,011 9,5 69,9 16 FURNAS7MQ 1,000 L 0 0,065 31,6 83,1 18 ITUMBIAR5MQ 1,000 L 0 0,065 31,6 83,1	(%) - 99,8 99,9 99,7 99,8 99,9 99,9 99,9 99,7 -
10 ANGRA1MQ 1,022 P 0 0,000 -138,9 -177,3 12 LCBARRET-5MQ 1,000 L 0 0,058 26,8 79,3 14 FUNIL2MQ 1,053 L 0 0,011 9,5 69,9 16 FURNAS7MQ 1,000 L 0 0,075 25,0 81,3 18 ITUMBIAR5MQ 1,000 L 0 0,065 31,6 83,1	99,8 99,9 99,7 99,8 99,9 99,9 99,7
12 LCBARRET-5MQ 1,000 L 0 0,058 26,8 79,3 14 FUNIL2MQ 1,053 L 0 0,011 9,5 69,9 16 FURNAS7MQ 1,000 L 0 0,075 25,0 81,3 18 ITUMBIAR5MQ 1,000 L 0 0,065 31,6 83,1	99,8 99,9 99,7 99,8 99,9 99,9 99,9 99,7
14 FUNIL2MQ 1,053 L 0 0,011 9,5 69,9 16 FURNAS7MQ 1,000 L 0 0,075 25,0 81,3 18 ITUMBIAR5MQ 1,000 L 0 0,065 31,6 83,1	99,9 99,7 99,8 99,9 99,9 99,9 99,7
16 FURNAS7MQ 1,000 L 0 0,075 25,0 81,3 18 ITUMBIAR5MQ 1,000 L 0 0,065 31,6 83,1	99,7 99,8 99,9 99,9 99,7 -
18 ITUMBIAR5MQ 1,000 L 0 0,065 31,6 83,1	99,8 99,9 99,9 99,7 -
	99,9 99,9 99,7 -
22 M.MOR.A6MQ 1,040 L 0 0,018 23,2 83,7	99,9 99,7 -
24 M.MOR.B4MQ 0,990 L 0 0,012 8,3 75,9	99,7 -
28 P.COLOMB-4MQ 1,029 L 0 0,016 5,8 57,5	-
30 SCRUZ-19-1MQ 1,034 P 0 0,000 30,5 12,8	
203 UCAMPOS-1MQ 1,037 L 0 0,012 2,8 76,5	99,6
250 N.PECANH-GER 1,023 P 0 0,000 103,6 3,2	-
253 FONTESGER 1,024 P 0 0,000 11,3 57,3	-
255 P.PASSOS-GER 1,023 P 0 0,000 7,3 68,7	-
257 I.POMBOS-GER 0,985 P 0 0,000 –30,6 –5,0	-
501 ISOLTE-19MAQ 1,039 P 0 0,000 70,6 122,0	-
44 GRAJAU2CS 0,984 L 0 0,026 -15,8 -104,0 -	-60969,2
48 IBIUNA3CS 1,020 P 0 0,000 57,4 17,4	-
1107 ITAIPU608MQ 1,026 L 0 0,080 -10.5 -12.5	-13206.2
20 MARIMB7MQ 1.040 L 0 0.043 27.0 69.6	99.8
1 ANGRAEG 1,777 G 1 10,501 13,2 40,5	20,5
2 LCBARRETEG 1.186 G 1 10.049 9.9 -1.9	-1.6
3 FUNILEG 1.951 G 1 3.704 5.0 44.7	25.4
4 FURNASEG 1.131 G 1 10.270 12.2 19.1	15.9
5 ITUMBIAREG 1.097 G 1 12.065 17.3 42.7	30.2
7 M.MOREG 1,406 G 1 4,076 5,9 35,0	31,3
8 M.MOREG 1.464 G 1 2.345 3.5 38.4	32.7
9 P.COLOMBEG 1.233 G 1 2.883 3.4 13.0	15.2
11 SCRUZEG 1,302 G 1 0,699 2,1 63,5	66,1
13 UCAMPEG 1,036 G 1 0,040 1,1 75,0	96,3
15 N.PECANHEG 2,063 G 1 8,297 10,5 47,6	21,0
17 FONTESEG 2,806 G 1 3,500 4,0 36,8	12,5
19 P.PASSOSEG 1,396 G 1 0,732 1,4 49,7	47,6
21 I.POMBOSEG 1,461 G 1 1,636 2,8 48,0	41,1
504 ISOLTEEG 1,173 G 2 26,536 26,5 0,0	0,0
46 GRAJAUEG 0,680 Q 1 0,460 1,1 83,5	56,9
47 IBIUNAEG 0,833 Q 1 0,827 3,2 84,1	74,2
1105 ITAIPU60EG 1,525 G 1 83,485 51,3 -135,4	-38.6
6 MARIMBONEG 1,160 G 1 12,769 13.0 2.1	1.8
86 IBIUNA345 1,043 LC 0 59,116 -30.4 -15.7	-151.5
178 GRAJAU138 1,014 P 0 0.000 -15.6 -110.3	-

Tabela 4.45 – Relatório da Avaliação das Condições de Estabilidade de Tensão do S-SE Brasileiro às 15 horas

As barras de 1107 ITAIPU60--8MQ, 478 GRAJAU--138 e 86 IBIUNA--345, já representavam as piores condições. A diferença em relação ao resultado apresentado para o ponto de operação das 18 horas é a presença das barras 10 ANGRA--1MQ e 257 I. POMBOS-GER, na região anormal de operação.

A matriz de [*VCS*] calculada para os 19 geradores relacionados na Tabela 4.45 é apresentada em (4.64). Na Tabela 4.46, são mostrados os resultados da análise modal aplicada a esta matriz.

Bar PQV	FP ₁	ϕ_1	FP_4	ϕ_4	FP9	ϕ_9	λ_i	Diag. [VCS]	Autov.	
10	0,0172	0,2203	0,1624	-0,2622	0,0432	-0,1181	1	-1,0877	-71,452	
12	0,0003	0,0181	0,0088	-0,0407	0,0000	-0,0024	2	0,2808	0,6919	
14	0,0077	0,2794	0,0265	-0,2005	0,0043	-0,0723	3	-0,3424	0,6477	
16	0,0019	0,0442	0,0189	-0,0558	0,0007	-0,0094	4	0,2367	-0,1143	
18	0,0000	0,0024	0,0004	-0,0061	0,0000	-0,0006	5	0,3598	0,5053	
22	0,0001	0,0210	0,0060	-0,0620	0,0003	-0,0120	6	0,1072	0,4279	
24	-0,0000	-0,0002	0,0011	-0,0368	0,0000	0,0003	7	0,2209	0,4067	
28	0,0001	-0,0229	0,0009	-0,0230	0,0000	0,0013	8	0,6406	0,3551	
30	0,0075	0,3284	0,0526	-0,3353	0,0802	-0,3643	9	-0,4254	0,0386	
203	0,0033	0,1599	0,0019	-0,0467	0,0003	-0,0155	10	0,4135	0,2612	
250	0,0161	0,2933	0,0468	-0,1920	0,0154	-0,0973	11	-0,9683	0,2721	
253	0,0048	0,3233	0,0213	-0,2614	0,0198	-0,2222	12	-0,2454	0,2141	
255	0,0035	0,2743	0,0122	-0,1982	0,0064	-0,1268	13	-0,1257	0,2036	
257	0,0126	0,3875	0,0491	-0,2924	0,0220	-0,1731	14	-0,7060	0,1825	
501	0,0021	-0,0397	0,0139	-0,0375	0,0000	0,0005	15	0,2711	0,1366	
178	0,0120	0,3311	0,3046	-0,6433	0,6406	0,8199	16	-0,8594	0,0880	
86	0,0022	-0,0931	0,2104	-0,3415	0,1666	-0,2657	17	-0,1074	0,0925	
1107	0,9086	-0,4482	0,0443	-0,0384	0,0000	-0,0001	18	-64,912	0,1023	
20	0,0000	0,0033	0,0177	-0,0515	0,0000	-0,0017	19	0,4235	0,1144	

Tabela 4.46 – Resultados da Análise Modal Aplicada à Matriz [VCS] de (4.64)

O fator de participação calculado para o menor autovalor (λ_1), *FP*₁, assim como no ponto de operação pouco antes do colapso de tensão, indica claramente que a barra responsável pelo pior modo é 1107 ITAIPU60--8MQ. Igual resultado também ocorre para o fator de participação calculado para o segundo pior modo (λ_4), que também aponta para as barras de 178 GRAJAU--138 e 86 IBIUNA--345. Observa-se também nesta avaliação, a diferença ocorrida em relação ao resultado apresentado para o primeiro ponto de operação analisado, que é o surgimento da barra 10 ANGRA--1MQ. O resultado da avaliação dos índices de estabilidade de tensão também incluiu esta barra entre as que possuem problemas de estabilidade de tensão, conforme mostrado na Tabela 4.45. O terceiro pior modo (λ_9), continua sendo atribuído quase que exclusivamente à barra de 178 GRAJAU--138, como se pode constatar através do *FP*₉.

ΔV_{10}		– 1,088	- 0,304	- 0,451	-0,741	- 0,074	- 0,101	- 0,015	0,057	-0,372	- 0,335	- 0,900	- 0,244	- 0,207	- 0,531	0,754	- 0,590	0,339	31,887	- 0,196	ΔE_{G10}]
ΔV_{12}		- 0,125	0,281	-0,044	0,010	0,014	0,025	0,011	0,020	-0,035	- 0,031	- 0,087	- 0,023	- 0,020	- 0,050	0,077	- 0,057	0,033	2,581	0,006	ΔE_{G12}	
ΔV_{14}		- 1,625	- 0,385	- 0,342	- 0,937	- 0,094	- 0,128	- 0,019	0,073	- 0,469	- 0,423	- 1,071	- 0,290	- 0,247	- 0,670	0,960	- 0,741	0,432	40,545	- 0,251	ΔE_{G14}	
ΔV_{16}		- 0,277	0,007	- 0,097	0,237	- 0,003	0,003	0,005	0,022	- 0,079	- 0,071	– 0,193	- 0,052	- 0,044	- 0,113	0,166	- 0,126	0,073	6,373 -	- 0,023	ΔE_{G16}	
ΔV_{18}		- 0,018	0,007	- 0,006	- 0,002	0,360	0,001	0,001	0,003	- 0,005	- 0,004	- 0,012	- 0,003	- 0,003	- 0,007	0,014	- 0,008	0,004	0,339	0,014	ΔE _{G18}	
ΔV_{22}		- 0,141	0,087	- 0,050	0,012	0,010	0,107	0,018	0,029	- 0,040	- 0,036	- 0,098	- 0,027	- 0,023	- 0,057	0,089	- 0,064	0,037	2,998	0,001	ΔE_{G22}	
ΔV_{24}		- 0,023	0,070	- 0,008	0,045	0,014	0,034	0,221	0,102	- 0,006	- 0,005	- 0,015	- 0,004	- 0,003	- 0,008	0,032	- 0,009	0,004	- 0,076	0,013	ΔE_{G24}	
ΔV_{26}		0,102	0,068	0,036	0,093	0,016	0,029	0,050	0,641	0,031	0,028	0,073	0,020	0,017	0,044	- 0,019	0,048	- 0,031	- 3,412	0,027	ΔE_{G28}	
ΔV_{30}		- 1,893	- 0,441	- 0,663	- 1,077	- 0,108	- 0,147	- 0,021	0,087	- 0,425	- 0,488	– 1,315	- 0,356	- 0,302	- 0,775	1,128	- 0,859	0,507	47,573 -	- 0,290	ΔE _{G30}	
ΔV_{201}	=	- 0,929	- 0,214	- 0,326	- 0,525	- 0,052	- 0,071	- 0,010	0,043	- 0,266	0,413	- 0,648	- 0,176	- 0,149	- 0,365	0,554	- 0,424	0,249	23,351	– 0,142 🕯	ΔE_{G201}	(4.64)
ΔV_{203}		- 1,701	- 0,401	- 0,561	- 0,997	- 0,098	- 0,133	- 0,020	0,077	- 0,489	- 0,441	- 0,968	- 0,297	- 0,253	- 0,699	1,009	- 0,772	0,453	42,573 -	- 0,263	ΔE_{G203}	
ΔV_{253}		- 1,873	- 0,441	- 0,618	- 1,076	- 0,108	- 0,147	- 0,022	0,085	- 0,538	- 0,486	- 1,208	- 0,245	- 0,279	- 0,770	1,112	- 0,850	0,499	46,893 -	- 0,290	ΔE_{G253}	
ΔV_{255}		– 1,589	- 0,374	- 0,527	- 0,913	- 0,091	- 0,125	- 0,018	0,072	- 0,457	- 0,412	- 1,030	- 0,279	- 0,126	- 0,653	0,944	- 0,721	0,424	39,797 -	- 0,246	ΔE_{G255}	
ΔV_{257}		- 2,236	- 0,519	- 0,784	- 1,271	- 0,126	- 0,173	- 0,025	0,103	- 0,642	- 0,553	- 1,557	- 0,422	- 0,357	0,706	1,333	- 1,020	0,599	56,213 -	- 0,343	ΔE _{G257}	
ΔV_{501}		0,202	0,046	0,072	0,115	0,015	0,016	0,003	- 0,005	0,060	0,054	0,144	0,039	0,033	0,086	0,271	0,095	- 0,062	- 5,829	0,030	ΔE_{G501}	
ΔV ₁₇₈		– 1,905	- 0,447	- 0,665	- 1,091	- 0,109	- 0,149	- 0,022	0,087	- 0,545	- 0,493	– 1,763	- 0,357	- 0,303	- 0,782	1,135	- 0,859	0,510	47,896 -	- 0,293	ΔE_{G178}	
ΔV_{86}		0,467	0,111	0,165	0,272	0,026	0,037	0,005	- 0,023	0,137	0,123	0,330	0,090	0,076	0,196	- 0,292	0,218	- 0,107	– 13,630	0,072	ΔE_{G86}	
ΔV_{1107}		2,496	0,505	0,881	1,345	0,110	0,172	0,013	- 0,158	0,732	0,658	1,763	0,478	0,405	1,044	- 1,741	0,161	- 0,776	- 64,912	0,233	ΔE _{G1107}	
ΔV_{20}		- 0,046	0,009	- 0,016	- 0,010	0,022	0,001	0,002	0,005	- 0,013	- 0,012	- 0,032	- 0,009	- 0,007	- 0,019	0,039	- 0,021	0,011	0,418	0,423	ΔE_{G20}	

A análise dos resultados apresentados pelos autovetores à direita ϕ_1 , $\phi_4 \phi_9$, está em conformidade com os resultados obtidos a partir da análise dos respectivos fatores de participação.

A avaliação do ponto de operação das 15 horas comprova que medidas corretivas já poderiam ter sido tomadas no sentido de evitar o colapso de tensão ocorrido no mesmo dia, mais de 3 horas depois.

4.5.6 Avaliação do Sistema Sul, ONS, Curto Prazo, Dez / 99

O caso a ser analisado nesta seção é referente a um estudo de controle da tensão do Sistema Sul, e que corresponde a um caso real do Sistema Brasileiro (originalmente com 2482 barras, sendo 261 geradores, e 3514 circuitos), reduzido para 384 barras e 569 circuitos, dos quais 134 são LTCs. Este caso, do ONS curto prazo de dezembro de 1999, carga média, representa o Sistema Sul no início do verão 1999 / 2000, e antes da entrada em operação de reforços importantes como os bancos de capacitores em Gravataí e a subestação de Santo Ângelo 525 kV.

Operadores do sistema relataram a ocorrência de esgotamento dos recursos para controle de tensão, inclusive com necessidade de cuidado redobrado na comutação de tapes dos transformadores 525 / 230 kV em Gravataí (barras 976 / 1210). No caso-base, a comutação continuava sendo indicada, mas com o crescimento no Rio Grande do Sul de apenas 1,4% na carga ativa e de 2,8% na carga reativa, e sem realizar redespacho de geração, a comutação para as últimas posições era evitada por meio de bloqueio dos LTCs para tapes superiores a 1,120 pu. A faixa real dos quatro LTCs ligados em paralelo no lado de 230 kV é de 0,945 a 1,155 pu. Troca de tapes com o objetivo de aumentar a tensão da barra 1210, que normalmente era conseguido com o aumento do tape dos quatro LTCs em paralelo, resultou em decréscimo da tensão não somente na barra 1210, como também na barra 976.

O problema já havia sido identificado no mesmo período do ano anterior, e em agosto de 1999 foi enviado para o Coordenador de Força Tarefa sobre Colapso de Tensão para desenvolvimento de estudos.

O resultado do programa AdeConT e a análise da matriz de sensibilidade dos controles de tensão [VCS], apontaram os LTCs mostrados na Figura 4.30 como equipamentos de controle duvidoso. Em (4.65) está representada uma submatriz da matriz de [VCS] referente aos três LTCs da Figura 4.30, mas determinada considerando-se a atuação de todos os equipamentos controladores de tensão da rede avaliada.

A resolução do problema de fluxo de carga foi feita considerando-se a operação dos LTCs, limites de geração de potência reativa, e controle remoto de tensão.

Figura 4.30 – Diagrama Unifilar Simplificado do Sistema Sul

$$\begin{bmatrix} \Delta V_{66} \\ \Delta V_{1210} \\ \Delta V_{1209} \end{bmatrix} = \begin{bmatrix} 0,8418 & -1,0072 & 0,0419 \\ 3,3076 & -10,4260 & 0,4800 \\ 4,0085 & -12,6354 & 1,8988 \end{bmatrix} * \begin{bmatrix} \Delta t_{66-68} \\ \Delta t_{1210-976} \\ -\Delta t_{1210-1209} \end{bmatrix}$$
(4.65)

O sinal do elemento diagonal da segunda linha de (4.65) é negativo, indicando que o LTC que controla a tensão da barra 1210 apresenta controle de tensão reverso. Evidentemente, o crescimento da carga faz com que a tensão da barra 1210 decresça e, então, quando esta fica abaixo do valor especificado, o LTC realiza troca de tapes para aumentá-la. Entretanto, esta ação de controle de tensão faz com que a tensão da barra 1210 decresça ainda mais. Além disto, conforme indica os elementos da segunda coluna de (4.65), esta mesma ação de controle fará com que os outros dois LTCs atuem para que as tensões das barras 66 e 1209 também não sejam reduzidas. O LTC responsável pelo controle de tensão da barra 1210 como tensão de referência, situação que

torna o controle de tensão mais complexo. Por outro lado, o LTC responsável pelo controle da tensão da barra 66, mesmo não estando fisicamente próximo da área com problema, pode contribuir de forma significativa na restauração do nível da tensão das barras 1209 e 1210, conforme pode ser comprovado através dos dois elementos não diagonais da primeira coluna de (4.65).

A análise da matriz de sensibilidade dos controles de tensão determinada para representar o controle de tensão realizado pelos LTCs do Sistema Sul para o caso-base, agora no ponto de operação antes do aumento da carga do Rio Grande do Sul, mostrou que a sensibilidade entre a variação de tapes dos LTCs e as tensões por eles controladas também pode ser diferente da usual, conforme pode-se verificar através da (4.66). Neste ponto de operação, os LTCs do ramo 1210–976 também têm seus tapes limitados em 1,100 pu, abaixo do limite máximo real (1,155 pu).

$$\begin{bmatrix} \Delta V_{66} \\ \Delta V_{1210} \\ \Delta V_{1209} \end{bmatrix} = \begin{bmatrix} 0,6567 & -0,3605 & 0,0127 \\ 1,0869 & -3,1000 & 0,1509 \\ 1,2953 & -3,6944 & 1,4744 \end{bmatrix} * \begin{bmatrix} \Delta t_{66-68} \\ \Delta t_{1210-976} \\ -\Delta t_{1210-1209} \end{bmatrix}$$
(4.66)

O resultado do programa AdeConT mostrou que o programa retratou corretamente o modo de controle de tensão feito pelos LTCs do Sistema Sul Brasileiro: sentido usual, linhas um e três de (4.65) e (4.66); sentido oposto ao esperado, linha dois. Além do mais, o programa permite que ações de controle de tensão sejam devidamente realizadas, através da utilização da lógica de controle adequada, para manter as tensões controladas no valor especificado, uma vez que é possível estimar a lógica de controle de cada equipamento controlador de tensão em quaisquer instante e ponto de operação da rede em análise. Portanto, a sua utilização se mostrou novamente fundamental para avaliação do modo de operação eficaz de equipamentos controladores de tensão, no presente caso de LTCs, operando em um ponto de operação real do Sistema Elétrico Brasileiro.

4.6 Eficiência Computacional

As modificações feitas na matriz Jacobiana de (4.67) para um sistema de grande porte seriam em grande número (retirada de todas as linhas e colunas relativas aos diversos controles) e permanentes.

$$[J] = \begin{bmatrix} A \mid B \\ C \mid D \end{bmatrix}$$
(4.67)

onde *A* tem dimensão ($2n \times 2n$), *B* tem dimensão ($2n \times nc$), *C* tem dimensão ($nc \times 2n$) e *D* tem dimensão ($nc \times nc$), sendo n o número de barras da rede e nc o número de barras com tensão controlada.

Por esta razão não é interessante se usar métodos de compensação com base no Lema da Matriz Inversa Generalizada [39]. Neste caso, seria feita apenas uma partição nessa matriz Jacobiana, o que significa fazer a fatoração da matriz [*A*] somente uma vez:

Todo o trabalho computacional no cálculo de [*VCS*] reside no cálculo de $[A]^{-1}$, ou seja, na resolução do sistema linear [A]*[X] = [B], onde [X] tem as mesmas dimensões de [B]. A matriz [A] é exatamente igual a matriz Jacobiana tradicional, uma matriz esparsa de grande porte, e formada por quatro sub-matrizes com estruturas idênticas. Técnicas de fatoração triangular de matrizes esparsas, como a fatoração *LDU*, têm sido usadas com excelente desempenho computacional a cada iteração do método de Newton para resolver o problema do fluxo de carga.

O procedimento pode ser resumido como:

- i. montar a matriz [J] expandida de ordem (2n + nc);
- ii. particionar [J] nas matrizes [A], [B], [C] e [D];
- iii. fatorar [A];
- iv. resolver o sistema linear [A]*[X] = [B];
- v. calcular [VCS] = [D] [C]*[X].

A eficiência computacional deste procedimento é inequívoca.

4.7 Conclusões

Os índices apresentados no Capítulo 3 foram usados para compor a matriz de sensibilidade dos controles de tensão [VCS]. Através desta matriz foi possível verificar a eficácia de diferentes ações de controle de tensão, realizadas simultaneamente. O programa AdeConT, desenvolvido em FORTRAN, foi usado para calcular [VCS] para casos onde a tensão a ser controlada pôde ser local ou remota. Foram considerados a atuação de geradores, compensadores síncronos, LTCs, capacitores e reatores em paralelo. A aplicação da metodologia a sistemasteste e reais mostrou que a matriz [VCS] apresentou resultados qualitativamente coerentes com aqueles obtidos pela resolução (analítica, iterativa por Newton ou iterativa continuada) das equações de fluxo de carga.

A matriz [*VCS*], bem como os índices de adequação de ações de controle de tensão, podem ser calculados eficientemente quando aplicados a sistemas de grande porte, possibilitando a sua utilização em tempo real.

A análise simultânea das ações de controle de tensão apresenta a vantagem de fornecer também, índices que permitem expressar a interação entre as diversas ações de controle do sistema e as tensões controladas.

A ferramenta proposta neste trabalho complementa a análise da ação de controle realizada através da simulação no domínio do tempo, a qual não fornece sensibilidades e pode ser computacionalmente proibitiva.

Os casos onde há barras com controle de tensão feito por dois ou mais equipamentos não foram considerados, quando então, o controle coordenado de tensão precisa ser modelado [40].

A análise dos autovalores e autovetores associados à matriz [*VCS*], mostrou que o método permite identificar as barras do sistema que apresentam dificuldade de controle de tensão, bem como as que apresentam controle de tensão reverso.

A comparação entre os resultados obtidos através da avaliação modal da matriz de [*VCS*], e os resultados apresentados pelo programa EstabTen, realizada para

os todos os sistemas avaliados, mostrou que existe uma forte relação entre as barras com piores índices de estabilidade de tensão e as apontadas como pertencentes ao pior modo, calculado para o menor autovalor de cada matriz de [*VCS*]. Portanto, a seleção das barras com tensão controlada de sistemas de grande porte para a avaliação das condições de segurança de tensão, pode ser feita tanto pela análise modal, quanto pela avaliação dos índices de estabilidade de tensão.

A partir da análise da adequação das ações de controle de tensão, comprovou-se que a definição das tensões de referência especificadas para as barras com tensão controlada pode ter um papel decisivo no desempenho do sistema quando existe forte interação entre os equipamentos de controle.