Tácito Dantas Frota Leite

Determinação de elementos principais, menores e traços em rochas via LA-ICPMS após preparação de alvos por fusão em boratos de lítio

TESE DE DOUTORADO

DEPARTAMENTO DE QUÍMICA

Programa de Pós-Graduação em Química

Rio de Janeiro Janeiro de 2006

Tácito Dantas Frota Leite

Determinação de elementos principais, menores e traços em rochas via LA-ICPMS após preparação de alvos por fusão em boratos de lítio

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Química da PUC-Rio como requisito parcial para obtenção de título de Doutor Ciências – Química – Química Analítica.

Orientadores: Norbert Miekeley

Carmem Lúcia Porto da Silveira

Rio de Janeiro Janeiro de 2006

Tácito Dantas Frota Leite

Determinação de elementos principais, menores e traços em rochas via LA-ICPMS após preparação de alvos por fusão em boratos de lítio

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Ciências – Química Analítica pelo programa de Pós-graduação em Química da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Norbert Miekeley Orientador Departamento de Química – PUC-Rio

Prof^ª. Carmem Lúcia Porto da Silveira Co-orientadora Departamento de Química – PUC-Rio

Dr. Carlos Eduardo de Britto Pereira Instituto Nacional de Tecnologia (INT)

> Prof. Ivo Lewin Küchler Instituto de Química – UFF

Prof. Ricardo Queiroz Aucélio Departamento de Química – PUC-Rio

> Prof. Ricardo Erthal Santelli Instituto de Química – UFF

Prof^a. Teresa Cristina Oliveira da Fonseca CENPES – PETROBRAS

> Prof^a. Valéria Regina Bellotto UNIVALI – Itajaí – SC

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 27 de janeiro de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Tácito Dantas Frota Leite

Graduou-se como Bacharel em Química (1988) na Universidade Federal do Rio de Janeiro (UFRJ). Obteve título de Mestre em Química no Instituto Militar de Engenharia (IME-RJ), em 1992. Desde 1998 leciona na Universidade Estadual de Goiás (UEG) em Anápolis (GO). Foi professor temporário da Universidade Católica de Goiás (UCG) em Goiânia (1998). No período de 2003-2005 trabalhou com LA-ICPMS no laboratório do Prof. N. Miekeley (PUC-Rio).

Ficha catalográfica

Leite, Tácito Frota Leite

Determinação de elementos principais, menores e traços em rochas via LA-ICPMS após preparação de alvos por fusão em boratos de lítio / Tácito Dantas Frota Leite; orientadores: Norbert Miekeley; Carmem Lúcia Porto da Silveira. – Rio de Janeiro: PUC, Departamento de Química, 2006.

143 f. : il. ; 30 cm.

Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química.

Incluí referências bibliográficas.

 Química - Teses. 2. Ablação a laser. 3.
ICPMS. 4. Elementos traços. 5. Análise de rochas.
6. Boratos de lítio. I. Miekeley, Norbert. II. Silveira, Carmem Lúcia Porto da. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Química. IV. Título.

CDD: 540

A Deus e à minha família espiritual.

"Pai nosso que estás nos céus Santificado seja o vosso nome Venha a nós o vosso reino".

(Oração do Pai-Nosso, Bíblia Sagrada, Evangelho de São Mateus, cap. 6, vers. 9 -10).

Agradecimentos

Ao Prof. Norbert Miekeley, pela orientação nesta tese e pelo estímulo nos momentos difíceis.

À Prof^a. Carmem Lucia Porto da Silveira pela co-orientação e ajuda durante a redação do texto.

À Dr^a. Teresa Cristina O. da Fonseca do Laboratório de Espectrometria Atômica (CENPES-PETROBRAS) pela colaboração e constante apoio em todos estes anos. Em especial, pela seleção e fornecimento dos basaltos da bacia de Campos (RJ).

Ao Laboratório de Fluorescência de raios-X (CENPES-PETROBRAS) pela assistência nas fusões alcalinas.

Aos técnicos Álvaro Jorge Pereira e Maurício Dupim pelo apoio no preparo e análise de amostras.

À Universidade Estadual de Goiás (UEG) pela licença remunerada, sem a qual, não teria sido possível a realização deste trabalho.

À PUC-Rio pelo auxílio concedido, sem o qual este trabalho não poderia ter sido realizado.

Ao Dr. Carlos Eduardo de Britto Pereira e ao Sr. José Antônio Paes de Oliveira (LABAI – INT, Rio de Janeiro) pelos ensinamentos e colaboração durante o preparo dos padrões e amostras no forno CLAISSE.

Ao Dr. Conrad Grégoire do Geological Survey of Canada (Ottawa) pela doação de padrões geológicos.

Ao Sr. Heitor N. Guimarães (DCMM, PUC-Rio) pela supervisão nos cortes com disco diamantado.

Aos colegas, professores e funcionários da PUC-Rio, que direta ou indiretamente colaboraram com este trabalho.

À PETROBRAS pelo apoio financeiro.

Resumo

Leite, Tácito Dantas Frota. Determinação de elementos principais, menores e traços em rochas via LA-ICPMS após preparação de alvos por fusão em boratos de lítio. Rio de Janeiro, 2006. 143p. Tese de Doutorado - Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

A determinação de elementos traços em amostras de rocha por espectrometria de massas, combinada com ablação a laser (LA-ICPMS), tem se tornado uma importante ferramenta nas investigações em petrogênese, metalogênese e na prospecção de minérios. Apesar do surgimento de uma nova geração de lasers com menor duração de pulso (fs) e comprimento de onda (<266 nm), a calibração é ainda um ponto crítico, pois em geral, não há padrões disponíveis com matriz semelhante. Uma das interferências não espectrais mais relevantes em LA-ICPMS é o fracionamento químico, o qual acarreta diferenças entre as composições do alvo (padrão ou amostra) e da massa ablacionada, comprometendo a exatidão e a repetitividade dos resultados. Quando a análise integral é o objetivo principal, o assemelhamento de matriz pode ser alcançado por simples fusão das amostras e padrões em misturas de meta e tetraboratos, de modo similar ao que é feito, rotineiramente, na análise por fluorescência de raios-X (XRFA). Este trabalho relata metodologia para a determinação de elementos traços em amostras de basaltos, provenientes de sítios de exploração de petróleo. Os experimentos foram realizados com um sistema de ablação a laser CETAC LSX-100 em combinação com um espectrômetro ELAN 5000 ICPMS. Uma mistura de argônio-nitrogênio (2 % N2, 98 % Ar) foi utilizada como gás carreador, com o intuito de aumentar a massa ablacionada, e consequentemente, melhorar as intensidades de sinal e reduzir os limites de detecção. Conectou-se uma câmara ciclônica antes da tocha do ICP, com o objetivo de uniformizar o tamanho das partículas de aerossol, e deste modo, melhorar a repetitividade da medição e a robustez do plasma. A título de comparação, análises também foram feitas sem o emprego desta câmara. Padrões de calibração foram preparados a partir de dois materiais de referência certificados, o basalto NIST SRM 688 e a obsidiana NIST SRM 278. Os padrões de rochas pulverizadas foram misturados e homogeneizados com fundente de borato de lítio (CLAISSE, puro, 75 % Li₂B₄O₇, 25 % LiBO₂) nas proporções mássicas de rocha: fundente de 1:5, 1:11, 1:23, 1:47, respectivamente, obtendose, deste modo, cada padrão em quatro diferentes concentrações. O padrão interno escolhido foi o In, tendo sido este adicionado antes da fusão, resultando em alvos com a concentração de 100 mg kg⁻¹ neste elemento. Obtiveram-se os brancos, de modo similar, usando o fundente borato de lítio. A validação metodológica foi feita empregando-se o basalto (GSJ, JB-2) e o granito (NIMG, SARM-1), tendo sido a partir destes, preparados vidros com a proporção mássica (amostra: fundente) de 1:5 e contendo o padrão interno. Todas as fusões foram feitas em um forno de fusão automático (CLAISSE FluxyTM). Análises por ICP-MS e ICP OES foram feitas após dissolução de fragmentos dos alvos em HNO₃, para verificação de possíveis perdas de elementos voláteis. Quarenta elementos foram determinados, a maioria das curvas de calibração apresentou coeficiente de determinação (\mathbb{R}^2) maiores que 0,995. Limites de detecção variaram de 0,013 mg kg⁻¹ para Tb, até 0,6 mg kg⁻¹ para Zn. Estes valores foram melhorados para vários elementos pelo uso da câmara ciclônica (V, Zn, Rb, Y, Nb, Ba, Ce, Sm, Tb, Dy, Ho, Tm). Nas análises do basalto (GSJ, JB-2) e do granito (NIMG, SARM-1), a exatidão foi melhor do que 5 % para V, Sr, Y, Ba, Ce, Nd, Yb e Lu; entre 5-10 % para: Sc, Zn, Rb, Tm, e de 10-20 % para: Co, Zr, La e Tb. A repetitividade foi melhor do que 5% para V, Rb, Sr, La, Nd, Ta; entre 5-10 % para: Sc, Co, Zn, Sr, Y, Zr, Ba, Tb, Yb; e de 10-20 % para: Ce, Tm, Lu e Hf. Foi utilizado ainda o método semiguantitativo TotalQuant II[®] o qual, dentro da incerteza esperada para este tipo de calibração (cerca de 10 % a 20 %), forneceu resultados concordantes com calibração externa quantitativa. As metodologias foram aplicadas na determinação de elementos traços em amostras de basaltos de rochas-reservatório de um campo petrolífero brasileiro e resultados preliminares são apresentados.

Palavras-chave

Ablação a laser, ICPMS, elementos traços, análise de rochas, boratos de lítio.

Abstract

Leite, Tácito Dantas Frota. Determination of major, minor and trace elements in rock samples by LA-ICPMS after target preparation by fusion with lithium borates. Rio de Janeiro, 2006. 143p. Tese de Doutorado - Departamento de Química, Pontificia Universidade Católica do Rio de Janeiro.

Determination of trace elements in rock samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) has become an important tool for investigations in petrogenesis, metallogenesis and ore prospecting. However, despite the availability of new generation lasers with shorter pulse duration (fs) and wave length (<266 nm), calibration remains still a critical issue when matrixmatched standards are not available. One of the most serious non-spectral interference in LA-ICPMS is chemical fractionation, which causes compositions of standard and sample and their respective ablated masses to be different, thus compromising accuracy and precision of the results. When bulk analysis is the main objective, matrix matching can be achieved by the simple fusion of samples and standards with meta/tetraborates fluxes, similar to what is routinely used in XRFA. This work reports on our experience with this procedure in the analysis of basaltic rocks, aiming at the trace element characterization of host rocks from oil exploration sites in Brazil. The experiments were performed with a CETAC LSX-100 laser ablation system (Nd:YAG, 266 nm, operated in the Q-switched and scanning mode) coupled to an ELAN 5000 ICPMS. An argon-nitrogen mixture (2 % N₂, 98 % Ar) was used as carrier gas to enhance the mass of material ablated, thus increasing signal intensities and reducing detection limits. A cyclonic spray chamber was arranged just before the ICP-torch as a tentative to uniform aerosol particle size for improving measurement repeatability and robustness of the plasma. For comparison, the system was also operated without a spray chamber. Calibration samples were prepared from two standard reference materials: NIST SRM 688 basalt and NIST SRM 278 obsidian. The powdered rock standards were

mixed and homogenized with a lithium borate flux (CLAISSE, pure, 75 % Li₂B₄O₇, 25 % LiBO₂) using rock-to-flux mass ratios of 1:5, 1:11, 1:23 and 1:47, respectively, thus obtaining each standard in four different analyte concentrations. Indium was used as an internal standard (IS) and was added before fusion to achieve targets with IS concentration of 100 mg kg⁻¹. Blanks from the lithium borate flux were produced in a similar way. Method validation was performed with GSJ basalt JB-2 and NIMG granite SARM-1, prepared at a constant sampleto-flux mass ratio of 1:5 and containing also the IS. All fusions were performed in an automated furnace (CLAISSE FluxyTM). Solution nebulization ICP-MS/OES after dissolution of smaller target pieces in HNO₃ was used to assess for volatilization losses. Forty elements were determined and good linearity of the calibration curves was obtained and for most of them the correlation coefficient (R^2) was higher than 0.995. Detection limits ranged from 0.013 mg kg⁻¹ for Tb to 0.6 mg kg⁻¹ for Zn, and improved for several elements by using a cyclonic spray chamber (e.g. V, Zn, Rb, Y, Nb, Ba, Ce, Sm, Tb, Dy, Ho, Tm). In the analysis of GSJ basalt JB-2 and NIMG granite SARM-1, accuracy was better than 5 % for: V, Sr, Y, Ba, Ce, Nd, Yb, and Lu; between 5-10 % for: Sc, Zn, Rb, Tm, and 10-20 % for: Co, Zr, La and Tb. Repeatability was better than 5 % for: V, Rb, Sr, La, Nd, Ta, between 5-10% for: Sc, Co, Zn, Y, Zr, Ba, Tb, Yb, and 10-20 % for: Ce, Tm, Lu and Hf. Additionally, the semiquantitative TotalQuant II[®] calibration was applied, which gave, within the expected uncertainty for this calibration method (10 % to 20 %), concordant results when compared to the quantitative external calibration procedure. Preliminary results on the application of these methods for the determination of trace elements in basaltic host rocks from oil exploration sites will be shown.

Keywords

Laser ablation, ICPMS, trace elements, rock analysis, lithium borates.

Sumário

O Tema e os objetivos deste trabalho	20
A espectrometria de massas para análise inorgânica	23
	23
A LA-CPMS e outras técnicas de espectrometria de	
massas inorgânicas	27
Utilização de alvos preparados por fusão alcalina para	40
determinação multielementar em rochas por LA-ICPMS	46
Interferências em LA-ICPMS	49
Materiais e Métodos	58
Padrões geológicos e rochas investigadas	58
Preparação e características dos padrões de vidro	~ ~
borato	60
Preparo e homogeneidade dos padrões	61
Avaliação de possíveis perdas de elementos volateis	05
durante a fusao	65
Otimização dos parametros de ablação e medição	66
Otimização da vazão e da composição do gas carreador	60 67
Escolha dos parametros de aplação	07 69
Escolha dos parametros de medição em ICP-INS	00
Estudo de Interiercias Determinação, dos correctorísticos, do decomposito do	00 71
metedologio: anólico quantitativo	11
Curves analíticas	72
Limites de deteccão, de quantificação e concentrações	12
equivalentes ao fundo	73
Repetitividade	74
Exatidão	75
Determinação das características de desempenho da	10
metodologia: análise semi-quantitativa	75
Fatores de resposta e limites de deteccão e	
quantificação	77
Repetitividade e exatidão	77
Procedimentos para validação dos padrões de vidro	
borato	77
Aplicações da metodologia em rochas-reservatório	
da bacia de Campos (RJ)	81
Resultados e discussão	83
Preparação e características dos padrões de vidro	
borato	83
Otimizações do desempenho do espectrômetro e dos	86
parâmetros de ablação	
O efeito da câmara ciclônica nos sinais analíticos e suas	
repetitividades	94
	O Tema e os objetivos deste trabalho Breve introdução sobre os fundamentos da técnica A espectrometria de massas para análise inorgânica A LA-CPMS e outras técnicas de espectrometria de massas inorgânicas Utilização de alvos preparados por fusão alcalina para determinação multielementar em rochas por LA-ICPMS Interferências em LA-ICPMS Materiais e Métodos Padrões geológicos e rochas investigadas Preparação e características dos padrões de vidro borato Preparo e homogeneidade dos padrões Avaliação de possíveis perdas de elementos voláteis durante a fusão Otimização dos parâmetros de ablação e medição Otimização da vazão e da composição do gás carreador Escolha dos parâmetros de ablação Escolha dos parâmetros de ablação Escolha dos parâmetros de ablação Escolha dos parâmetros de desempenho da metodologia: análise quantitativa Curvas analíticas Limites de detecção, de quantificação e concentrações equivalentes ao fundo Repetitividade Exatidão Determinação das características de desempenho da metodologia: análise semi-quantitativa Fatores de resposta e limites de detecção e quantificação Repetitividade e exatidão Procedimentos para validação dos padrões de vidro borato Aplicações da metodologia em rochas-reservatório da bacia de Campos (RJ) Resultados e discussão Preparação e características dos padrões de vidro borato Otimizações do desempenho do espectrômetro e dos parâmetros de ablação O efeito da câmara ciclônica nos sinais analíticos e suas repetitividades

ção dos resultados de calibração por SN-ICPMS e P OES	96
erísticas de desempenho da metodologia de LA-	
na análise quantitativa de rochas	102
s analíticas para análise quantitativa por	
ção externa em LA-ICPMS	103
de detecção em LA-ICPMS	106
ados obtidos por LA-ICPMS com outros materiais	
erência	109
ados obtidos pelo método semi-quantitativo	
Quant II [®])	117
ção da metodologia quantitativa na análise de	
os provenientes da bacia petrolífera de Campos	
	120
sões	124
ncias bibliográficas	127
3	135
	ção dos resultados de calibração por SN-ICPMS e P OES erísticas de desempenho da metodologia de LA- na análise quantitativa de rochas a analíticas para análise quantitativa por ção externa em LA-ICPMS de detecção em LA-ICPMS ados obtidos por LA-ICPMS com outros materiais erência ados obtidos pelo método semi-quantitativo Quant II [®]) ção da metodologia quantitativa na análise de os provenientes da bacia petrolífera de Campos sões ncias bibliográficas

Lista de figuras

Figura 2.1 -	Diagrama de níveis de energia do íon Cr ³⁺ em laser de rubi, adaptado de Durrant, 1999	36
Figura 2.2 -	Diagrama de níveis de energia do íon Nd ³⁺ em laser Nd YAG (Fonte: Margulis, 1992)	37
Figura 2.3 -	Diagrama de níveis eletrônicos de energia de complexo excitado (Exc) e de espécies constitutivas dissociadas (Fund) em um laser tipo <i>excimer</i>	40
Figura 2.4 -	Classificação das interferências segundo Valcárcel	40 50
Figura 3.1 -	Padrões de vidro borato do basalto NIST SRM 688 com diferentes proporções amostra:fundente e do fundente puro (fund). Observa-se a cristalização de dois alvos (1:47 e 1:95)	62
Figura 3.2 -	Padrões de vidro borato da obsidiana NIST SRM 278 com diferentes proporções amostra:fundente, e do fundente puro (fund). Observa-se a cristalização de	63
Figura 3.3 -	Laboratório de LA-ICPMS da PUC-Rio mostrando o sistema CETAC LSX-100 e o Elan 5000 ICPMS	64
Figura 3.4 -	Apresentação esquemática mostrando os componen- tes principais do sistema de ablação a laser e o seu	
Figura 3.5 -	acoplamento ao ICP-MS Fotografia da célula de ablação mostrando alguns detalhes. A câmara tem as dimensões 5,5 cm de diâmetro e 5,0 cm de altura, e um volume interno de 119 cm ³ . Neste trabalho, o volume efetivo foi reduzido para 48 cm ³ através de dois espaçadores de toflon	64
Figura 4.1 -	Sinal absoluto de In-115 em pontos de diferentes alvos da obsidiana NIST SRM 278 (ob) com	05
Figura 4.2 -	proporção mássica (rocha:fundente) variada DPR (%) das intensidades de quatro elementos, normalizadas para In-115, nos padrões-alvo de vidros borato, com proporções mássicas (rocha: fundente) diferentes, de basalto NIST SRM 688 (ba)	83
Figura 4.3 -	e da obsidiana NIST SRM 278 (ob) Efeito da variação da taxa de tiros sobre a porcenta-	84
Figura 4.4 -	gem do sinal maior (PSM) Intensidades absolutas do sinal de três analitos versus vazão de gás carreador (100 % Ar) empregando potência de radiofreqüência do ICP de	87
Figura 4.5 -	1400 W Intensidade absoluta do sinal de In-115 (PI) versus	88
	vazao de gas carreador (2 % N ₂ , 98 % Ar; potência RF:1.400 W)	89

Figura 4.6 -	Intensidades absolutas dos sinais de Rb-85, Sr-88 e La-139 em função da vazão do gás carreador	
Figura 4.7 -	(2 % N ₂ , 98 % Ar; potência RF: 1.400 W) Ganho de sinal (relativo a 100 % Ar com vazão de	89
0	0,90 L min-1) versus concentração de N ₂ , com	
	vazão total de gás carreador de 0,55 L min ⁻¹	90
Figura 4.8 -	Imagens obtidas por SEM de crateras produzidas por	
	LA em amostra de vidro borato (basalto JB-2, 1:5).	
	Superior esquerdo: ablação em atmosfera de Ar;	
	superior direto: em atmosfera de 2 % de N ₂ e 98 %	
	de Ar; condições:10 tiros; energia 2,3 mJ/pulso, taxa	
	de tiros: 20 Hz; desfocalização: 1.000 µm; diâmetro	
	maior das crateras: cerca de 60 µm). As imagens	
	inferiores mostram perfis de ablação nos modos	~~
E: 4.0	varredura (esquerda) e rastreamento (direta)	92
Figura 4.9 -	Variação das intensidades de sinal em função do	
	tempo de ablação para NI, Co e Zn no modo de	00
Figure 4.10	Varregura Singio estacionários de Celle Nil, permetizados pelo	93
Figura 4.10 -	Zn mostrando que não bá porda proforencial deste	
	211, mostrando que não na perda preferencial deste	
	(SDM basalto 688, 1:5 em vidro borato)	03
Figura 4 11 -	Comparação de resultados de repetitividade e	90
rigula 4.11 -	evatidão de alguns elementos determinados sem	
	e com câmara ciclônica em LA-ICPMS	
	(alvo: obsidiana NIST 278, 1.5)	96
Figura 4 12 -	Gráfico de correlação entre as concentrações	50
rigara ninz	calculadas (c) dos elementos (em ug kg ⁻¹) no alvo de	
	calibração basalto SRM 688 (1:23) e os valores	
	determinados por SN-ICP-MS	98
Figura 4.13 -	Gráfico de correlação entre as concentrações	
-	calculadas (c) dos elementos (em µg kg ⁻¹) no alvo de	
	calibração obsidiana SRM 278 (1:5) e os valores	
	determinados por SN-ICP-MS	98
Figura 4.14 -	Gráficos de correlação entre as concentrações	
	esperadas nos alvos de calibração e os valores	
	determinados por ICP OES	102
Figura 4.15 -	Exemplos de curvas analíticas obtidas a partir de	
	alvos-padrao NIST SRM 688 (basalto) e SRM 278	
	(obsidiana) para quatro elementos de comportamento	
	geoquímico diferentes (Condições de ablação e	101
Eiguro 4 16	Fraite de câmere cielânice cobre o desvie podrão	104
Figura 4.10 -	e sensibilidade e e limite de deteccão de 3 elementos	
	O desvio nadrão, do alvo branco do fundente, foi	
	obtido para 10 medições durante ablação por	
	varredura correspondendo cada medição à média de	
	3 leituras	108
		.00

Figura 4.17 -	Correlações entre as concentrações certificadas e as determinadas neste trabalho por LA-ICPMS para determinação de 5 elementos principais (gráfico da	
	direita) e 23 elementos menores e traços (gráfico da	
	esquerda) em granito (SABS, NIM-G SARM 1)	110
Figura 4.18 -	Repetitividades na determinação da concentração de	
	elementos em alvos do granito NIM-G SARM 1)	110
Figura 4.19 -	Comparação entre os valores certificados de	
	concentração e os obtidos neste trabalho por LA-	
	ICPMS para 5 elementos principais e 14 elementos	
	traços. Amostra alvo basalto GSJ, JB-2 (1:5)	112
Figura 4.20 -	Repetitividades na determinação da concentração de	
	elementos no alvo basalto GSJ, JB-2 (1:5)	112
Figura 4.21 -	Correlação para os elementos principais e traços em	
	três basaltos da USGS analisados por LA-ICPMS	114
Figura 4.22 -	Repetitividade de resultados de concentração obtidos	
	por LA-ICPMS em três basaltos da USGS	115
Figura 4.23 -	Correlação entre as concentrações esperadas e as	
	determinadas por LA-ICPMS em três folhelhos da	
	USGS, para 6 elementos principais e 22 elementos	
	traços	116
Figura 4.24 -	Repetitividades (DPRs) obtidas na determinação de	
	três folhelhos USGS por LA-ICPMS	116
Figura 4.25 -	Fatores de resposta em LA-ICPMS obtidos com o	
-	padrão-alvo SRM 688 (basalto, 1:5) para análise semi-	
	quantitativa com o programa TotalQuant II [®] e sem	
	utilização do padrão interno de In-115.	
	Foram utilizados 26 elementos para o cálculo dos	
	fatores de resposta	117
Figura 4.26 -	Correlação entre as concentrações esperadas e as	
U	determinadas por LA-ICPMS no material de referência	
	USGS BCR-2 obtida pelo método TotalQuant II [®] para	
	6 elementos principais e 11 elementos traços	118
Figura 4.27 -	Correlação entre as concentrações esperadas e as	
5	determinadas por LA-ICPMS no material de referência	
	NIST SRM 278 obtida pelo método TotalQuant II®	
	para 8 elementos principais e 6 elementos traços	119
Figura 4.28 -	Correlação entre as concentrações esperadas e as	
5	determinadas por LA-ICPMS no MR USGS SCo-1.	
	obtida pelo método TotalQuant II [®] , para 7 elementos	
	principais e 9 elementos tracos	119
Figura 4.29 -	Repetitividades observadas na determinação de	
0	elementos principais e tracos em três rochas	
	basálticas da bacia de Campos	120
Figura 4.30 -	Correlação dos resultados de concentração de	
	elementos na faixa de 0 a 300 mg kg ⁻¹ na rocha	
	basáltica b40. determinados neste trabalho por	
	LA-ICPMS e pelo CENPES por SN-ICPMS	121

Figura 4.31 -	Correlação dos resultados de concentração (em mg kg ⁻¹) para os três basaltos da bacia de Campos analisados neste trabalho por	
	LA-ICPMS, e pelo CENPES por SN-ICPMS	121
Figura 4.32 -	Diagrama logarítmico das concentrações de lantanídeos em rochas basálticas da bacia de Campos e no basalto médio [BAM], normalizadas para o	
	condrito meteorítico [CON]	123

Lista de tabelas

Tabela 2.1 -	Comparação entre a análise integral (LA-ICPMS) e a microanálise localizada (LAM-ICPMS), adaptado de Günther et al. (1999)	20
Tabela 2.2 -	Repetitividade (%) na medição de razões isotópicas	29
	Becker (2002a)	32
Tabela 2.3 -	Comparação entre as técnicas de	
Tabala 0.4	SN-ICPMS e a LA-ICPMS	33
Tabela 2.4 -	Nd:YAG e excimer	39
Tabela 3.1 -	Códigos das rochas-reservatório provenientes da	
	bacia de Campos (RJ)	60
Tabela 3.2 -	Faixas de variação dos parâmetros de otimização da	
	278 (1:5)	67
Tabela 3.3 -	lsótopos e abundância natural dos analitos	
	investigados	69
Tabela 3.4 -	Sobreposição de fons-poliatômicos provenientes	<u> </u>
Tabela 3.5	dos elementos do fundente (LI, B, O) Possíveis interferências espectrais de íons	69
	poliatômicos provenientes de elementos principais	
	das rochas	70
Tabela 3.6 -	Parâmetros operacionais e de aquisição de dados	
	na análise quantitativa por LA-ICPMS com gás	
	carreador 100 % Ar ou com mistura de 2 % N ₂ e 98	70
Tabela 37 -	% Al (valores unerecionais e de aquisição de dados na	12
	análise semi-quantitativa por LA-ICPMS com o	
	programa TotalQuant II [®]	76
Tabela 3.8 -	Parâmetros operacionais e de aquisição de dados na	
	análise quantitativa por ICP-MS com nebulização de	
Tabala 2.0	SOIUÇÃO	78
	de elementos no basalto NIST SRM 688	79
Tabela 3.10 -	Isótopos investigados neste trabalho e concentra-	10
	ções de elementos na obsidiana NIST SRM 278	80
Tabela 4.1 -	Recuperação (%) de cinco diferentes elementos no	
	vidro basalto GSJ JB-2 (1:5)	85
rapela 4.2 -	Oumização da destocalização (det) para uma taxa de tiros constante de 20 Hz	87
Tabela 4 3 -	Repetitividades de sinais absolutos medidas em duas	07
	amostras-alvo (NIST SRM 278 e 688, amostra-	
	fundente1:5), durante a fase estacionária de ablação	

	(condições de ablação e de medição em ICP-MS,	94
Tabela 4.4 -	Intensidades médias e DPR de medições de In-115 em LA-ICPMS no vidro borato (branco), sem e com o	05
Tabela 4.5 -	Correlações entre concentrações (mg kg ⁻¹), valor esperado versus SN-ICP-MS, para validação dos padrões de vidro borato. Coeficientes angular (b) e	90
	linear (a), de determinação (R ²) e padrões que	00
Tabela 4.6 -	Valores médios e DP (n = 4) de elementos potencialmente voláteis nos alvos de calibração	33
	sintetizados, junto com os valores esperados.	100
Tabela 4.7 -	Correlações entre as concentrações esperadas e as	100
	principais nos padrões de vidro borato coeficientes	
	angular (b), linear (a) e de determinação (R^2) e	
	padrões correspondentes a valores dispersos	101
Tabela 4.8 -	Características das curvas analíticas para 41	
	elementos quantificados neste trabalho por	
	$R^2 = coeficiente de determinação$	105
Tabela 4.9 -	Comparação dos limites de detecção (3o) e as	100
	concentrações equivalentes ao fundo (BEC), ambos	
	em mg kg ⁻¹ , obtidos em LA-ICPMS sem e com uma	
Tabala 4.40	câmara ciclônica (CC)	107
Tabela 4.10 -	Resultados de concentração e repetitividades (DPR,	
	tracos no vidro borato (1.5) do granito NIM-G SARM 1	111
Tabela 4.11 -	Resultados de concentração e repetitividades	
	(DPR, n = 3) para a determinação de elementos	
	no vidro borato (1:5) do basalto (GSJ, JB-2);	
Tabala 4 40	valores em mg kg ⁻¹ ou %, quando indicado	113
rabela 4.12 -	Comparação de resultados (em mg kg ⁻) reportados	
	diferentes (rocha basáltica b40)	122

GLOSSÁRIO

BEC – Concentração equivalente ao branco (do inglês: *background equivalent concentration*).

EXATIDÃO - Grau de concordância entre o resultado de uma medição e um valor "verdadeiro" do mensurando.

FATOR DE RESPOSTA - É especifico para cada elemento, e é calculado a partir da razão entre a intensidade medida e a concentração conhecida, é dependente das condições instrumentais.

ICPMS - Espectrometria de massas com fonte de plasma indutivamente acoplado.

ICP OES - Espectrometria de emissão ótica com fonte de plasma indutivamente acoplado.

LD-3 σ – Limite de detecção definido como LD = 3 . σ / S, onde σ é o desvio padrão do branco (n = 10), e S é coeficiente angular da curva de calibração do analito (sensibilidade analítica).

LQ - limite de quantificação é a menor concentração do analito que pode ser determinada com um nível aceitável de precisão e exatidão, normalmente definido como LQ = $10 \cdot \sigma / S$.

MRC - Material de referência certificado (do inglês: certified reference material).

PERCENTUAL DE RECUPERAÇÃO.- É a razão entre o percentual da concentração do analito determinado pela metodologia de interesse, e a concentração real conhecida (do inglês: % recovery).

REPETITIVIDADE - É o grau de concordância entre os resultados de medições sucessivas de um mesmo mensurando, efetuadas sob as mesmas condições de medição, chamadas de condições de repetitividade.

ROBUSTEZ - A robustez de um método de ensaio mede a sensibilidade que este apresenta em face de pequenas variações.

TOTALQUANT - Metodologia de quantificação semi-quantitativa utilizada no programa que controla o equipamento de ICPMS (ELAN - PerkinElmer-Sciex).

VALIDAÇÃO - Comprovação, através do fornecimento de evidência objetiva, de que os requisitos para uma aplicação ou uso específicos pretendidos foram atendidos.