$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: GEOMETRIAS DE THURSTON E FIBRADOS DE SEIFERT
Autor: SERGIO DE MOURA ALMARAZ
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  PAUL ALEXANDER SCHWEITZER - ORIENTADOR
Nº do Conteudo: 4294
Catalogação:  11/12/2003 Liberação: 11/12/2003 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4294@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4294@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.4294

Resumo:
Iniciamos com o estudo das orbifolds, que são espaços topológicos localmente homeomorfos a quocientes de Rn por grupos finitos. Estudamos em seguida os fibrados de Seifert de dimensão três, que consistem-se de folheações por círculos que podem ser vistas como fibrados sobre orbifolds. Esse material é usado em seguida no estudo das geometrias modelo. Uma geometria modelo (ou geometria de Thurston) é um par (G;X), onde X é uma variedade conexa e simplesmente conexa e G é um grupo de difeomorfismos de X com certas propriedades que nos permite encontrar uma métrica riemanniana em X tal que G é o grupo de todas as isometrias. A classificação das geometrias modelo é muito útil na classificação topológica das variedades que admitem uma métrica localmente homogênea e foi feita por Thurston em Three-Dimensional Geometry and Topology, vol.1, Princeton University Press, 1997. Na seqüência, apresentamos uma breve descrição de cada geometria modelo bem como parte da prova do teorema de classificação das geometrias modelo.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTA DE FIGURAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
BIBLIOGRAFIA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui