XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: OTIMIZAÇÃO DIMENSIONAL E DE FORMA DE TRELIÇAS ESPACIAIS MODELADAS COM CURVAS DE BÉZIER Autor: WALDY JAIR TORRES ZUNIGA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
ANDERSON PEREIRA - ORIENTADOR
Nº do Conteudo: 46431
Catalogação: 18/12/2019 Liberação: 19/12/2019 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=46431@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=46431@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.46431
Resumo:
Título: OTIMIZAÇÃO DIMENSIONAL E DE FORMA DE TRELIÇAS ESPACIAIS MODELADAS COM CURVAS DE BÉZIER Autor: WALDY JAIR TORRES ZUNIGA
Nº do Conteudo: 46431
Catalogação: 18/12/2019 Liberação: 19/12/2019 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=46431@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=46431@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.46431
Resumo:
Estruturas treliçadas espaciais são arranjos geométricos de barras amplamente utilizados em coberturas de edificações. Diversos fatores favorecem o seu uso, tais como a capacidade de vencer grandes vãos e a facilidade em assumir diversas formas. A busca pela geometria ótima é um objetivo importante no projeto de estruturas, onde o interesse principal é minimizar o custo da estrutura. O objetivo deste trabalho é apresentar um sistema computacional capaz de minimizar o peso de estruturas treliçadas cuja geometria é definida por curvas de Bézier. Portanto, os pontos de controle das curvas de Bézier são utilizados como variáveis de projeto. As áreas das seções transversais das barras e a altura da treliça também são consideradas como variáveis de projeto e restrições sobre a tensão de escoamento e a tensão crítica de Euler são impostas no problema de otimização. A estrutura é analisada por meio do método dos elementos finitos considerando a hipótese do comportamento linear físico e geométrico. Os algoritmos de otimização usados neste trabalho utilizam o gradiente da função objetivo e das restrições em relação às variáveis de projeto. O sistema computacional desenvolvido neste trabalho foi escrito em linguagem MATLAB e conta com uma integração com o SAP2000 por meio da OAPI (Open Application Programming Interface). Os resultados numéricos obtidos demonstram a eficiência e a aplicabilidade deste sistema.
Descrição | Arquivo |
NA ÍNTEGRA |