$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC |



Título: SYNTHESIS OF FUZZY SYSTEMS THROUGH EVOLUTIONARY COMPUTATION
Autor: JOSE FRANCO MACHADO DO AMARAL
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  RICARDO TANSCHEIT - ADVISOR
MARLEY MARIA BERNARDES REBUZZI VELLASCO - ADVISOR
MARCO AURELIO CAVALCANTI PACHECO - ADVISOR

Nº do Conteudo: 3550
Catalogação:  30/05/2003 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3550@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3550@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.3550

Resumo:
Synthesis of Fuzzy Systems through Evolutionary Computation proposes a methodology for the design of fuzzy systems based on evolutionary computation techniques. A three-stage evolutionary algorithm that uses Genetic Algorithms (GAs) evolves the knowledge base of a fuzzy system - rule base and parameters. The evolutionary aspect makes the design simpler and more efficient, especially when compared with traditional trial and error methods. The method emphasizes interpretability so that the resulting strategy is clearly stated. An Evolvable Hardware (EHW) platform for the synthesis of analog electronic circuits is proposed. This platform, which can be used for the implementation of the designed fuzzy system, is based on a Field Programmable Analog Array (FPAA). A set of evolved circuits called functional blocks allows the implementation of the fuzzy system.

Descrição Arquivo
COMPLETE  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui