Definição Axiomática de Probabilidade

A definição axiomática de probabilidade encara probabilidade como uma função cujo domínio é o espaço amostral.

Seja A um subconjunto qualquer do espaço amostral S. Podemos definir uma função P(.) tal que, se A ÍS, então P(A) é a probabilidade de que o resultado da experiência aleatória seja um elemento de A. Esta função P(.) "pega" elementos do espaço amostral e os leva num subconjunto dos reais, o intervalo [0,1].

Probabilidade

Seja S o espaço amostral e A um subconjunto qualquer deste espaço. Uma função de probabilidade que atua sobre este espaço amostral satisfaz :

i) 0P(A)1 para todo A ÍS

ii) P(S) = 1

iii) P(A1ÈA2ÈA3È .....) = P(A1 ) + P(A2 ) + P(A3) + ...

onde os Ai são mutuamente exclusivos.

Note que esta última propriedade é válida, em particular, quando existe um número finito de termos na união.

Estas três propriedades definem o tipo de função que pode ser chamada de "probabilidade". Logo, uma probabilidade é uma função que mapeia elementos do espaço amostral em [0,1] de modo que a probabilidade de todo o espaço amostral é um, a probabilidade da união de eventos mutuamente exclusivos é a soma das probabilidades de cada um dos conjuntos na união e, finalmente, a probabilidade de qualquer subconjunto do espaço amostral é um número no intervalo [0,1].

Propriedades das Probabilidades

Seja A um subconjunto qualquer de S e  o complemento de A. Seja P(.) uma probabilidade definida no espaço amostral S. As seguintes propriedades são válidas, e decorrem da definição de probabilidade:
 
i)   Pr(Æ) = 0
ii) Para todo A ÍSÞPr()= 1 - Pr(A) onde  é o  complemento de A
iii)Para todo AÍSÞP(A)£P(S)
iv) Para todo A ÍSÞ0£Pr(A)£1
v) Sejam A1, A2 ÍS tais que A1 ÍA2 então Pr(A1) Pr(A2)

Note que esta última propriedade resulta num certo tipo de "ordem" dentro do espaço amostral, e diz simplesmente que, se um evento A1 está contido noutro, a probabilidade. de A é menor ou igual à probabilidade do evento que o contém.

A propriedade a seguir é uma das mais importantes na prática, e nos permite calcular a probabilidade da união de eventos que não são disjuntos.
 
vi) Se A1, A2ÍS então Pr(A1 ÈA2) = Pr(A1) + Pr(A2) - Pr(A1Ç A2)

Em particular, se A1 e A2 são conjuntos disjuntos, então Pr(A1ÈA2) = Pr(A1) + Pr(A2).
 
vii) Para quaisquer 3 eventos A1, A2 e A3 em S temos : 
Pr(A1ÈA2È A3) = Pr(A1) + Pr(A2) + Pr (A3) - Pr(A1ÇA2) - Pr(A1Ç A3) - Pr(A2 ÇA3) + Pr(A1ÇA2 Ç A3)

Exemplos

Muito bem, agora temos uma definição do tipo de função que pode ser chamada de probabilidade, mas isto não resolve inteiramente o nosso problema. Como é que, na prática, estabelecemos valores para probabilidades. Em outras palavras, o que nos leva a dizer que a probabilidade de "sair" o número 2 na jogada de um dado é 1/6 ?

Na prática probabilidades são estabelecidas com base em uma das seguintes coisas: experiências ou observações prévias, considerações analíticas ou experimentais ou "chutes educados" .

A idéia de estabelecer probabilidades a partir de experiências prévias está intimamente relacionada com a noção de freqüência relativa.

Seja E uma experiência aleatória, se supomos que a experiência pode ser repetida n vezes, sempre nas mesmas condições. Sejam A e B eventos quaisquer, e na e nb representam o número de ocorrências dos eventos A e B nas n repetições da experiência E.

Por exemplo, suponha que E é a experiência : jogar um dado e observar o número que saiu. Seja A o evento : saiu um número par, e B o evento : saiu o número 6.

Joga-se o dado 20 vezes, e observa-se as seguintes freqüências para cada face do dado :
 

Face do dado
Freqüência
1
4
2
4
3
3
4
5
5
2
6
2

Então : na = 11 e nb = 2, e n = 20 ( número de repetições da experiência).

Intuitivamente, se tivéssemos jogado o dado um número bem maior de vezes, nós nos sentiríamos mais confiantes em afirmar que a probabilidade de uma das faces do dado seria igual ao número de vezes em que aquela face "saiu" dividido pelo número de repetições da experiência.

Freqüência relativa

A freqüência relativa de um evento A , denotada por fA é definida por :

fA = na / n

onde na indica o número de ocorrências do evento A dentre as n repetições da experiência.

A partir da definição vemos que as freqüências relativas dos eventos A e B são, respectivamente, 11/20 = 0.55 e 2/20 = 0.10 .

Propriedades das freqüências relativas

1 - 0£fA£ 1

2 - fA = 0 se, e somente se, o evento A não ocorre em nenhuma das n repetições da experiência.

3 - fA = 1 se, e somente se, o evento A ocorreu em todas as repetições da experiência.

4 - Se A e B são eventos mutuamente exclusivos, então : fA ÈB = fA + fB

5 - Quando n (o número de repetições) tende a infinito, fA tende a se estabilizar, e converge para um número, que é a probabilidade do evento A.

Esta última propriedade é fundamental. É ela que nos permite intuir que a probabilidade de "sair" o número 2 numa jogada de um dado é 1/6.

Por exemplo, suponha que jogamos um dado 20, 60, 120, 600 e 6000 vezes e registramos o número de ocorrências de cada face do dado. Possíveis resultados são mostrados na próxima tabela.
 

Face do dado
n = 20
n = 60
n = 120
n = 600
n = 6000
1
4
8
22
80
1100
2
4
11
18
90
900
3
3
12
17
122
1000
4
5
9
23
100
1050
5
2
15
25
78
1100
6
2
5
15
130
850

Ou seja, "lá no final" (n = 6000) esperamos que n1, n2, ..., n6 estejam todos próximos de 1000, de tal forma que as freqüências relativas de cada face do dado estejam perto de 1/6 . É claro que não observaremos exatamente n1 = n2 = .... = n6 = 1000 sempre que jogarmos o dado 6000 vezes , pois cada jogada do dado é uma experiência aleatória.