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Abstract

Alves Reis, Marcello; Simon da Rosa, Guilherme (Advisor).
Mode-Matching Technique Along Oblique Surfaces and
Applications to the Modeling of Curved Waveguides. Rio
de Janeiro, 2023. 105p. Dissertação de Mestrado – Departamento
de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

Waveguides are widely used in telecommunications engineering for
transmitting signals and manufacturing filters and other devices in the
microwave applications. In this work, we present a formulation based on
the mode-matching technique (MMT) for the analysis of discontinuities in
cylindrical waveguides caused by curvatures in the longitudinal axis of the
transmission line. We present and validate a technique for modal analysis
of curved waveguides by approximating the curvature in a succession of
oblique surfaces by means of their generalized scattering matrices (GSMs)
extracted from the MMT. The present approach is a computationally efficient
alternative for modeling curvature in cylindrical waveguides when compared
to usual numerical brute force techniques (such as element-based, volume-
based, or finite difference solutions). An algorithm is presented to compute
the GSM matrix elements for different configurations of waveguide junctions.
The novelty of the present method consists in considering the projection of
electromagnetic fields onto oblique surfaces for the application of MMT. We
present a series of numerical results that show that the technique presented
in this study can guarantee results with good accuracy and precision when
performing the analysis of the modal behavior of electromagnetic fields at
discontinuities caused by curvatures.

Keywords
Oblique surfaces; Cylindrical curved waveguides; Mode-Matching

technique.
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Resumo

Alves Reis, Marcello; Simon da Rosa, Guilherme. Método de
Casamento de Modos ao Longo de Superfícies Oblíquas
e Aplicações para a Modelagem de Guias de Ondas
Curvados. Rio de Janeiro, 2023. 105p. Dissertação de Mestrado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.

Guias de onda são amplamente utilizados na engenharia de
telecomunicações para a transmissão de sinais e construção de filtros e
outros dispositivos de micro-ondas. Neste trabalho, apresentamos uma
formulação baseada na técnica de casamento de modos (MMT) para a
análise de descontinuidades em guias de ondas cilíndricos causadas por
curvaturas no eixo longitudinal da linha de transmissão. Apresentamos e
validamos uma técnica para análise modal de guias de ondas curvos através
da aproximação da curvatura por uma sucessão de superfícies oblíquas por
meio de suas matrizes de espalhamento generalizadas (GSMs) extraídas do
MMT. A presente abordagem é uma alternativa computacionalmente eficiente
para modelar curvaturas em guias de ondas cilíndricos quando comparada
às técnicas usuais de força bruta numérica (tais como soluções baseadas
em elementos, volumes, ou diferenças finitas). Um algoritmo é apresentado
para calcular os elementos da matriz GSM para diferentes configurações
de junções de guias de onda. A novidade do presente método consiste em
considerar a projeção dos campos eletromagnéticos em superfícies oblíquas
para a aplicação do MMT. Apresentamos uma série de resultados numéricos
que mostram que a técnica apresentada neste estudo pode garantir resultados
com boa acurácia e precisão ao realizar a análise do comportamento modal
dos campos eletromagnéticos em descontinuidades provocados por curvaturas.

Palavras-chave
Superfícies oblíquas; Guias de ondas cilíndricos curvos; Método de

casamento de modos.
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Figure 2.4 Fields configuration of first 9 lower order modes. [2] 29

Figure 3.1 Representation of transmitted and reflected waves at a
coaxial waveguide discontinuity. 31

Figure 3.2 Uniform circular waveguide with the longitudinal axis
align with the z-axis. 32

Figure 3.3 View of (x1, y1, z1) and (x2, y2, z2) coordinate systems. 33
Figure 3.4 Junction of two straight waveguides along a oblique

surface described by the tilt angle θ12. 34
Figure 3.5 Waveguide junctions showing the surfaces S1, S2, and S̃1. 37
Figure 3.6 View of the SJ surface over the plane zJ = 0. 41
Figure 3.7 Junction of two straight waveguides. 45
Figure 3.8 Waveguide with three different regions. 49
Figure 3.9 A 90-degree curved waveguide discretized into 5 regions. 50

Figure 4.1 Geometry of a straight waveguide junction. 52
Figure 4.2 Reflection coefficient from g = 2 to g = 10. Results from

CST and Matlab. 53
Figure 4.3 Qualwave’s circular waveguide specifications for Ku-

band frequency ranges. [3] 57
Figure 4.4 Straight waveguide device with three sections. 60
Figure 4.5 Results for (a) L = 5 mm ϵ2 = 2ϵ0 and (b) L = 10 mm

ϵ2 = 2ϵ0. 61
Figure 4.6 Results for (a) L = 15 mm ϵ2 = 2ϵ0 and (b) L = 20 mm

ϵ2 = 2ϵ0. 62
Figure 4.7 Results for (a) L = 25 mm ϵ2 = 2ϵ0 and (b) L = 30 mm

ϵ2 = 2ϵ0. 63
Figure 4.8 Results for (a) L = 5 mm ϵ2 = 4ϵ0 and (b) L = 10 mm

ϵ2 = 4ϵ0. 64
Figure 4.9 Results for (a) L = 15 mm ϵ2 = 4ϵ0 (b) L = 20 mm

ϵ2 = 4ϵ0. 65
Figure 4.10 Results for (a) L = 25 mm ϵ2 = 4ϵ0 and (b) L = 30 mm

ϵ2 = 4ϵ0. 66
Figure 4.11 Geometry of an oblique waveguide junction. 67
Figure 4.12 CST structure with TEz

11 mode excitation as a sin(nϕ)
configuration. 68

Figure 4.13 CST structure with TEz
11 mode excitation as a cos(nϕ)

configuration. 68
Figure 4.14 Absolute error (dB) between CST simulation and

algorithm (with n = 1) for TEz
11 mode as a cos(nϕ). 69

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



Figure 4.15 Absolute error (dB) between CST simulation and
algorithm (with n = 2) for TEz

11 mode as a cos(nϕ). 70
Figure 4.16 Absolute error (dB) between CST simulation and

algorithm (with n = 3) for TEz
11 mode as a cos(nϕ). 71

Figure 4.17 Absolute error (dB) between CST simulation and
algorithm (with n = 1) for TEz

11 mode as a sin(nϕ). 72
Figure 4.18 Absolute error (dB) between CST simulation and

algorithm (with n = 2) for TEz
11 mode as a sin(nϕ). 73

Figure 4.19 Absolute error (dB) between CST simulation and
algorithm (with n = 3) for TEz

11 mode as a sin(nϕ). 74
Figure 4.20 Reflection Coefficient TEz

11 mode as a cos(nϕ). 75
Figure 4.21 Reflection Coefficient for TEz

11 mode as a sin(nϕ). 75
Figure 4.22 Absolute error for the configuration cos(nϕ), with f =

10 GHz. 76
Figure 4.23 Absolute error for the configuration cos(nϕ), with f =

10.5 GHz. 77
Figure 4.24 Absolute error for the configuration cos(nϕ), with f =

11 GHz. 78
Figure 4.25 Absolute error for the configuration cos(nϕ), with f =

11.5 GHz. 79
Figure 4.26 Absolute error for the configuration cos(nϕ), with f =

12 GHz. 80
Figure 4.27 Absolute error for the configuration cos(nϕ), with f =

12.5 GHz. 81
Figure 4.28 Absolute error for the configuration cos(nϕ), with f =

13 GHz. 82
Figure 4.29 Absolute error for the configuration cos(nϕ), with f =

13.5 GHz. 83
Figure 4.30 Absolute error for the configuration cos(nϕ), with f =

14 GHz. 84
Figure 4.31 Absolute error for the configuration cos(nϕ), with f =

14.5 GHz. 85
Figure 4.32 Absolute error for the configuration cos(nϕ), with f =

15 GHz. 86
Figure 4.33 Absolute error for the configuration sin(nϕ), with f =

10 GHz. 87
Figure 4.34 Absolute error for the configuration sin(nϕ), with f =

10.5 GHz. 88
Figure 4.35 Absolute error for the configuration sin(nϕ), with f =

11 GHz. 89
Figure 4.36 Absolute error for the configuration sin(nϕ), with f =

11.5 GHz. 90
Figure 4.37 Absolute error for the configuration sin(nϕ), with f =

12 GHz. 91
Figure 4.38 Absolute error for the configuration sin(nϕ), with f =

12.5 GHz. 92
Figure 4.39 Absolute error for the configuration sin(nϕ), with f =

13 GHz. 93

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



Figure 4.40 Absolute error for the configuration sin(nϕ), with f =
13.5 GHz. 94

Figure 4.41 Absolute error for the configuration sin(nϕ), with f =
14 GHz. 95

Figure 4.42 Absolute error for the configuration sin(nϕ), with f =
14.5 GHz. 96

Figure 4.43 Absolute error for the configuration sin(nϕ), with f =
15 GHz. 97

Figure 4.44 Reflection coefficient from CST for TEz
11 = cos(nϕ). 98

Figure 4.45 Reflection coefficient from our algorithm (n = 2 and
p = 1) for TEz

11 = cos(nϕ). 98
Figure 4.46 Reflection coefficient from CST for TEz

11 = sin(nϕ). 99
Figure 4.47 Reflection coefficient from our algorithm (n = 1 and

p = 1) for TEz
11 = sin(nϕ). 99

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



List of tables

Table 2.1 Ordered zeros xnp of Jn(x). 27
Table 2.2 Ordered zeros x′

np of J ′
n(x). 28

Table 4.1 Results of the reflection coefficient with f = 10 GHz and
relative permittivity ϵ2 varying with g = 2 to g = 10, using
Matlab algorithm (with n = 1 and p = 1) and CST simulation. 53

Table 4.2 Results of the reflection coefficient with f = 10 GHz to
f = 15 GHz and ϵ2 = 2ϵ1, using Matlab algorithm (with n = 1
and p = 1) and CST simulation. 54

Table 4.3 Results of the reflection coefficient with f = 10 GHz to
f = 15 GHz and ϵ2 = 3ϵ1, using Matlab algorithm (with n = 1
and p = 1) and CST simulation. 55

Table 4.4 Results of the reflection coefficient with f = 10 GHz to
f = 15 GHz and ϵ2 = 4ϵ1, using Matlab algorithm (with n = 1
and p = 1) and CST simulation. 55

Table 4.5 Results of the reflection coefficient with f = 10 GHz to
f = 15 GHz and ϵ2 = 5ϵ1, using Matlab algorithm (with n = 1
and p = 1) and CST simulation. 56

Table 4.6 Results of the reflection coefficient with f = 13.4 GHz
to f = 18.0 GHz and ϵ2 = 2ϵ1, using Matlab algorithm (with
n = 1 and p = 1) and CST simulation. 57

Table 4.7 Results of the reflection coefficient with f = 13.4 GHz
to f = 18.0 GHz and ϵ2 = 3ϵ1, using Matlab algorithm (with
n = 1 and p = 1) and CST simulation. 58

Table 4.8 Results of the reflection coefficient with f = 13.4 GHz
to f = 18.0 GHz and ϵ2 = 4ϵ1, using Matlab algorithm (with
n = 1 and p = 1) and CST simulation. 58

Table 4.9 Results of the reflection coefficient with f = 13.4 GHz
to f = 18.0 GHz and ϵ2 = 5ϵ1, using Matlab algorithm (with
n = 1 and p = 1) and CST simulation. 59

Table 4.10 Results from Matlab algorithm (with n = 1 and p = 1)
and CST simulation for the reflection coefficient with frequency
ranging from 10 GHz to 15 GHz, ϵ2 = 2ϵ0 and L equals to 5 mm
and 10 mm. 61

Table 4.11 Results from Matlab algorithm (with n = 1 and p = 1)
and CST simulation for the reflection coefficient with frequency
ranging from 10 GHz to 15 GHz, ϵ2 = 2ϵ0 and L equals to 15 mm
and 20 mm. 62

Table 4.12 Results from Matlab algorithm (with n = 1 and p = 1)
and CST simulation for the reflection coefficient with frequency
ranging from 10 GHz to 15 GHz, ϵ2 = 2ϵ0 and L equals to 25 mm
and 30 mm. 63

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



Table 4.13 Results from Matlab algorithm (with n = 1 and p = 1)
and CST simulation for the reflection coefficient with frequency
ranging from 10 GHz to 15 GHz, ϵ2 = 4ϵ0 and L equals to 5 mm
and 10 mm 64

Table 4.14 Results from Matlab algorithm (with n = 1 and p = 1)
and CST simulation for the reflection coefficient with frequency
ranging from 10 GHz to 15 GHz, ϵ2 = 4ϵ0 and L equals to 15 mm
and 20 mm. 65

Table 4.15 Results from Matlab algorithm (with n = 1 and p = 1)
and CST simulation for the reflection coefficient with frequency
ranging from 10 GHz to 15 GHz, ϵ2 = 4ϵ0 and L equals to 25 mm
and 30 mm. 66

Table 4.16 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 10 GHz and θ (2θ12) ranging from 10° to 90°,
using Matlab algorithm (with n = 1 and p = 1, 2, and 3) and
comparing with CST simulation. 69

Table 4.17 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 10 GHz and θ (2θ12) ranging from 10° to 90°,
using Matlab algorithm (with n = 2 and p = 1, 2,and 3) and
comparing with CST simulation. 70

Table 4.18 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 10 GHz and θ (2θ12) ranging from 10° to 90°,
using Matlab algorithm (with n = 3 and p = 1, 2, and 3) and
comparing with CST simulation. 71

Table 4.19 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 10 GHz and θ (2θ12) ranging from 10° to 90°,
using Matlab algorithm (with n = 1 and p = 1, 2,and 3) and
comparing with CST simulation. 72

Table 4.20 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 10 GHz and θ (2θ12) ranging from 10° to 90°,
using Matlab algorithm (with n = 2 and p = 1, 2,and 3) and
comparing with CST simulation. 73

Table 4.21 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 10 GHz and θ (2θ12) ranging from 10° to 90°,
using Matlab algorithm (with n = 3 and p = 1, 2,and 3) and
comparing with CST simulation. 74

Table 4.22 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 10 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 76

Table 4.23 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 10.5 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 77

Table 4.24 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 11 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 78

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



Table 4.25 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 11.5 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 79

Table 4.26 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 12 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 80

Table 4.27 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 12.5 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 81

Table 4.28 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 13 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 82

Table 4.29 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 13.5 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 83

Table 4.30 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 14 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 84

Table 4.31 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 14.5 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 85

Table 4.32 Results of the reflection coefficient for TEz
11 mode as a

cos(nϕ) with f = 15 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 86

Table 4.33 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 10 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 87

Table 4.34 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 10.5 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 88

Table 4.35 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 11 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 89

Table 4.36 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 11.5 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 90

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



List of tables 15

Table 4.37 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 12 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 91

Table 4.38 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 12.5 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 92

Table 4.39 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 13 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 93

Table 4.40 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 13.5 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 94

Table 4.41 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 14 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 95

Table 4.42 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 14.5 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 96

Table 4.43 Results of the reflection coefficient for TEz
11 mode as a

sin(nϕ) with f = 15 GHz and θ (2θ12) ranging from 5° to 30°,
using Matlab algorithm (with n = 1, 2, and 3 and p = 1) and
comparing with CST simulation. 97

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



1
Introduction

1.1
General Introduction

The demand for compact microwave devices has been on the rise due to
the increasing use of high-frequency systems in electrical engineering. However,
propagating 3D guided waves within structures that have some curvature,
such as the connections between a signal generator and the feeder of some
antennas (as shown in Fig. 1.1), has posed a challenge. At higher frequencies,
curved dielectric waveguides are fundamental building blocks in many optical
devices [4]. Thus, studying the behavior of guided waves that propagate in
curved transmission lines has become important in recent years. However, the
existing literature on the theory of propagation in curved waveguides is limited
compared to that on straight waveguides with rectangular and circular cross-
section. Analytical techniques that use equivalent circuits to represent isolated
discontinuities are commonly used to analyze this type of situation, but they
have limitations related to the size of the structure being analyzed, making
it difficult to model unconventional structures. Some of these approaches are
discussed in [5], [6], and [7].

To analyze problems with complex geometries, numerical methods such
as the finite element method, finite volume method, or finite difference method
are commonly used. These methods are highly versatile and allow for the
rigorous solution of Maxwell’s equations to obtain satisfactory solutions for 3D
structures. However, one drawback is the large computational cost involved.
In [8], a frequency-domain finite-difference method formulated in an orthogonal
curvilinear coordinate system was used for the analysis of curved waveguides.
In [9] and [10], the method of moments (MoM) as used with the Galerkin’s
procedure for solving a similar problem. In [11], a system of generalized
telegrapher’s equations was formulated for E- and H-plane bend waveguide
configurations, where the corresponding fields in the curved section were
expanded as a superposition of the modes of a straight waveguide. A matrix
representation of the coupling mode equations was used to extract a GSM of
a bent waveguide region. A similar method was used in [12] for the analysis of
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Chapter 1. Introduction 17

Figure 1.1: X-Band antenna structure with curved waveguides.

curved waveguide mode converters.
For problems with less complex 3D geometries, where wave functions

of the constituent waveguide sections are known, an alternative approach is
the mode-matching method (MMT). This semi-analytical method involves
expanding electromagnetic fields in terms of modal fields in a 2D uniform
waveguide and determining coupling integrals to enforce modal field continuity
at the junction of adjacent waveguide segments. Since these integrals are
generally analytic, the computational cost of solving problems is lower than
that of purely numerical methods. By calculating coupling integrals for all
modes in the problem, a generalized scattering matrix (GSM) can be obtained
for each discontinuity of the analyzed geometry. The cascading of GSMs can
then be used to describe complex 3D geometries formed by several connected
waveguides.

MMT is widely used for analyzing discontinuity problems in waveguides.
For example, in [13], the MMT was used to analyze the transition from sub-
strate integrated waveguides (SIWs) to substrate-mounted waveguides (SMWs)
mounted on top and/or at the bottom of the substrate. In [14], an MMT-
based formulation was presented for the electromagnetic characterization of
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Chapter 1. Introduction 18

measuring cells for uniaxial anisotropic materials. [15] used MMT to obtain
the generalized scattering properties of cascaded H-plane discontinuity in a
rectangular waveguide operating in X-band frequencies. In [16], the mode-
coupling theory was used for the analysis of fields in curved and twisted
waveguides.

In this work, we present a mathematical formulation of MMT for
analyzing discontinuities caused by different medium parameters at straight
junctions between waveguide sections and by bends implemented in waveguides
forming sections with oblique junctions between them. The fields inside each
(straight and longitudinally uniform) waveguide region will be derived through
the analytical solutions of Maxwell’s equations in cylindrical coordinates.
Additionally, a set of coupling integrals will be established to match field
continuity along oblique surfaces that connect two circular waveguides, and
the corresponding scattering parameters for each waveguide junction will be
obtained.

1.2
Scientific Contributions

We propose a mode-matching-based methodology for the electromagnetic
analysis of the junction of circular-cross-section waveguides. We will be working
with cylindrical homogeneous waveguides, but all the mathematical procedures
can be easily adapted for coaxial cables (with an inner concentric conductor)
or rectangular structures. We introduce here a formulation able to describe the
behavior of fields in curved waveguides using the mode-matching technique.

The scientific contributions of this work are listed below:

– The development of a mathematical formulation using a semi-analytical
mode-matching method (MMT) to describe the scattering characteristics
of waveguide circular junctions along oblique surfaces;

– The development of an algorithm to obtain the reflection and transmis-
sion parameters of oblique waveguide junctions, and the derivations of
the corresponding generalized scattering matrix (GSM).

1.3
Dissertation Organization

In Chapter 2, we present the electromagnetic field solution of a uniform
cylindrical waveguide. The modal fields and the characteristic equations for the
associated eigenvalues are formulated in terms of pure transverse electric (TE)
and magnetic (TM) modes.

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



Chapter 1. Introduction 19

In Chapter 3, we explore the use of rotation matrices and coordinate
conversions to analyze the fields on a surface defined by a junction between
two waveguide segments with an angular offset between them. Finally, we
present a methodology for applying the mode-matching method to these
oblique junctions in order to model curved waveguides.

In Chapter 4, we explore a numerical algorithm implemented in Matlab
based on the formulation presented in Chapter 3, and we validate it for the case
of straight junctions of homogeneous guides. The results of the algorithm are
validated by comparison with those obtained using commercial electromagnetic
simulation software, using the finite element method. In addition, the MMT
is applied in the modeling of the junctions of straight segments of cylindrical
waveguides with different electromagnetic characteristics. Finally, we evaluate
the ability of the present methodology to model the scattering parameters of
oblique waveguide junctions.

In Chapter 5, we provide final considerations and analyze the most
important results obtained in this work, as well as suggest future research
directions.
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2
Electromagnetic Fields in Cylindrical Waveguides

2.1
Introduction

Cylindrical transmission lines, such as coaxial cables and circular waveg-
uides, are widely used in telecommunication systems due to their easy machin-
ability and uniform cross-sectional profile. Examples of cylindrical transmission
lines are shown in Fig. 2.1. These structures are suitable for long-distance
communications.

Homogeneous cylindrical structures can support several field configura-
tions, including TE, TM, and Hybrid modes. However, for communication
applications, single-mode waveguides are typically used, where the entire
field propagation can be characterized by the fundamental mode. In this
configuration, all modes except the fundamental one can be discarded, as they
are evanescent fields and mostly disappear along the waveguide. While this
practice is sufficient for studying fundamental mode propagation, we cannot
ignore the higher order modes when studying field distributions near oblique
junctions or other waveguide discontinuities.

This chapter presents the mathematical formulation for representing
electromagnetic fields inside a uniform circular waveguide. Initially, cylindrical
coordinates are used to solve boundary problems involving structures with
this particular shape. As we focus on circular waveguides, it is convenient
to express the fields in a cylindrical coordinate system. Later, we also use
the rectangular coordinate system and require vector transformations from
rectangular-to-cylindrical, as described in [2, App. 7]. The coordinate systems

Figure 2.1: Cylindrical waveguides. [1]
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used in this work are depicted in Fig. 2.2.
Various techniques can be used to solve the cylindrical boundary problem.

For example, direct numerical integration, as used in [17], and perturbation
methods, as described in [18], can be employed to approximate solutions to
the wave equation. In our approach, we start with Maxwell’s Equations to
obtain solutions for the TE and TM fields in a sourceless, homogeneous circular
waveguide. This allows us to use the MMT in specific situations and compare
the expected solutions.

2.2
Circular Wave functions

Maxwell’s equations for a source-free, homogeneous, isotropic, and linear
medium can be written as follows:

∇ × E = −z̃H (2-1)
∇ × H = ỹE (2-2)

∇ · E = 0 (2-3)
∇ · H = 0, (2-4)

where z̃ = jωµ̃ and ỹ = (σ̃ + jωϵ̃). The complex permeability and complex
permittivity are given by µ̃ and ϵ̃, respectively. At this work, the time-harmonic
dependence in the form e−iωt is assumed and omitted. Since we are working at a
homogeneous and isotropic medium, µ̃ and ϵ̃ are not dependent from position,
they are scalar and independent from E and H. Applying the curl operator
in (2-1) we can obtain:

∇ × ∇ × E = −z̃∇ × H (2-5)

Figure 2.2: Rectangular and Cylindrical coordinate systems. [2]
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Using (2-2), we can replace ∇ × H and obtain a vector Helmholtz equation for
the electric field as

∇ × ∇ × E − k2E = 0, (2-6)

where k is the wavenumber defined by k =
√

−z̃ỹ. Applying the same
procedures to (2-2), we can obtain:

∇ × ∇ × H − k2H = 0. (2-7)

From (2-3) and (2-4), we know that the divergence of electric and magnetic
fields are null. Since we have the vector identity ∇· (∇×A) = 0, we can define
auxiliary vector potentials such that

−∇ × F = E (2-8)
∇ × A = H. (2-9)

For completeness, we can scalar potentials in view of the Lorenz gauge, i.e.,

∇ · F = −z̃Φf (2-10)
∇ · A = −ỹΦa (2-11)

where Φf and Φa are arbitrary scalar functions. Replacing (2-8) and (2-9)
in (2-1) and (2-2), respectively, it is possible to write the following relations
between the fields and the vector potentials:

E = 1
ỹ

∇ × ∇ × A (2-12)

H = 1
x̃

∇ × ∇ × F. (2-13)

We can now represent the total fields, express in terms of a superposition from
the vector potentials A and F:

E = −∇ × F + 1
ỹ

∇ × ∇ × A (2-14)

H = ∇ × A + 1
x̃

∇ × ∇ × F (2-15)

.
Accordingly, (2-6) and (2-7) can be written in terms of potentials [19,
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Ch. 3]:

∇ × ∇ × F − k2F = −z̃∇Φf (2-16)
∇ × ∇ × A − k2A = −ỹ∇Φa. (2-17)

Using the vector identity ∇ × ∇ × A = ∇(∇ · A) − ∇2A we can reduce
the general equations to the following wave potentials:

∇2F − k2F = 0 (2-18)
∇2A − k2A = 0 (2-19)

where the solutions to these equations are called wave potentials. If we consider
a cylindrical waveguide with circular cross section align with ẑ direction, as
depicted in Fig. 2.3, we can take some particular choices for A and F as:

A = ẑψa (2-20)
F = ẑψf (2-21)

where ϕa and ψf are solutions for equations (2-18) and (2-19). For a particular
case where A = ẑψa and F = 0, (2-15) show us that the magnetic field will
not have the Hz component, characteristic of a transverse magnetic to z (TMz)
field. Similarly, for electric field, the particular case F = ẑψf and A = 0 lead
us to a field with no Ez component, and characterizes a transverse electric to z
(TEz) field.

Assuming that, in cylindrical coordinates, ψ = {ψa, ψf} will have
solutions according to:

ψ = R(ρ)Φ(ϕ)Z(z). (2-22)

Figure 2.3: Cylindrical waveguide in ẑ direction [2]
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We can now solve (2-18) and (2-19) in view of the unified scalar Helmholtz
equation:

∇2ψ − k2ψ = 0, (2-23)

where the Laplacian operator, in cylindrical coordinates, can be write as

1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+ 1
ρ2
∂2ψ

∂ϕ2 + ∂2ψ

∂z2 + k2ψ = 0. (2-24)

By multiplying the above by 1/ψ, replacing the value of ψ from (2-22) and
applying the method of separation of variables, it is possible to write

1
ρR

d

dρ

(
ρ
dR

dρ

)
+ 1
ρ2Φ

d2Φ
dϕ2 + 1

Z

d2Z

dz2 + k2 = 0, (2-25)

where the third term it not dependent of ρ and ϕ. Also, the equation must be
null for all values of ρ, ϕ and z, so this term must be independent of z too.
Accordingly, we can define a constant kz such as

1
Z

d2Z

dz2 = −k2
z . (2-26)

Making the above substitution in (2-25) and taking the produt with ρ2 we
obtain

ρ

R

d

dρ

(
ρ
dR

dρ

)
+ 1

Φ
d2Φ
dϕ2 + (k2 − k2

z)ρ2 = 0. (2-27)

Now we have the second term of the equation as a function that is not
dependent from ρ and z, and all other terms are independent from ϕ. Again,
since the equation must be null for all values of ρ, ϕ and z, we can pose a
solution as

1
Φ
d2Φ
dϕ2 = −n2 (2-28)

where n is a constant. We can rewrite (2-27) as

ρ

R

d

dρ

(
ρ
dR

dρ

)
− n2 + (k2 − k2

z)ρ2 = 0. (2-29)

The original second order differential Helmholtz equation in terms of
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(rho, phi, z) was spitted into three ordinary equations:

ρ
d

dρ

(
ρ
dR

dρ

)
+ [(kρρ)2 − n2]R = 0 (2-30)

d2Φ
dϕ2 + n2Φ = 0 (2-31)

d2Z

dz2 + k2
zZ = 0, (2-32)

where k2
ρ = k2 − k2

z . Equation (2-30) is a Bessel equation of order n, with the
general solution given by the linear combination of Bessel and Hankel functions
of first kind, i.e., Jn(kρρ) and Hn(kρρ), respectively. According to the analyzed
problem, the solution can be given by one of these functions, or by a linear
combination of them. At this work, considering all the characteristics of the
problem, we will work with a solution given by Jn(kρρ) since the origin ρ = 0
is inside the domain of interest. Equations (2-31) and = (2-32) have harmonic
functions as a solution, where the general solution was chosen by the problem
analyzed. We will consider the elementary wave function in the form

ψkρ,n,kz = Jn(kρρ)einϕeikzz (2-33)

and the final solution for the Helmholtz equation is given by a linear
combination of all elementary wave functions that attend as a solution for
the problem. We can sum over all possible values of n and kρ (or kz). For
example, we can write

ψ =
∑
n

∑
kρ

An,kρJn(kρρ)einϕeikzz (2-34)

where the An,kρ are the constants associated to a particular {n, kρ} solution.
Now, the solution ψ is known, we can calculate the value of the field

components replacing equations (2-20) and (2-21) in (2-14) and (2-15). Letting
A = ẑψ and F = 0, TMz fields are given by [19, p. 202]:

Eρ = 1
ỹ
∂2ψ
∂ρ∂z

Hρ = 1
ρ
∂ψ
∂ϕ

Eϕ = 1
ỹρ

∂2ψ
∂ϕ∂z

Hρ = −∂ψ
∂ρ

Ez = 1
ỹ

(
∂2

∂z2 + k2
)
ψ Hz = 0.

(2-35)

Similarly, we can obtain a TEz field by letting F = ẑψ and A = 0 where,
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according to [19, p. 202], we have:

Eρ = −1
ρ
∂ψ
∂ϕ

Hρ = 1
z̃
∂2ψ
∂ρ∂z

Eϕ = ∂ψ
∂ρ

Hρ = 1
z̃ρ

∂2ψ
∂ϕ∂z

Ez = 0 Hz = 1
z̃

(
∂2

∂z2 + k2
)
ψ.

(2-36)

2.3
Propagation Modes in Circular Waveguide

We can use the cylindrical wave functions, as described in above section,
to study the propagation of waves in a hollow circular waveguide. Considering
the waveguide depicted in Fig. 2.3, where the field is finite at ρ = 0, and the
wave function given by (2-33). Assuming that the radial walls that truncate the
circular waveguide are Perfect electric Conductor (PEC), we need to impose
that the tangential electric field is null at the waveguide walls, i.e.,

n̂× E = 0, at PEC, (2-37)

where n̂ is the unit vector that is orthogonal to the PEC wall. So, once we are
working with a waveguide a longitudinal axis with the z-orientation, we can
force that the components Ez and Eϕ are null at ρ = a.

Now, for TMz modes, we can express the fields in terms of A having
only a z component ψ, where this field is found from equations (2-35) applied
to (2-33). The Ez and Eϕ components are given by

Ez = 1
ỹ

(
∂2

∂z2 + k2
)
ψ (2-38)

Eϕ = 1
ỹρ

∂2ψ

∂ϕ∂z
(2-39)

if we want then to vanish them at ρ = a, the wave function must be null. We
can observe that the only component at the wave function who depends from
ρ is the Bessel function Jn(kρρ). Hence, we obtain the characteristic equation

Jn(kρa) = 0 (2-40)

from which eigenvalues for kρ may be determined. The Bessel functions Jn(x)
are show at [19, Appendix. D], where we can observe that for each n there are
an infinite number of zeros. These are ordered and designated by xnp, with n
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referring to the order of the Bessel function and p to the order in which the
zero appears. Table 2.1 shows the firsts xnp.

The equations (2-40) is satisfied if we choose

kρ = xnp
a

(2-41)

Substituting the above into (2-33), we have the TMnp mode functions

ψTMnp = Jn

(
xnpρ

a

)
einϕeikzz (2-42)

where n = 0, 1, 2, ..., and p = 1, 2, 3, .... In view of (2-30), the longitudinal
wavenumber kz is determinate according to

(
xnp
a

)2
+ k2

z = k2 (2-43)

The cutoff wave number of the np mode is that for which the mode
propagation constant vanishes, i.e., kz = 0, and we can define as

(kc)TMnp = xnp
a
. (2-44)

If k > kc, the mode propagates, otherwise, if k < kc the mode is bellow the
cutoff and is said evanescent. Letting kc = 2πfc

√
ϵµ, we obtain the cutoff

frequency as

(fc)TMnp = xnp
2πa√

ϵµ
(2-45)

or, setting kc = 2π
λc

, we obtain the cutoff wavelength as

(λc)TMnp = 2πa
xnp

(2-46)

We observe that the cutoff frequencies are proportional to the xnp for TM
modes.

Using the same logic for TEz modes, we can calculate the fields in terms

Table 2.1: Ordered zeros xnp of Jn(x).

p \ n 0 1 2 3 4 5
1 2.405 3.832 5.136 6.380 7.588 8.771
2 5.520 7.016 8.417 9.761 11.065 12.339
3 8.654 10.173 11.620 13.015 14.372 15.700
4 11.792 13.324 14.796 15.700 17.616 18.980
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of F having only a non-null z-component potential ψ. Since Ez is null for TE
modes, we need to analyze Eϕ component, given in (2-33), namely:

Eϕ = ∂ψ

∂ρ
(2-47)

To vanish the Eϕ component at ρ = a, we must satisfy the condition

J ′
n(kρa) = 0. (2-48)

As well as Jn(x), J ′
n(x) is a oscillatory functions, with an infinite number

of zeros denoted as x′
np. The lower order zeros are present in Table 2.2.

Accordingly, the radial wave number is given by

kρ =
x′
np

a
(2-49)

By substituting the above into (2-33), we have the TEnp wave potentials given
by

ψTEnp = Jn

(
x′
npρ

a

)
einϕeikzz. (2-50)

The associated longitudinal wavenumber kz is given by
(
x′
np

a

)2

+ k2
z = k2. (2-51)

Also, the cutoff wave number of the np mode is given by

(kc)TEnp =
x′
np

a
. (2-52)

As before, if k > kc the mode propagate, and if k < kc the mode is evanescent.
We can also obtain the cutoff frequencies via

(fc)TEnp =
x′
np

2πa√
ϵµ
, (2-53)

Table 2.2: Ordered zeros x′
np of J ′

n(x).

p \ n 0 1 2 3 4 5
1 3.832 1.841 3.054 4.201 5.317 6.416
2 7.016 5.331 6.706 8.015 9.282 10.520
3 10.173 8.536 9.969 11.346 12.682 13.987
4 13.324 11.706 13.170 14.585 15.964 17.312
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and the cutoff wavelength

(λc)TEnp = 2πa
xnp′

. (2-54)

We can observe that the cutoff frequencies are proportional to x′
np in the TE

configuration.
Taking zeros of Tables 2.1 and 2.2 in ascending order of magnitude,

we can observe that the modes in order of ascending cutoff frequencies are
TE11,TM01,TE21,TM11,TE01, etc. Some mode patterns of lower order modes
are depicted in Fig. 2.4. It is apparent that the cutoff frequencies of the
TE0n and TM1n modes are identical; therefore, they are referred as degenerate
modes. We also observe that, except for degenerate modes, TE and TM modes
have different cutoff frequencies and hence different propagation constants.

As previously mentioned, we will utilize lower order modes to model a
problem involving a discontinuity caused by a bent circular waveguide. Initially,
we will characterize the problem with an oblique junction that connects two
sections of circular waveguide. Subsequently, we will apply the matching mode
technique to analyze the interactions between the modes.

Figure 2.4: Fields configuration of first 9 lower order modes. [2]

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



3
Mode-Matching Technique Along Oblique Junctions

3.1
Introduction

This chapter presents the formulation of the mode-matching tech-
nique (MMT) for modeling the junctions of circular waveguides along an
oblique plane. The study of discontinuities in waveguides is a prevalent topic
in microwave engineering because any interruption in the uniformity of a
waveguide leads to impedance mismatch. This results in a set of reflections that
reduce the performance of the propagation of guided modes, specifically at the
junctions formed. However, this effect can be exploited positively to design
some guided devices, such as filters, couplers, transformers, etc. Therefore,
overcoming and controlling scattering in bends has been of significant interest
over the years.

Since discontinuities involve a sudden change in the boundary conditions
of the waveguide, it is essential to use an appropriate methodology to deal with
the physical characteristics of the problem. Over the years, several studies have
investigated discontinuities in waveguide junctions using different techniques.
For example, in [20], a metagrating-inspired semi-analytical methodology
is employed to eliminate reflections in waveguide bends. In [5], a mode-
matching approach is utilized to analyze the electric field in a bend parallel-
plate waveguide. In [21], the finite element method (FEM) is used to study
transitions between coaxial lines. Moreover, in [22], the FEM is applied to
study waveguide discontinuities caused by junctions.

We can observe that there are several numerical methods used to handle
with various types of discontinuity problems. However, most of them lead to
a high cost of computational processing, according to the complexity of the
problem. To contour this high cost of processing problem, we need to explore
reliable approaches based on semi-analytic methods.

The mode-matching technique (MMT) involves matching the eigenmodes
of each region at the junction discontinuity to satisfy the boundary con-
ditions [23]. The MMT is then used to obtain the generalized scattering
matrix (GSM) at every discontinuity. By cascading the GSM matrices, we

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



Chapter 3. MMT Along Oblique Junctions 31

can determine the equivalent GSM matrix for an entire structure of interest.
Therefore, to analyze waveguide discontinuities, the GSM representation will
be employed to capture the coupling between adjacent sections of waveguides.
Fig. 3.1 shows an example of two adjacent sections of a coaxial waveguide with
a longitudinal step discontinuity between regions defined as 1 and 2. Here,
ā+

1 and ā−
1 indicate the amplitudes of the forward and backward propagation

modes, respectively, from region 1. The same notation is used for ā+
2 and ā−

2

from region 2. This sub-domain decomposition allows us to obtain a low-cost
computational method through a robust form, because the associated GSM
matrices are inherently stable.

In this chapter, we present a MMT-based method that will be used to
analyze homogeneous circular waveguides with bends represented by oblique
junctions. The methodology presented herein is inspired by recent works in [24–
26].

3.2
MMT Formulation

In this chapter, we will consider the coupling of two straight circular
waveguides over a tilted plane described by the angle θ. This common coupling
surface will serve as the junction where MMT will be implemented to study
the discontinuity caused by the angular displacement. First, we will obtain the
GSM matrix at the junction. Then, we will calculate the GSM matrix of a
smooth waveguide for regions 1 and 2. To obtain the complete GSM matrix
for the entire structure, we need to progressively cascade the GSM matrix of
the discontinuity and the smooth waveguide GSM. Finally, with the complete

Figure 3.1: Representation of transmitted and reflected waves at a coaxial
waveguide discontinuity.
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GSM matrix, we can compare the amplitudes of guided modes between the
first and last parts of the waveguide analyzed.

3.3
Waveguides with Oblique Junction

Considering a circular waveguide represented in the Cartesian coordi-
nates (x1, y1, z1), and align with the longitudinal direction, according depicted
in Fig. 3.2. We can represent a curve in any point of this structure just defining
the center of the coordinate system at the chosen point and applying a rotation
at one or more of your axis. We will analyze curvatures by coupling strait
waveguides along a oblique plane. In view of that, we first consider the rotation
of the initial coordinate system around at y1-axis. According to [27], we can
use the rotation matrix ¯̄Ry,θ to express an angular displacement of θ degrees
around y-axis, given by

¯̄Ry,θ =


cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

 . (3-1)

Considering the coordinate system express in Fig. 3.2, when we imple-
ment a curvature at the waveguide, that is align with the z1-axis, by taking
one single rotation of θ12 around the y1-axis, we obtain a second coordinate
system defined by (xJ , yJ , zJ), where the junction surface between regions 1
and 2 will be define. Again, if we apply another single rotation of θ12 around
the yj-axis, we now will get a third coordinate system defined by (x2, y2, z2),
that will be related to the waveguide at region 2. The Fig. 3.3 represent the
problem described. We can now relate the three coordinate systems using

Figure 3.2: Uniform circular waveguide with the longitudinal axis align with
the z-axis.
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rotation matrices as
xJ

yJ

zJ

 =


cos(θ12) 0 − sin(θ12)

0 1 0
sin(θ12) 0 cos(θ12)



x1

y1

z1

 (3-2)


x2

y2

z2

 =


cos(θ12) 0 − sin(θ12)

0 1 0
sin(θ12) 0 cos(θ12)



xJ

yJ

zJ

 (3-3)

We can see that the plane defined by zJ = 0 is the common surface
connecting the two regions of the waveguide. The oblique junction, which
is common to both regions, is defined as the area SJ located on this plane.
Fig. 3.4 illustrates the two sections of a curved waveguide, shifted by an angle
of θ = 2, θ12, as well as the oblique junction that connects the two regions.

Since we will work with a junction located at the zj = 0 plan, in order
to make easier the mathematics involved at the problem, we can express the
regions 1 and 2, with coordinates (x1, y1, z1) and (x1, y1, z1), respectively, as
their projections in zJ = 0 plan, at the (xJ , yJ , zJ) coordinate system. This
can be achieved using the rotation matrix ¯̄Ry,θ, in the form:


x1

y1

z1

 = ¯̄R−1
y,θ


xJ

yJ

zJ

 (3-4)

Figure 3.3: View of (x1, y1, z1) and (x2, y2, z2) coordinate systems.
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Figure 3.4: Junction of two straight waveguides along a oblique surface
described by the tilt angle θ12.


x2

y2

z2

 = ¯̄Ry,θ


xJ

yJ

zJ

 (3-5)

where,

¯̄R−1
y,θ =


cos(θ12) 0 sin(θ12)

0 1 0
− sin(θ12) 0 cos(θ12)

 (3-6)

Based on equations (3-4) and (3-5), we can express the unit vector of
coordinate systems 1 and 2 as their projections at the oblique junction SJ in
the form:

x̂1 = cos(θ12)x̂J + sin(θ12)ẑJ (3-7)
ŷ1 = ŷJ (3-8)
ẑ1 = − sin(θ12)x̂J + cos(θ12)ẑJ (3-9)

and,

x̂2 = cos(θ12)x̂J − sin(θ12)ẑJ (3-10)
ŷ2 = ŷJ (3-11)
ẑ2 = sin(θ12)x̂J + cos(θ12)ẑJ (3-12)

The equations of propagating electric and magnetic fields for the waveg-

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



Chapter 3. MMT Along Oblique Junctions 35

uide regions 1 and 2, can be written as

E1 =
∞∑
p

a+
1,p e

ik1z,pz1E+
1,p + a−

1,p e
−ik1z,pz1E−

1,p (3-13)

H1 =
∞∑
p

a+
1,p e

ik1z,pz1H+
1,p + a−

1,p e
−ik1z,pz1H−

1,p (3-14)

E2 =
∞∑
p

a+
2,p e

ik2z,pz2E+
2,p + a−

2,p e
−ik2z,pz2E−

2,p (3-15)

H2 =
∞∑
p

a+
2,p e

ik2z,pz2H+
2,p + a−

2,p e
−ik2z,pz2H−

2,p (3-16)

where the 1 and 2 index refer to the waveguides fields and characteristics of
regions. Also, the pth modal field is given by:

E±
i,p = Eix,p x̂i + Eiy,p ŷi ± Eiz,p ẑi (3-17)

H±
i,p = ±Hix,p x̂i ±Hiy,p ŷi +Hiz,p ẑi (3-18)

where i = {1, 2}.
Taking the relations between the coordinates from regions 1 and 2 and the

coordinates from the region of the oblique junctions, as seen in equations (3-7)
to (3-12), and replacing at the coordinates in (3-17) and (3-18), we can obtain
the equations from electric and magnetic fields from regions 1 and 2 expressed
in terms of (xJ , yJ , zJ) coordinate system. Accordingly, we can write:

E±
1,p = (cos(θ12) x̂J + sin(θ12) ẑJ)E1x,p

+ ŷJ E1y,p ± (− sin(θ12) x̂J + cos(θ12) ẑJ)E1z,p (3-19)

H±
1,p = ±(cos(θ12) x̂J + sin(θ12) ẑJ)H1x,p

± ŷJ H1y,p + (− sin(θ12) x̂J + cos(θ12) ẑJ)H1z,p (3-20)

E±
2,p = (cos(θ12) x̂J − sin(θ12) ẑJ)E1x,p

+ ŷJ E1y,p ± (sin(θ12) x̂J + cos(θ12) ẑJ)E1z,p (3-21)

H±
2,p = ±(cos(θ12) x̂J − sin(θ12) ẑJ)H1x,p

± ŷJ H1y,p + (sin(θ12) x̂J + cos(θ12) ẑJ)H1z,p. (3-22)
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Rearranging the terms according to coordinates xJ , yJ and zJ , we have:

E±
1,p = (cos(θ12)E1x,p ∓ sin(θ12)E1z,p) x̂J

+ E1y,p ŷJ ± (cos(θ12)E1z,p ± sin(θ12)E1x,p ) ẑJ (3-23)

H±
1,p = ±(cos(θ12)H1x,p ∓ sin(θ12)H1z,p) x̂J

± H1y,p ŷJ + (cos(θ12)H1z,p ± sin(θ12)H1x,p ) ẑJ (3-24)

E±
2,p = (cos(θ12)E2x,p ± sin(θ12)E2z,p) x̂J

+ E2y,p ŷJ ± (cos(θ12)E2z,p ∓ sin(θ12)E2x,p ) ẑJ (3-25)

H±
2,p = ±(cos(θ12)H2x,p ± sin(θ12)H2z,p) x̂J

± H2y,p ŷJ + (cos(θ12)H2z,p ∓ sin(θ12)H2x,p ) ẑJ . (3-26)

After defining the fields at the oblique surface SJ , we can consider a
more general situation where the waveguides in regions 1 and 2 have different
radii, r1 and r2, respectively, with r1 > r2. When the cross-sectional sizes
of the waveguides are different, we will have a discontinuity defined by a
step transition, as shown in Fig. 3.5. Accordingly, from the continuity of the
transversal fields at the junction, we must match the fields transversal to zJ

such that

ẑJ × E1 = ẑJ × E2

ẑJ × H1 = ẑJ × H2

 insideSJ (3-27)

ẑJ × E1 = 0, inside S̃1 − SJ (3-28)

i.e., we must guarantee that the fields tangential to the interface SJ (transversal
to the normal component zJ of SJ) must be equal for both regions of the
waveguide. We can observe that, except when θ12 = 0, the size from cross
section SJ will be different from the size of cross sections S1 and S2, because
it will be considering a inclined region common to both waveguide regions. In
addition, we can also observe that the inclined surface S̃1 will be different from
S1.

Considering M modes in the region 1 and N modes in the region 2, and
taking the equations described at (3-13) to (3-16), we can expand the equations

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



Chapter 3. MMT Along Oblique Junctions 37

Figure 3.5: Waveguide junctions showing the surfaces S1, S2, and S̃1.

of (3-27) as

M∑
m=1

a+
1,me

ik1z,mz1 ẑJ × E+
1,m + a−

1,me
−ik1z,mz1 ẑJ × E−

1,m =

N∑
n=1

a+
2,ne

ik2z,nz2 ẑJ × E+
2,n + a−

2,ne
−ik2z,nz2 ẑJ × E−

2,n (3-29)

M∑
m=1

a+
1,me

ik1z,mz1 ẑJ × H+
1,m + a−

1,me
−ik1z,mz1 ẑJ × H−

1,m =

N∑
n=1

a+
2,ne

ik2z,nz2 ẑJ × H+
2,n + a−

2,ne
−ik2z,nz2 ẑJ × H−

2,n. (3-30)

The SJ plane was defined with zJ = 0, and since we are working exactly at
the oblique junction, the following conditions must be considered at the fields
equations:

z1 = −xJ sin(θ12) (3-31)
z2 = xJ sin(θ12). (3-32)
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Taking these values at the exponentials in terms of z1 and z2, we have:

eik1z,mz1 = e−ik1z,mxJ sin(θ12) (3-33)
eik2z,nz2 = eik2z,nxJ sin(θ12). (3-34)

Then, equations (3-29) and (3-30) can be rewritten as:

M∑
m=1

a+
1,me

−ik1z,mxJ sin(θ12)ẑJ × E+
1,m + a−

1,me
ik1z,mxJ sin(θ12)ẑJ × E−

1,m =

N∑
n=1

a+
2,ne

ik2z,nxJ sin(θ12)ẑJ × E+
2,n + a−

2,ne
−ik2z,nxJ sin(θ12)ẑJ × E−

2,n (3-35)

M∑
m=1

a+
1,me

−ik1z,mxJ sin(θ12)ẑJ × H+
1,m + a−

1,me
ik1z,mxJ sin(θ12)ẑJ × H−

1,m =

N∑
n=1

a+
2,ne

ik2z,nxJ sin(θ12)ẑJ × H+
2,n + a−

2,ne
−ik2z,nxJ sin(θ12)ẑJ × H−

2,n. (3-36)

Taking the dot product of the above vector equation with the term
eik2z,n′xJ sin(θ12)H+

2,n′ (for n′ = 1, 2, 3, ..., N) and integrating the result over the
cross-section SJ , and employing the vector identity

(n̂× A1) · A2 = (A1 × A2) · n̂, (3-37)

we can obtain a set of N equations defined by:

M∑
m=1

∫ ∫
SJ

{
a+

1,me
−i(k1z,m−k2z,n′ )xJ sin(θ12)

[
(E+

1,m × H+
2,n′) · ẑJ

]
+ a−

1,me
i(k1z,m+k2z,n′ )xJ sin(θ12)

[
(E−

1,m × H+
2,n′) · ẑJ

] }
dS =

N∑
n=1

∫ ∫
SJ

{
a+

2,ne
i(k2z,n+k2z,n′ )xJ sin(θ12)

[
(E+

2,n × H+
2,n′) · ẑJ

]
+ a−

2,ne
−i(k2z,n−k2z,n′ )xJ sin(θ12)

[
(E−

2,n × H+
2,n′) · ẑJ

] }
dS. (3-38)

We can now define the following reaction integral

X±
i(m)j(n) =

∫ ∫
SJ

e±iv(kiz,m±vkjz,n)xJ sin(θ12)
(
E±
i,m × H+

j,n

)
· ẑJ dS, (3-39)

with v = (−1)(2−i), and the above can be rewritten in matrix form as

¯̄X±
i,j|n,m = X±

i(m)j(n). (3-40)
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Equation (3-38) can be written in a matrix form as

¯̄X+
1,2ā

+
1 + ¯̄X−

1,2ā
−
1 = ¯̄X+

2,2ā
+
2 + ¯̄X−

2,2ā
−
2 (3-41)

where the modal amplitudes were depicted as the column vector

ā±
j |m = a±

j,m. (3-42)

Similarly, from the continuity of transversal magnetic field we can find reaction
integrals to relate magnetic fields from regions 1 and 2. Taking the dot
product of the equation (3-36) with the term eik1z,m′xJ sin(θ12)E+

1,m′ (for m′ =
1, 2, 3, ...,M) and integrating the result over the cross-section SJ , we can obtain
a set of M equations:

M∑
m=1

∫ ∫
SJ

{
a+

1,me
−i(k1z,m−k1z,m′ )xJ sin(θ12)

[
(H+

1,m × E+
1,m′) · ẑJ

]
+ a−

1,me
i(k1z,m+k1z,m′ )xJ sin(θ12)

[
(H−

1,m × E+
1,m′) · ẑJ

] }
dS =

N∑
n=1

∫ ∫
S2

{
a+

2,ne
i(k2z,n+k1z,m′ )xJ sin(θ12)

[
(H+

2,n × E+
1,m′) · ẑJ

]
+ a−

2,ne
−i(k2z,n−k1z,m′ )xJ sin(θ12)

[
(H−

2,n × E+
1,m′) · ẑJ

] }
dS (3-43)

Now, by applying the following vector identity

A × B = −B × A, (3-44)

and by introducing the reaction integral

Y ±
i(m)j(n) =

∫ ∫
SJ

e±ib(kjz,n±bkiz,m)xJ sin(θ12)
(
E+
i,m × H±

j,n

)
· ẑJ dS (3-45)

where b = (−1)(2−j), we can rewrite (3-43) in a matrix form as

¯̄Y +
1,1ā

+
1 + ¯̄Y −

1,1ā
−
1 = ¯̄Y +

1,2ā
+
2 + ¯̄Y −

1,2ā
−
2 . (3-46)

Note that,the modal amplitudes were again depicted as the column vector
depicted in (3-42).

3.4
Reaction Integrals

We can note that at the reaction integrals showed in equations (3-39)
and (3-45) it is necessary to realize a cross product of the E field with the H
field at the surface SJ . Considering the fields equations for regions 1 and 2,
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taking on the (xJ , yJ , zJ) coordinate system, we can express the cross product
as

(Esi
i,m × Hsj

j,n) = (Eiy,mHjz,n − sisjEiz,mHjy,n)x̂J
+ (sisjEiz,mHjx,n − Eix,mHjz,n)ŷJ

+ sj(Eix,mHjy,n − Eiy,mHjx,n)ẑJ . (3-47)

Now, taking the dot product of the above equation with the unit vector
ẑJ , because of the orthogonality between the unit vector, only the third term
will remain. So, we can simplify the above to

(Esi
i,m × Hsj

j,n) · ẑJ = sj(Eix,mHjy,n − Eiy,mHjx,n), (3-48)

where i = {1, 2} and j = {1, 2} refer to the regions, and si = {1,−1} and
sj = {1,−1} refer to the field propagation direction.

We can rewrite all field components of regions 1 and 2, as their projections
in coordinates (xJ , yJ , zJ), using equations (3-23) to (3-26). Namely:

E±
1Jx,p

= E1x,p cos(θ12) ∓ E1z,p sin(θ12) (3-49)
H±

1Jx,p
= H1x,p cos(θ12) ∓ H1z,p sin(θ12) (3-50)

E±
1Jy,p

= E1y,p (3-51)
H±

1Jy,p
= H1y,p (3-52)

E±
2Jx,p

= E2x,p cos(θ12) ± E2z,p sin(θ12) (3-53)
H±

2Jx,p
= H2x,p cos(θ12) ± H2z,p sin(θ12) (3-54)

E±
2Jy,p

= E2y,p (3-55)
H±

2Jy,p
= H2y,p. (3-56)

The above expressions describe the field components in regions 1 and 2,
expressed in the Cartesian coordinates of the oblique surface SJ .

Now, we can expand the cross product from (3-48) for all possible
combinations of i and j. Accordingly, we obtain

1. for i = 1 and j = 1:

(Esi
1,m × Hsj

1,n) · ẑJ = sj
{
[E1x,m cos(θ12) − siE1z,m sin(θ12)]H1y,n

− E1y,m[H1x,n cos(θ12) − sjH1z,n sin(θ12)]
}

(3-57)
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2. For i = 1 and j = 2:

(Esi
1,m × Hsj

2,n) · ẑJ = sj
{
[E1x,m cos(θ12) − siE1z,m sin(θ12)]H2y,n

− E1y,m[H2x,p cos(θ12) + sj H2z,p sin(θ12)]
}

(3-58)

3. For i = 2 and j = 2:

(Esi
2,m × Hsj

2,n) · ẑJ = sj
{
[E2x,m cos(θ12) + siE2z,m sin(θ12)]H2y,n

− E2y,m[H2x,p cos(θ12) + sj H2z,p sin(θ12)]
}

(3-59)

Since we are working with cylindrical waveguides, the surface of the
oblique plane SJ will be characterized by an ellipse with radius rJ(ϕ, θ12),
that will be proportional to the radius of region 2 waveguide, the tilt angle
θ12 and the ϕ angle over the surface, as depicted in Fig. 3.6. In view of that,
we can express the fields at this surface in cylindrical coordinates formed by a
linear combination of the Cartesian coordinates of the fields. This can be done
using transformation matrices. According [2, Appendix 7], we can express the
following relations between the fields components:

Ax

Ay

Az

 =


cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1



Aρ

Aϕ

Az

 (3-60)

Using the above relation, the fields on the oblique junction in cylindrical

Figure 3.6: View of the SJ surface over the plane zJ = 0.
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coordinates can be achieved directly as

AJx = AJρ cos(ϕJ) − AJϕ sin(ϕJ) (3-61)
AJy = AJρ sin(ϕJ) + AJϕ cos(ϕJ) (3-62)
AJz = AJz (3-63)

where A = {E,H} when describing electric and magnetic field components.
For the fields from regions 1 and 2, me must define a way to relate

the cylindrical coordinates (ρ1, ϕ1, z1) and (ρ2, ϕ2, z2) with their projection at
the oblique region SJ , so we can apply the mode-matching technique at our
proposed problem.

Considering a position vector on plane zJ = 0, that will be define by
coordinates (ρJ , ϕJ , 0), we can convert to cartesian coordinates by

xJ = ρJ cos(ϕJ) (3-64)
yJ = ρJ sin(ϕJ) (3-65)
zJ = zJ . (3-66)

Now, using the relations depicted in (3-7) to (3-12), we can write the
coordinates (x1, y1, z1) and (x2, y2, z2) in the form

x1 = xJ cos(θ12) (3-67)
y1 = yJ (3-68)
z1 = −xJ sin(θ12) (3-69)
x2 = xJ cos(θ12) (3-70)
y2 = yJ (3-71)
z2 = xJ sin(θ12). (3-72)

From the above, coordinates (x1, y1, z1) and (x2, y2, z2), we can calculate the
conversion to their cylindrical format (ρ1, ϕ1, z1) and (ρ2, ϕ2, z2), respectively,
that will define the position vector projected at the oblique junction and will
make possible the use of mode-matching technique. We have then

ρi =
√
x2
i + y2

i (3-73)

ϕi = arctan
(
yi
xi

)
(3-74)

zi = −xi sin(θ12) (3-75)

where i = {1, 2}. Taking equations (3-64) and (3-65), we can rewrite the above
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relations as

ρ1 = ρJ
√

cos(ϕJ)2 cos(θ12)2 + sin(ϕJ)2 (3-76)

ϕ1 = arctan
(

sin(ϕJ)
cos(ϕJ) cos(θ12)

)
(3-77)

z1 = −ρJ cos(ϕJ) sin(θ12) (3-78)

ρ2 = ρJ
√

cos(ϕJ)2 cos(θ12)2 + sin(ϕJ)2 (3-79)

ϕ2 = arctan
(

sin(ϕJ)
cos(ϕJ) cos(θ12)

)
(3-80)

z2 = ρJ cos(ϕJ) sin(θ12) (3-81)

Then, we can relate a vector with coordinates (ρJ , ϕJ , zJ) to their
respective vectors from region 1, (ρ1, ϕ1, z1), and region 2, (ρ2, ϕ2, z2).

Now we can use the transformation matrix from equation (3-60) to write
the values from fields of region 1 that relate to the fields from region 2, on SJ .

Aix = Aiρ cos(ϕi) − Aiϕ sin(ϕi) (3-82)
Aiy = Aiρ sin(ϕi) + Aiϕ cos(ϕi) (3-83)
Aiz = Aiz (3-84)

where A = E,H and i = {1, 2}.
According equations (39), (50) e (51) from [24, Ch. 3], we can write the

following solutions for propagating fields inside a cylindrical waveguide:

1. For TMz fields:

Eρn(ρ, ϕ) = einϕ
1
k2
ρρ
ikzkρρJ

′
n(kρρ) (3-85)

Eϕn(ρ, ϕ) = −einϕ 1
k2
ρρ
nkzJn(kρρ) (3-86)

Ez n(ρ, ϕ) = einϕJn(kρρ) (3-87)

Hρn(ρ, ϕ) = einϕ
1
k2
ρρ
nωϵJn(kρρ) (3-88)

Hϕn(ρ, ϕ) = einϕ
1
k2
ρρ
iωϵkρρJ

′
n(kρρ) (3-89)

Hz n(ρ, ϕ) = 0 (3-90)
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2. For TEz fields:

Eρn(ρ, ϕ) = −einϕ 1
k2
ρρ
nωµJn(kρρ) (3-91)

Eϕn(ρ, ϕ) = −einϕ 1
k2
ρρ
iωµkρρJ

′
n(kρρ) (3-92)

Ez n(ρ, ϕ) = 0 (3-93)

Hρn(ρ, ϕ) = einϕ
1
k2
ρρ
ikzkρρJ

′
n(kρρ) (3-94)

Hϕn(ρ, ϕ) = −einϕ 1
k2
ρρ
nkzJn(kρρ) (3-95)

Hz n(ρ, ϕ) = einϕJn(kρρ) (3-96)

Based on the above field solutions, we can take equations (3-82)–(3-84)
and express the results of the cross products in (3-57)–(3-59) as cylindrical
functions. So, the reaction integrals presented in equations (3-39) and (3-45)
can be solved via numerical integration over the SJ surface as a function of ρJ
and ϕJ via

∫ ∫
SJ

· · · dS =
∫
ρJ

∫
ϕJ

· · · ρJ dρJ dϕJ , (3-97)

where we have the limits of integration defined by ϕJ = [0, 2π] and

ρJ =

0, r2

cos(θ12)
1√

cos(ϕJ)2 + sin(ϕJ )2

cos(θ12)2

 . (3-98)

We can note that, because the elliptical format of the surface SJ , the upper
limit of ρJ is a function of ϕJ . We cannot found closed-form solution for the
reaction integrals.

Finally, after solving the reaction integral, the coupling matrices ¯̄X±
i,j and

¯̄Y ±
i,j can be filled properly. Such matrices have the dimensions according to the

number of modes for each region:

dim( ¯̄X±
1,2) = (N,M) (3-99)

dim( ¯̄X±
2,2) = (N,N) (3-100)

dim( ¯̄Y ±
1,1) = (M,M) (3-101)

dim( ¯̄Y ±
1,2) = (M,N). (3-102)
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3.4.1
Special Case of a Straight Junction

We can study the special case of the junction of two straight waveguides,
as depicted in Fig. 3.7 by using the above formulation. For that, we just
need to set θ12 = 0 into the above equations. First, we can verify that the
equations (3-7)-(3-12), with θ12 = 0, reduce to

x̂1 = x̂2 = x̂J (3-103)
ŷ1 = ŷ2 = ŷJ (3-104)
ẑ1 = ẑ2 = ẑJ . (3-105)

Accordingly, we can verify that all coordinate systems share the same unit
vector directions. To simplify, we will just consider a unified Cartesian system
denoted as (x, y, z).

Also, with θ12 = 0, we will simplify some components from equa-
tions (3-23)–(3-26), since we have cos(θ12) = 1 e sin(θ12) = 0. So, the pth
modal fields of regions 1 and 2 can be written as

E±
i,p = Eix,p x̂+ Eiy,p ŷ ± Eiz,p ẑ (3-106)

H±
i,p = ±Hix,p x̂ ±Hiy,p ŷ +Hiz,p ẑ. (3-107)

Figure 3.7: Junction of two straight waveguides.
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where i = {1, 2}.
Considering the same interface SJ between the two regions of the

waveguide, that now is over z = 0, we have that the exponential forms
from (3-33) and (3-34) will be unitary. So, working again with M modes in
region 1 and N modes in region 2, based on the fields continuity equations, we
can rewrite (3-38) and (3-43) as

M∑
m=1

∫ ∫
SJ

{
a+

1,m

[
(E+

1,m × H+
2,n′) · ẑ

]
+ a−

1,m

[
(E−

1,m × H+
2,n′) · ẑ

] }
dS =

N∑
n=1

∫ ∫
SJ

{
a+

2,n

[
(E+

2,n × H+
2,n′) · ẑ

]
+ a−

2,n

[
(E−

2,n × H+
2,n′) · ẑ

]}
dS (3-108)

M∑
m=1

∫ ∫
SJ

{
a+

1,m

[
(H+

1,m × E+
1,m′) · ẑ

]
+ a−

1,m

[
(H−

1,m × E+
1,m′) · ẑ

] }
dS =

N∑
n=1

∫ ∫
SJ

{
a+

2,n

[
(H+

2,n × E+
1,m′) · ẑ

]
+ a−

2,n

[
(H−

2,n × E+
1,m′) · ẑ

]}
dS, (3-109)

with n′ = 0, 1, 2, ..., N an m′ = 0, 1, 2, ...,M .
The reaction integrals become

X±
i(m)j(n) =

∫ ∫
S2

(
E±
i,m × H+

j,n

)
· ẑ dS (3-110)

Y ±
i(m)j(n) =

∫ ∫
S2

(
E+
i,m × H±

j,n

)
· ẑ dS, (3-111)

where

(Esi
i,m × Hsj

j,n) · ẑ = sj(Eix,mHjy,n − Eiy,mHjx,n) (3-112)

for i = {1, 2} and j = {1, 2}.
We can also use the coordinates transformation showed in (3-61)

and (3-62), and then we can express the cross product in cylindrical coordinates
in the form

(Esi
i,m × Hsj

j,n) · ẑ =
sj[(Eiρ,m cos(ϕ) − Eiϕ,m sin(ϕ))(Hjρ,n sin(ϕ) +Hjϕ,n cos(ϕ))
− (Eiρ,m sin(ϕ) + Eiϕ,m cos(ϕ))(Hjρ,n cos(ϕ) −Hjϕ,n sin(ϕ))]

= sj(Eiρ,mHjϕ,n − Eiϕ,mHjρ,n). (3-113)
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Therefore, all reaction integrals can be writeen as
∫ ∫

S2

(
Esi
i,m × Hsj

j,n

)
· ẑ dS =

∫
ϕ

∫
ρ
sj(Eiρ,mHjϕ,n − Eiϕ,mHjρ,n) ρ dρdϕ,

(3-114)

where the above expression is the expected form for straight waveguides
analysis [24].

3.5
Generalized Scattering Matrix

Once we define the coupling matrices ¯̄X±
i,j|n,m and ¯̄Y ±

i,j |n,m, we can
use (3-41) and (3-46) to establish a relation between the amplitudes of modal
fields that propagates in the positive z-direction and the amplitudes of modal
fields that propagates in the negative z-direction. Accordingly, we can writeā−

1

ā+
2

 = ¯̄S
ā+

1

ā−
2

 , (3-115)

where ¯̄S is the generalized scattering matrix (GSM), defined as

¯̄S =
 ¯̄S11

¯̄S12
¯̄S21

¯̄S22

 =
 ¯̄R12

¯̄T21
¯̄T12

¯̄R21

 , (3-116)

and, according [24, Ch. 5], the sub-matrices are given by

¯̄R12 = −[ ¯̄Y −
11 − ¯̄Y +

12( ¯̄X+
22)−1 ¯̄X−

12]−1[ ¯̄Y +
11 − ¯̄Y +

12( ¯̄X+
22)−1 ¯̄X+

12] (3-117)
¯̄T12 = [ ¯̄X+

22 − ¯̄X−
12( ¯̄Y −

11)−1 ¯̄Y +
12 ]−1[ ¯̄X+

12 − ¯̄X−
12( ¯̄Y −

11)−1 ¯̄Y +
11 ] (3-118)

¯̄R21 = −[ ¯̄X+
22 − ¯̄X−

12( ¯̄Y −
11)−1 ¯̄Y +

12 ]−1[ ¯̄X−
22 − ¯̄X−

12( ¯̄Y −
11)−1 ¯̄Y −

12 ] (3-119)
¯̄T21 = [ ¯̄Y −

11 − ¯̄Y +
12( ¯̄X+

22)−1 ¯̄X−
12]−1[ ¯̄Y −

12 − ¯̄Y +
12( ¯̄X+

22)−1 ¯̄X−
22]. (3-120)

The sub-matrix ¯̄R12 relates the reflected amplitudes observed from region
1 due to incident fields in this region. Likewise, ¯̄R21 relates the reflected
amplitudes observed from region 2 due to incident fields in this region. The
sub-matrix ¯̄T21 relates reflected amplitudes observed from region 1, due to
incident fields from region 2, and vice versa for ¯̄T12.

3.6
Cascading Generalized Scattering Matrices

Considering a situation where we have two or more discontinuities in a
waveguide device. To calculate the equivalent GMS of this device it will be
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necessary to progressively cascade all the GSMs of each segment of waveguide
and the GSM representing each junction. Considering then two discontinuities
with their GSMs given by ¯̄Sa and ¯̄Sb. The cascaded GSM of the problem will
be denoted as ¯̄Sc, ans is given by

¯̄Sc =
 ¯̄Rc

12
¯̄T c21

¯̄T c12
¯̄Rc

21

 (3-121)

where

¯̄Rc
12 = ¯̄T a21( ¯̄I − ¯̄Rb

12
¯̄Ra

21)−1 ¯̄Rb
12

¯̄T a12 + ¯̄Ra
12 (3-122)

¯̄T c21 = ¯̄T a21( ¯̄I − ¯̄Rb
12

¯̄Ra
21)−1 ¯̄T b21 (3-123)

¯̄T c12 = ¯̄T b12( ¯̄I − ¯̄Ra
21

¯̄Rb
12)−1 ¯̄T a12 (3-124)

¯̄Rc
21 = ¯̄T b12( ¯̄I − ¯̄Ra

21
¯̄Rb

12)−1 ¯̄Ra
21

¯̄T b21 + ¯̄Rb
21. (3-125)

To calculate the complete GSM of a cascade problem, we need to
consider the scattering matrices associated with the sections of smooth
(uniform) waveguides between each discontinuity. The scattering matrix of
the smooth waveguide is related to the phase shift or attenuation that each
mode experiences when propagating through a certain longitudinal length. The
determination of this matrix is directly related to the length of the guide and
the propagation constant kz associated with each mode. Fig. 3.8 shows a linear
waveguide structure with three different regions.

For a waveguide with a length of L, we can express the smooth GSM as
follows:

¯̄Sg =
 0 ¯̄Sg12

¯̄Sg12 0

 (3-126)

where ¯̄Sg12 is a N ×N diagonal matrix with elements given by

( ¯̄Sg12)nn = eikz,nL. (3-127)

In view of (3-122)–(3-125), we can write the solution of the cascading
between the GSM from a junction discontinuities, ¯̄Sa, and the GSM from a
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Figure 3.8: Waveguide with three different regions.

smooth section, ¯̄Sg, via

¯̄Rcg
12 = ¯̄Ra

12 (3-128)
¯̄T cg21 = ¯̄T a21

¯̄Sg12 (3-129)
¯̄T cg12 = ¯̄Sg12

¯̄T a12 (3-130)
¯̄Rcg

21 = ¯̄Sg12
¯̄Ra

21
¯̄Sg12 (3-131)

Using the above formulation, we can simulate a curved section of a
circular waveguide by a sequence of oblique junctions, with the final result
obtained by cascading all the corresponding GSM matrices. We assume that
all sections have the same angular offset and size, given by L. Fig. 3.9 shows
an example of a 90-degree curve and its approximation using five cascaded
oblique surfaces.
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Figure 3.9: A 90-degree curved waveguide discretized into 5 regions.
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4
MMT Algorithm Validation and Results

4.1
Introduction

In this chapter, we will present results that validate the algorithm
developed from the above formulation, implemented in the Matlab platform,
for mode-matching of cylindrical waveguides with oblique junctions. To verify
both the numerical algorithm and the mathematical methodology, we will
compare the results obtained from simulations generated by the CST Studio
Suite program, which uses the finite element method (FEM). First, we will
consider a circular waveguide with a simple horizontal junction having two
regions with different characteristics. Subsequently, we will work with oblique
junction structures to demonstrate the convergence of the algorithm by varying
the bend angle of the waveguide and the operating frequency.

4.2
Algorithm Structure

The first step of the implemented algorithm is to set up the program
input parameters. This requires to provide the physical and electromagnetic
properties of the analyzed regions, as well as the operating frequency and the
waveguide’s bend angle (θ12). After entering this information, we can define the
maximum number of modes to be included in the program. Since the number
of modes is given by ∑

n

∑
p, we can specify this by choosing a value for the

maximum order of the Bessel function (n) and for the maximum number of
zeros (p) for each order. The total number of modes is then given by [(2n)+1]p.

Using the input information, the algorithm calculates the propagation
characteristics of all TEz and TMz modes, following the mathematical theory
presented in Chapter 2, and their respective fields using equations (3-85)–
(3-96). Next, the algorithm calculates the reaction integrals as defined in (3-39)
and (3-45). These results are then used to obtain the GSM matrix for the
analyzed problem.

Our primary interest is in the reflection coefficients given by the sub-
matrix ¯̄R12, specifically the reflection coefficient in decibels of the fundamental
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propagation mode TEz
11. We will validate the algorithm by comparing these

results with those obtained from simulations generated by the CST Studio
Suite program using FEM. We will begin by analyzing a circular waveguide
with a simple horizontal junction in two regions with different characteristics.
Later, we will work with oblique junction structures to verify the algorithm’s
convergence by changing the waveguide’s bend angle and the operation
frequency.

4.3
Straight Junctions Validation Results

4.3.1
Case 1

The first example will consider a junction of two circular waveguides with
no curves, as depicted in Fig. 4.1 with electromagnetic parameters given by ϵ1

and µ1, for region 1, and ϵ2 and µ2, for region 2. The purpose of this simulation
is to demonstrate that our algorithm can produce accurate results and analyze
modal convergence. To achieve this objective, we will calculate the reflection
coefficient in decibels, considering the following situation:

1. Frequency f = 10 GHz;

2. r1 = r2 = 10 mm;

3. µ1 = µ2 = µ0; and

4. ϵ2 = g ϵ1, for g = 2, 3, ..., 10, and ϵ1 = ϵ0

Figure 4.1: Geometry of a straight waveguide junction.
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Fig. 4.2 shows the results obtained from CST simulation and from our
algorithm considering only 3 modes (using n = 1 and p = 1 in our Matlab
algorithm). Also, we compare the result values for the reflection coefficient in
decibel from CST and from our algorithm in Table 4.1.

Table 4.1: Results of the reflection coefficient with f = 10 GHz and relative
permittivity ϵ2 varying with g = 2 to g = 10, using Matlab algorithm (with
n = 1 and p = 1) and CST simulation.

g 20 log10(R12) - Matlab 20 log10(R12) - CST Error(∆%)
2 -8.0123617 -8.0126680 0.00382%
3 -5.7623628 -5.7622099 0.00265%
4 -4.7329356 -4.7329191 0.00034%
5 -4.1112540 -4.1110499 0.00496%
6 -3.6839653 -3.6841670 0.00547%
7 -3.3671254 -3.3644770 0.07871%
8 -3.1201061 -3.1199581 0.00474%
9 -2.9205319 -2.9185736 0.06709%

10 -2.7549310 -2.7557616 0.03018%

It is worth noting that even with a minimal number of modes (n = 1 and
p = 1), the algorithm achieves excellent convergence for the straight junction
case. Table 4.1 demonstrates that the largest error between all values is below
0.08%, which occurs when ϵ2 = 7, ϵ1.

2 4 6 8 10

Relative permitivity 0r2

-8

-6

-4

-2

20
lo

g
10

(jS
11

j)
(d

B
)

TE11 - CST
TE11 Matlab

Figure 4.2: Reflection coefficient from g = 2 to g = 10. Results from CST and
Matlab.
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4.3.2
Case 2

To verify that convergence over the frequency, we repeat the above
simulation varying the frequency in a range from 10 GHz to 15 GHz and
keeping ϵ2 = g ϵ1, where ϵ1 = ϵ0 and for g = 2, 3, 4 and 5. Tables 4.2–4.5
compares the results from CST simulation and from our algorithm.

Table 4.2: Results of the reflection coefficient with f = 10 GHz to f = 15 GHz
and ϵ2 = 2ϵ1, using Matlab algorithm (with n = 1 and p = 1) and CST
simulation.

Frequency 20 log10(R12) - Matlab 20 log10(R12) - CST Error(∆%)
10.0 GHz -8.0126564 -8.0126680 0.00382%
10.5 GHz -9.0934203 -9.0938631 0.00486%
11.0 GHz -9.9090223 -9.9086474 0.00378%
11.5 GHz -10.550058 -10.549919 0.00131%
12.0 GHz -11.069810 -11.069560 0.00225%
12.5 GHz -11.499257 -11.499693 0.00379%
13.0 GHz -11.860534 -11.861628 0.00922%
13.5 GHz -12.170113 -12.170224 0.00091%
14.0 GHz -12.435051 -12.436228 0.00946%
14.5 GHz -12.668808 -12.667643 0.00919%
15.0 GHz -12.871082 -12.870571 0.00397%
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Table 4.3: Results of the reflection coefficient with f = 10 GHz to f = 15 GHz
and ϵ2 = 3ϵ1, using Matlab algorithm (with n = 1 and p = 1) and CST
simulation.

Frequency 20 log10(R12) - Matlab 20 log10(R12) - CST Error(∆%)
10.0 GHz -5.7628638 -5.7622099 0.00265%
10.5 GHz -6.5689958 -6.5703043 0.01991%
11.0 GHz -7.1868232 -7.1859249 0.01249%
11.5 GHz -7.6755624 -7.6748829 0.00885%
12.0 GHz -8.0740851 -7.6748829 0.00010%
12.5 GHz -8.4045590 -8.4065752 0.02398%
13.0 GHz -8.6873855 -8.6878352 0.00517%
13.5 GHz -8.9293036 -8.9287267 0.00646%
14.0 GHz -9.1387338 -9.1371777 0.01702%
14.5 GHz -9.3156294 -9.3191364 0.03764%
15.0 GHz -9.4772765 -9.4791685 0.01996%

Table 4.4: Results of the reflection coefficient with f = 10 GHz to f = 15 GHz
and ϵ2 = 4ϵ1, using Matlab algorithm (with n = 1 and p = 1) and CST
simulation.

Frequency 20 log10(R12) - Matlab 20 log10(R12) - CST Error(∆%)
10.0 GHz -4.7329072 -4.7329191 0.00034%
10.5 GHz -5.4056266 -5.4057817 0.00286%
11.0 GHz -5.9208564 -5.9207506 0.00178%
11.5 GHz -6.3308998 -6.3312764 0.00594%
12.0 GHz -6.6677288 -6.6674762 0.00378%
12.5 GHz -6.9472783 -6.9482446 0.01390%
13.0 GHz -7.1868154 -7.1862835 0.00740%
13.5 GHz -7.3891050 -7.3905570 0.01965%
14.0 GHz -7.5673970 -7.5676237 0.00299%
14.5 GHz -7.7222425 -7.7224192 0.00228%
15.0 GHz -7.8567539 -7.8587422 0.02530%

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



Chapter 4. MMT Algorithm Validation and Results 56

Table 4.5: Results of the reflection coefficient with f = 10 GHz to f = 15 GHz
and ϵ2 = 5ϵ1, using Matlab algorithm (with n = 1 and p = 1) and CST
simulation.

Frequency 20 log10(R12) - Matlab 20 log10(R12) - CST Error(∆%)
10.0 GHz -4.1114224 -4.1110499 0.00496%
10.5 GHz -4.6995752 -4.6999197 0.00733%
11.0 GHz -5.1514611 -5.1515327 0.00138%
11.5 GHz -5.5120452 -5.5122709 0.00409%
12.0 GHz -5.8074017 -5.8081980 0.01371%
12.5 GHz -6.0547225 -5.8081980 0.01602%
13.0 GHz -6.2654237 -6.2657863 0.00578%
13.5 GHz -6.4454250 -6.4462759 0.01320%
14.0 GHz -6.6018981 -6.6028771 0.01482%
14.5 GHz -6.7384236 -6.7398975 0.02187%
15.0 GHz -6.8582698 -6.8606578 0.03481%
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4.3.3
Case 3

Finally, to test the validity of our algorithm on commercial products, we
took specifications for Ku-band circular waveguides from Qualwave company
website, [3], as shown in Fig. 4.3, and applied the same test performed
above. We checked the reflection coefficient for a circular waveguide with a
diameter equal to 15.08 mm working in the middle frequency range (13.4 GHz
to 18.0 GHz) when the relative permittivity ϵ2 changes from 2 to 5 times ϵ1,
with ϵ1 = ϵ0. The same experiment was simulated on CST and the results are
exposed in Tables 4.6–4.9.

It is worth noting that the error between CST and our Matlab simulations
remains below 1% for all situations, which demonstrates excellent convergence
of our algorithm for straight waveguide cases.

Figure 4.3: Qualwave’s circular waveguide specifications for Ku-band frequency
ranges. [3]

Table 4.6: Results of the reflection coefficient with f = 13.4 GHz to f =
18.0 GHz and ϵ2 = 2ϵ1, using Matlab algorithm (with n = 1 and p = 1) and
CST simulation.

Frequency 20 log10(R12) - Matlab 20 log10(R12) - CST Error(∆%)
13.40 GHz -8.2655473 -8.2656213 0.00089%
13.86 GHz -9.0006622 -9.0004269 0.00261%
14.32 GHz -9.6031741 -9.6033991 0.00234%
14.78 GHz -10.1084866 -10.108499 0.00012%
15.24 GHz -10.5395237 -10.539093 0.00408%
15.70 GHz -10.9120757 -10.912682 0.00555%
16.16 GHz -11.2375143 -11.238599 0.00965%
16.62 GHz -11.5243105 -11.523655 0.00568%
17.08 GHz -11.7789438 -11.777585 0.01153%
17.54 GHz -12.0064779 -12.006980 0.00418%
18.00 GHz -12.2109413 -12.211542 0.00491%
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Table 4.7: Results of the reflection coefficient with f = 13.4 GHz to f =
18.0 GHz and ϵ2 = 3ϵ1, using Matlab algorithm (with n = 1 and p = 1) and
CST simulation.

Frequency 20 log10(R12) - Matlab 20 log10(R12) - CST Error(∆%)
13.40 GHz -5.9506051 -5.9507606 0.00261%
13.86 GHz -6.5002742 -6.5001778 0.00148%
14.32 GHz -6.9543958 -6.9542147 0.00260%
14.78 GHz -7.3378709 -7.3373413 0.00721%
15.24 GHz -7.6669247 -7.6661365 0.01028%
15.70 GHz -7.9528087 -7.9525814 0.00285%
16.16 GHz -8.2036818 -8.2034664 0.00262%
16.62 GHz -8.4256624 -8.4253672 0.00350%
17.08 GHz -8.6234607 -8.6226805 0.00904%
17.54 GHz -8.8007804 -8.7980806 0.03068%
18.00 GHz -8.9605850 -8.9592200 0.01523%

Table 4.8: Results of the reflection coefficient with f = 13.4 GHz to f =
18.0 GHz and ϵ2 = 4ϵ1, using Matlab algorithm (with n = 1 and p = 1) and
CST simulation.

Frequency 20 log10(R12) - Matlab 20 log10(R12) - CST Error(∆%)
13.40 GHz -4.8894128 -4.8893331 0.00163%
13.86 GHz -5.3473300 -5.3472780 0.00097%
14.32 GHz -5.7268329 -5.7265446 0.00503%
14.78 GHz -6.0481766 -6.0484683 0.00482%
15.24 GHz -6.3245836 -6.3238602 0.01143%
15.70 GHz -6.5652439 -6.5647392 0.00768%
16.16 GHz -6.7768366 -6.7770239 0.00276%
16.62 GHz -6.9643829 -6.9629404 0.02071%
17.08 GHz -7.1317573 -7.1313629 0.00553%
17.54 GHz -7.2820135 -7.2805559 0.02002%
18.00 GHz -7.4176005 -7.4160605 0.02076%
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Table 4.9: Results of the reflection coefficient with f = 13.4 GHz to f =
18.0 GHz and ϵ2 = 5ϵ1, using Matlab algorithm (with n = 1 and p = 1) and
CST simulation.

Frequency 20 log10(R12) - Matlab 20 log10(R12) - CST Error(∆%)
13.40 GHz -4.2480201 -4.2481091 0.00209%
13.86 GHz -4.6487199 -4.6484411 0.00599%
14.32 GHz -4.9813578 -4.9817103 0.00707%
14.78 GHz -5.2634345 -5.2631336 0.00571%
15.24 GHz -5.5063844 -5.5061435 0.00437%
15.70 GHz -5.7181629 -5.7175815 0.01016%
16.16 GHz -5.9045588 -5.9043653 0.00327%
16.62 GHz -6.0699289 -6.0700075 0.00129%
17.08 GHz -6.2176397 -6.2168122 0.01331%
17.54 GHz -6.3503473 -6.3500015 0.00544%
18.00 GHz -6.4701846 -6.4689520 0.01905%
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4.3.4
Case 4

Having achieved excellent results for straight waveguide cases with two
sections, we will now explore a scenario involving three straight waveguide
regions. While all three regions share the same radius, the middle section will
vary in length and the value of ϵ. To analyze this case, we will consider the
cascade GSM situation as studied in Chapter 3. Fig. 4.4 depicts the structure
analyzed, with regions I and III possessing the electromagnetic constants
µ0 and ϵ0, respectively, while region II has a length L that ranges into
(5, 10, 15, 20, 25, 30) millimeters and electromagnetic parameters µ0 = 2 = µ0

and ϵ2 = ϵ0ϵr2, where ϵr2 = {2, 4}.

Figure 4.4: Straight waveguide device with three sections.

As with previous cases, we will compare the results obtained from CST
simulations with those produced by our algorithm (with n = 1 and p = 1)
for the reflection coefficient in decibels, while considering the cascade GSM
problem. Tables 4.10–4.12 present the numerical results for ϵ2 = 2ϵ0, while
Tables 4.13–4.15 display the numerical results for ϵ2 = 4ϵ0. Graphical results
can be found in Figs. 4.5–4.10.
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Figure 4.5: Results for (a) L = 5 mm ϵ2 = 2ϵ0 and (b) L = 10 mm ϵ2 = 2ϵ0.

Table 4.10: Results from Matlab algorithm (with n = 1 and p = 1) and CST
simulation for the reflection coefficient with frequency ranging from 10 GHz
to 15 GHz, ϵ2 = 2ϵ0 and L equals to 5 mm and 10 mm.

Freq. L = 5 mm L = 5 mm Error L = 10 mm L = 10 mm Error
(GHz) CST Matlab ∆% CST Matlab ∆%

10 -3.6783 -3.6783 0.0012% -4.9168 -4.9163 0.0103%
10.5 -4.3569 -4.3569 0.0013% -7.3752 -7.3745 0.0090%
11 -4.8817 -4.8816 0.0010% -10.5668 -10.5654 0.0135%

11.5 -5.3199 -5.3199 0.0009% -15.2426 -15.2401 0.0159%
12 -5.7104 -5.7103 0.0011% -24.5059 -24.4970 0.0363%

12.5 -6.0777 -6.0778 0.0021% -27.5312 -27.5466 0.0559%
13 -6.4388 -6.4387 0.0026% -17.6965 -17.7021 0.0320%

13.5 -6.8068 -6.8065 0.0040% -13.7616 -13.7654 0.0276%
14 -7.1920 -7.1916 0.0058% -11.4873 -11.4901 0.0243%

14.5 -7.6038 -7.6032 0.0083% -10.0247 -10.0266 0.0193%
15 -8.0511 -8.0502 0.0113% -9.0519 -9.0529 0.0112%
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Figure 4.6: Results for (a) L = 15 mm ϵ2 = 2ϵ0 and (b) L = 20 mm ϵ2 = 2ϵ0.

Table 4.11: Results from Matlab algorithm (with n = 1 and p = 1) and CST
simulation for the reflection coefficient with frequency ranging from 10 GHz
to 15 GHz, ϵ2 = 2ϵ0 and L equals to 15 mm and 20 mm.

Freq. L = 15 mm L = 15 mm Error L = 20 mm L = 20 mm Error
(GHz) CST Matlab ∆% CST Matlab ∆%

10 -10.3903 -10.3930 0.0253% -3.2765 -3.2763 0.0052%
10.5 -7.4773 -7.4782 0.0122% -4.3385 -4.3379 0.0154%
11 -6.2783 -6.2787 0.0054% -6.2403 -6.2379 0.0381%

11.5 -5.8027 -5.8025 0.0045% -9.8882 -9.8802 0.0816%
12 -5.7724 -5.7719 0.0088% -18.5728 -18.5374 0.1912%

12.5 -6.1131 -6.1119 0.0204% -21.5568 -21.6193 0.2888%
13 -6.8516 -6.8491 0.0365% -12.1350 -12.1548 0.1628%

13.5 -8.1034 -8.0987 0.0581% -8.9075 -8.9178 0.1159%
14 -10.1170 -10.1083 0.0865% -7.5263 -7.5308 0.0598%

14.5 -13.4516 -13.4342 0.1293% -7.1314 -7.1303 0.0152%
15 -19.9326 -19.8911 0.2085% -7.4931 -7.4847 0.1124%
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Figure 4.7: Results for (a) L = 25 mm ϵ2 = 2ϵ0 and (b) L = 30 mm ϵ2 = 2ϵ0.

Table 4.12: Results from Matlab algorithm (with n = 1 and p = 1) and CST
simulation for the reflection coefficient with frequency ranging from 10 GHz
to 15 GHz, ϵ2 = 2ϵ0 and L equals to 25 mm and 30 mm.

Freq. L = 25 mm L = 25 mm Error L = 30 mm L = 30 mm Error
(GHz) CST Matlab ∆% CST Matlab ∆%

10 -8.0170 -8.0010 0.2007% -5.7991 -5.8073 0.1411%
10.5 -41.5900 -40.6823 2.2311% -4.3760 -4.3771 0.0256%
11 -10.6860 -10.7072 0.1979% -4.8721 -4.8679 0.0865%

11.5 -6.9192 -6.9262 0.1005% -7.3401 -7.3235 0.2262%
12 -5.8986 -5.8993 0.0103% -15.1941 -15.1230 0.4701%

12.5 -6.1848 -6.1784 0.1026% -18.1114 -18.2113 0.5489%
13 -7.7664 -7.7477 0.2407% -9.3189 -9.3395 0.2200%

13.5 -11.6450 -11.5958 0.4242% -7.0623 -7.0624 0.0011%
14 -23.8049 -23.5608 1.0363% -6.9874 -6.9702 0.2465%

14.5 -17.3045 -17.4055 0.5798% -8.7907 -8.7438 0.5366%
15 -10.6781 -10.7018 0.2223% -14.2332 -14.1012 0.9364%
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Figure 4.8: Results for (a) L = 5 mm ϵ2 = 4ϵ0 and (b) L = 10 mm ϵ2 = 4ϵ0.

Table 4.13: Results from Matlab algorithm (with n = 1 and p = 1) and CST
simulation for the reflection coefficient with frequency ranging from 10 GHz
to 15 GHz, ϵ2 = 4ϵ0 and L equals to 5 mm and 10 mm

Freq. L = 5 mm L = 5 mm Error L = 10 mm L = 10 mm Error
(GHz) CST Matlab ∆% CST Matlab ∆%

10 -1.3404 -1.3403 0.0080% -2.9205 -2.9214 0.0297%
10.5 -1.8514 -1.8513 0.0096% -2.4830 -2.4835 0.0203%
11 -2.4011 -2.4008 0.0121% -2.2830 -2.2831 0.0068%

11.5 -3.0277 -3.0273 0.0158% -2.2432 -2.2430 0.0099%
12 -3.7756 -3.7748 0.0207% -2.3431 -2.3423 0.0317%

12.5 -4.7007 -4.6995 0.0269% -2.5977 -2.5962 0.0600%
13 -5.8809 -5.8789 0.0327% -3.0599 -3.0570 0.0963%

13.5 -7.4325 -7.4294 0.0414% -3.8405 -3.8350 0.1419%
14 -9.5511 -9.5463 0.0501% -5.1599 -5.1497 0.1980%

14.5 -12.6278 -12.6201 0.0607% -7.4819 -7.4619 0.2676%
15 -17.7381 -17.7241 0.0788% -12.0065 -11.9619 0.3727%
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Figure 4.9: Results for (a) L = 15 mm ϵ2 = 4ϵ0 (b) L = 20 mm ϵ2 = 4ϵ0.

Table 4.14: Results from Matlab algorithm (with n = 1 and p = 1) and CST
simulation for the reflection coefficient with frequency ranging from 10 GHz
to 15 GHz, ϵ2 = 4ϵ0 and L equals to 15 mm and 20 mm.

Freq. L = 15 mm L = 15 mm Error L = 20 mm L = 20 mm Error
(GHz) CST Matlab ∆% CST Matlab ∆%

10 -2.8591 -2.8549 0.1480% -1.3484 -1.3487 0.0224%
10.5 -8.1306 -8.1107 0.2448% -1.6104 -1.6096 0.0523%
11 -22.1321 -22.2635 0.5902% -2.5412 -2.5372 0.1574%

11.5 -7.1470 -7.1624 0.2157% -5.5727 -5.5553 0.3128%
12 -4.1120 -4.1172 0.1250% -22.5975 -22.3746 0.9961%

12.5 -3.0520 -3.0530 0.0352% -8.1687 -8.1978 0.3549%
13 -2.7374 -2.7355 0.0695% -4.0887 -4.0942 0.1339%

13.5 -2.8875 -2.8817 0.2003% -3.0111 -3.0087 0.0785%
14 -3.5552 -3.5424 0.3633% -2.9960 -2.9864 0.3217%

14.5 -5.1408 -5.1111 0.5807% -3.9418 -3.9174 0.6241%
15 -8.9307 -8.8539 0.8672% -6.9947 -6.9245 1.0136%
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Figure 4.10: Results for (a) L = 25 mm ϵ2 = 4ϵ0 and (b) L = 30 mm ϵ2 = 4ϵ0.

Table 4.15: Results from Matlab algorithm (with n = 1 and p = 1) and CST
simulation for the reflection coefficient with frequency ranging from 10 GHz
to 15 GHz, ϵ2 = 4ϵ0 and L equals to 25 mm and 30 mm.

Freq. L = 25 mm L = 25 mm Error L = 30 mm L = 30 mm Error
(GHz) CST Matlab ∆% CST Matlab ∆%

10 -34.6552 -33.4764 3.5212% -1.3327 -1.3312 0.1102%
10.5 -4.0036 -4.0175 0.3447% -3.9709 -3.9520 0.4784%
11 -2.1839 -2.1864 0.1130% -16.2046 -16.4140 1.2752%

11.5 -2.1623 -2.1596 0.1254% -3.4876 -3.5032 0.4449%
12 -3.4937 -3.4780 0.4498% -2.3575 -2.3585 0.0427%

12.5 -9.9449 -9.8455 1.0092% -3.2756 -3.2608 0.4531%
13 -11.5846 -11.7136 1.1014% -9.8020 -9.6780 1.2816%

13.5 -4.3843 -4.4027 0.4167% -9.5559 -9.6752 1.2331%
14 -3.0418 -3.0375 0.1412% -3.7256 -3.7369 0.3027%

14.5 -3.3303 -3.3040 0.7942% -3.0791 -3.0610 0.5913%
15 -5.6973 -5.6045 1.6563% -4.8014 -4.7190 1.7459%

Again, comparing with the results of the simulations in the CST software
we can observe a great convergence for the Matlab algorithm even using a
minimum number of modes, with n = 1 and p = 1. We have some occasional
cases where the error is about 3%, but in general we can observe an error rate
of less than 1%, which demonstrates the effectiveness of the Matlab program
for cascaded straight waveguide cases.
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4.4
Oblique Junctions Results

The second set of examples that we analyze involves homogeneous
to homogeneous oblique junction configurations. In these cases, we work
with a circular waveguide having two regions with the same physical and
electromagnetic values, i.e., r1 = r2, µ1 = µ2 = µ0, and ϵ1 = ϵ2 = ϵ0. These
two regions are angularly displaced by θ = 2θ12, as depicted in Fig. 4.11.

4.4.1
Case 1

At the first example, in order to verify the modal convergence we
simulated some situations where θ12 varies in a range of 5 to 45 degrees, where
the total bend of the waveguide is given by 2θ12, i.e. θ will vary from 10 to
90 degrees. For each situation, we worked with n and p ranging from 1 to 3
and we obtained the results values for the reflection coefficient in decibel. We
will compare the algorithm data with the results from the CST simulation,
using the FEM solver. Tables 4.16–4.18 show the results obtained in CST
simulations and comparison with the obtained via our algorithm, considering
the TEz

11 mode as a cos(nϕ) configuration. Tables 4.19–4.21 shows the same
results considering the TEz

11 mode as a sin(nϕ) configuration. The structures
used for the Sine and Cosine configurations are shown in Figs. 4.12 and
4.13, respectively, using CST’s CAD software. For brevity, the labels Sin and
Cos will be used to refer to these configurations in the following discussion.
Moreover, the labels Nn and Pp will indicate the number of harmonics used,
with n = 1, 2, 3, . . . and p = 1, 2, 3, . . ..

Figure 4.11: Geometry of an oblique waveguide junction.
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Figure 4.12: CST structure with TEz
11 mode excitation as a sin(nϕ) configura-

tion.

Figure 4.13: CST structure with TEz
11 mode excitation as a cos(nϕ) configu-

ration.
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Figs. 4.14–4.19 summarize the results presented in Tables 4.16–4.21 by
showing the absolute error (in decibels) between CST results and our algorithm
simulations.

Table 4.16: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ) with

f = 10 GHz and θ (2θ12) ranging from 10° to 90°, using Matlab algorithm (with
n = 1 and p = 1, 2, and 3) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 1 p = 2 ∆% n = 1 p = 3 ∆%
10 -42.5961 -51.5019 20.90% -50.5872 18.76% -50.3010 18.08%
20 -30.9162 -39.1725 26.70% -37.8352 22.38% -37.3408 20.78%
30 -23.9208 -31.7726 32.82% -29.7577 24.40% -29.0164 21.30%
40 -19.0347 -26.5006 39.22% -23.5643 23.79% -22.5647 18.54%
50 -15.1783 -22.5910 48.83% -18.4656 21.65% -17.2312 13.52%
60 -11.4298 -19.7677 72.94% -14.1716 23.98% -12.7049 11.15%
70 -8.0864 -17.8943 121.28% -10.3535 28.04% -9.1739 13.44%
80 -5.0637 -16.7853 231.47% -6.40035 26.39% -5.1493 1.61%
90 -2.4843 -16.4795 563.33% -1.83436 26.16% 1.4743 159.34%
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Figure 4.14: Absolute error (dB) between CST simulation and algorithm (with
n = 1) for TEz

11 mode as a cos(nϕ).
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Table 4.17: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ) with

f = 10 GHz and θ (2θ12) ranging from 10° to 90°, using Matlab algorithm (with
n = 2 and p = 1, 2,and 3) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 2 p = 1 ∆% n = 2 p = 2 ∆% n=2 p = 3 ∆%
10 -42.5961 -43.2153 1.45% -42.6135 0.04% -42.4146 0.42%
20 -30.9162 -31.6265 2.29% -30.5979 1.02% -30.1626 2.43%
30 -23.9208 -25.3114 5.81% -23.4972 1.77% -22.5262 5.83%
40 -19.0347 -21.2609 11.69% -18.3023 3.84% -16.4910 13.36%
50 -15.1783 -18.5222 22.03% -14.0207 7.62% -11.3439 25.26%
60 -11.4298 -16.6749 45.88% -10.2978 9.90% -4.46602 60.92%
70 -8.0863 -15.5714 92.56% -6.23607 22.88% 4.9875 161.67%
80 -5.0637 -15.0445 197.10% -3.64016 28.11% 11.0938 319.08%
90 -2.4843 -15.7410 533.61% -1.16958 52.92% 10.8573 537.03%
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Figure 4.15: Absolute error (dB) between CST simulation and algorithm (with
n = 2) for TEz

11 mode as a cos(nϕ).

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



Chapter 4. MMT Algorithm Validation and Results 71

Table 4.18: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ) with

f = 10 GHz and θ (2θ12) ranging from 10° to 90°, using Matlab algorithm (with
n = 3 and p = 1, 2, and 3) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 3 p = 1 ∆% n = 3 p = 2 ∆% n=3 p = 3 ∆%
10 -42.5961 -43.0460 1.05% -42.4367 0.37% -42.1838 0.96%
20 -30.9162 -30.9276 0.03% -29.7733 3.69% -29.1201 5.80%
30 -23.9208 -23.7846 0.56% -21.6898 9.32% -20.6333 13.74%
40 -19.0347 -18.9051 0.68% -16.7198 12.16% -14.6480 23.04%
50 -15.1783 -15.6239 2.93% -14.8477 2.17% -7.0268 53.70%
60 -11.4298 -12.2457 7.13% -7.2644 36.44% -14.8474 29.89%
70 -8.0863 -12.2677 51.70% -5.0766 37.22% 17.8095 320.24%
80 -5.0637 -8.3579 65.05% -8.9148 76.05% 4.7653 194.10%
90 -2.4843 -11.2766 353.90% 1.0083 140.58% 12.2592 593.46%

0 20 40 60 80 100

Inclination angle 2312 (deg.)

0

10

20

30

ab
s|

er
ro

r|
(d

B
)

N3 P1 Cos
N3 P2 Cos
N3 P3 Cos

Figure 4.16: Absolute error (dB) between CST simulation and algorithm (with
n = 3) for TEz

11 mode as a cos(nϕ).
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Table 4.19: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 10 GHz and θ (2θ12) ranging from 10° to 90°, using Matlab algorithm (with
n = 1 and p = 1, 2,and 3) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 1 p = 2 ∆% n = 1 p = 3 ∆%
10 -44.6418 -39.7949 10.85% -39.5745 11.35% -39.5163 11.48%
20 -32.2696 -27.7873 13.89% -27.5505 14.62% -27.4890 14.81%
30 -24.9151 -20.7511 16.71% -20.4884 17.76% -20.4222 18.03%
40 -19.5429 -15.6842 19.74% -15.3945 21.22% -15.3179 21.61%
50 -15.3075 -11.6277 24.03% -11.3376 25.93% -11.2683 26.38%
60 -12.3711 -8.16842 33.97% -7.9202 35.97% -7.7999 36.95%
70 -10.0023 -5.13030 48.70% -5.0253 49.75% -4.9193 50.81%
80 -8.06388 -2.49626 69.04% -2.5092 68.88% -2.5828 67.97%
90 -6.45892 -0.40037 93.80% -1.1329 82.45% -1.1235 82.60%
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Figure 4.17: Absolute error (dB) between CST simulation and algorithm (with
n = 1) for TEz

11 mode as a sin(nϕ).
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Table 4.20: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 10 GHz and θ (2θ12) ranging from 10° to 90°, using Matlab algorithm (with
n = 2 and p = 1, 2,and 3) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 2 p = 1 ∆% n = 2 p = 2 ∆% n = 2 p = 3 ∆%
10 -44.6418 -41.3269 7.42% -41.0437 8.05% -40.9440 8.28%
20 -32.2696 -29.1111 9.78% -28.8059 10.73% -28.6928 11.08%
30 -24.9151 -21.8106 12.46% -21.4879 13.75% -21.3523 14.29%
40 -19.5429 -16.4909 15.61% -16.1547 17.33% -16.0329 17.96%
50 -15.3075 -12.2190 20.17% -11.9019 22.24% -11.8725 22.44%
60 -12.3711 -8.7006 29.66% -8.4580 31.63% -9.3141 24.71%
70 -10.0023 -5.7102 42.91% -5.2385 47.62% -5.0100 49.91%
80 -8.0638 -3.3088 58.96% -2.8404 64.77% -3.6291 54.99%
90 -6.4589 -1.1983 81.44% -0.6229 90.35% -2.7772 57.00%
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Figure 4.18: Absolute error (dB) between CST simulation and algorithm (with
n = 2) for TEz

11 mode as a sin(nϕ).
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Table 4.21: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 10 GHz and θ (2θ12) ranging from 10° to 90°, using Matlab algorithm (with
n = 3 and p = 1, 2,and 3) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 3 p = 1 ∆% n = 3 p = 2 ∆% n = 3 p = 3 ∆%
10 -44.6418 -41.3356 7.40% -41.0618 8.01% -40.9586 8.25%
20 -32.2696 -29.1628 9.62% -28.8942 10.46% -28.7787 10.81%
30 -24.9151 -21.8913 12.13% -21.6260 13.20% -21.2661 14.64%
40 -19.5429 -16.5379 15.37% -16.3026 16.58% -12.3558 36.77%
50 -15.3075 -12.1761 20.45% -11.8793 22.39% -11.8324 22.70%
60 -12.3711 -8.3239 32.71% -8.0147 35.21% -8.9149 27.93%
70 -10.0023 -5.5639 44.37% -4.9194 50.81% -3.7671 62.33%
80 -8.0638 -2.5377 68.52% -3.2449 59.75% 4.2489 152.69%
90 -6.4589 -0.0647 101.00% 0.2597 104.02% 3.8053 158.91%
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Figure 4.19: Absolute error (dB) between CST simulation and algorithm (with
n = 3) for TEz

11 mode as a sin(nϕ).
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We can observe that for both TEz
11 cases, the configuration that presents

the minimum error for most of angles analyzed is the one with 14 modes, where
n = 3 and p = 1. In Figs. 4.20 and 4.21 we have a comparative between the
results of the reflection coefficient from CST simulation and from our algorithm
with n = 3 and p = 1.
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Figure 4.20: Reflection Coefficient TEz
11 mode as a cos(nϕ).
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Figure 4.21: Reflection Coefficient for TEz
11 mode as a sin(nϕ).

The plot in Fig. 4.20 indicates that the algorithm achieves excellent
convergence for total angles (2θ12) less than 60°. Similarly, from Fig. 4.21,
it is evident that the algorithm produces a response with a similar behavior to
that of CST, but with a nearly constant difference of approximately 3 dB for
angles less than 60°.

4.4.2
Case 2

The second test aimed to evaluate the frequency response of our
algorithm in an oblique junction scenario. As the algorithm showed better
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convergence for smaller angles, we tested responses for inclination angles
ranging from 5 to 30 degrees. For each angle, we recorded the reflection
coefficient for frequencies ranging from 10 GHz to 15 GHz with a 0.5 GHz
step. Once again, we compared our results with those from CST simulations.
Tables 4.22–4.32 present the results for TEz

11 mode excitation as a cos(nϕ)
configuration and Tables 4.33–4.43 shows results for TEz

11 mode as a sin(nϕ).
The absolute error (in decibel) between solutions are depicted in Figs. 4.22–
4.43.

Table 4.22: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ)

with f = 10 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -54.9143 -63.6253 13.69% -55.1429 0.41% -55.0973 0.33%
10 -42.8499 -51.5019 16.79% -43.2153 0.84% -43.0460 0.45%
15 -35.8205 -44.3302 19.19% -36.3608 1.48% -35.9809 0.44%
20 -30.8372 -39.1725 21.27% -31.6265 2.49% -30.9276 0.29%
25 -26.9905 -35.1189 23.14% -28.0796 3.87% -26.9319 0.21%
30 -23.8662 -31.7726 24.88% -25.3114 5.70% -23.7846 0.34%
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Figure 4.22: Absolute error for the configuration cos(nϕ), with f = 10 GHz.
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Table 4.23: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ) with

f = 10.5 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -56.5181 -65.0431 13.10% -56.5432 0.04% -56.4907 0.04%
10 -44.4929 -52.9234 15.92% -44.6200 0.28% -44.4438 0.11%
15 -37.4598 -45.7568 18.13% -37.7642 0.80% -37.3822 0.20%
20 -32.4831 -40.6051 20.00% -33.0241 1.63% -32.3103 0.53%
25 -28.6301 -36.5577 21.68% -29.4738 2.86% -28.3320 1.05%
30 -25.4955 -33.2189 23.24% -26.6972 4.50% -25.0230 1.88%
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Figure 4.23: Absolute error for the configuration cos(nϕ), with f = 10.5 GHz.
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Table 4.24: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ)

with f = 11 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -57.7644 -66.0531 12.54% -57.5290 0.40% -57.4709 0.51%
10 -45.7473 -53.9368 15.18% -45.6090 0.30% -45.4296 0.69%
15 -38.7061 -46.7753 17.25% -38.7523 0.11% -38.3717 0.87%
20 -33.7315 -41.6297 18.97% -34.0068 0.80% -33.3017 1.29%
25 -29.8715 -37.5886 20.53% -30.4506 1.90% -29.3248 1.86%
30 -26.7264 -34.2559 21.98% -27.6655 3.39% -26.0228 2.70%
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Figure 4.24: Absolute error for the configuration cos(nϕ), with f = 11 GHz.
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Table 4.25: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ) with

f = 11.5 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -58.7807 -66.81134 12.01% -58.2520 0.90% -58.1885 1.01%
10 -46.7493 -54.69773 14.53% -46.3338 0.89% -46.1539 1.29%
15 -39.7080 -47.54204 16.47% -39.4733 0.59% -39.0978 1.56%
20 -34.7216 -42.40253 18.11% -34.7236 0.01% -34.0415 1.99%
25 -30.8573 -38.36758 19.57% -31.1598 0.97% -30.0730 2.60%
30 -27.7077 -35.04081 20.92% -28.3655 2.31% -26.7882 3.43%
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Figure 4.25: Absolute error for the configuration cos(nϕ), with f = 11.5 GHz.
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Table 4.26: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ)

with f = 12 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -59.5995 -67.3921 11.56% -58.7789 1.39% -58.7108 1.51%
10 -47.5619 -55.2818 13.96% -46.8611 1.49% -46.6837 1.88%
15 -40.5315 -48.1311 15.78% -39.9961 1.33% -39.6375 2.25%
20 -35.5287 -42.9974 17.37% -35.2414 0.81% -34.6055 2.66%
25 -31.6592 -38.9685 18.75% -31.6761 0.05% -30.6599 3.25%
30 -28.5033 -35.6475 20.04% -28.8602 1.23% -27.3586 4.18%
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Figure 4.26: Absolute error for the configuration cos(nϕ), with f = 12 GHz.
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Table 4.27: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ) with

f = 12.5 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -60.2821 -67.8353 11.13% -59.1346 1.94% -59.0627 2.06%
10 -48.2440 -55.7282 13.42% -47.2151 2.17% -47.0441 2.55%
15 -41.2044 -48.5824 15.18% -40.3451 2.12% -40.0094 2.98%
20 -36.1940 -43.4542 16.70% -35.5792 1.72% -34.9881 3.44%
25 -32.3104 -39.4311 18.05% -32.0015 0.96% -31.0587 4.03%
30 -29.1352 -36.1157 19.32% -29.1711 0.12% -27.7759 4.89%
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Figure 4.27: Absolute error for the configuration cos(nϕ), with f = 12.5 GHz.
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Table 4.28: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ)

with f = 13 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -60.8393 -68.1630 10.74% -59.3099 2.57% -59.2346 2.70%
10 -48.7895 -56.0589 12.96% -47.3858 2.96% -47.2255 3.31%
15 -41.7242 -48.9176 14.70% -40.5063 3.00% -40.1968 3.79%
20 -36.7071 -43.7949 16.18% -35.7267 2.74% -35.1904 4.30%
25 -32.7972 -39.7773 17.54% -32.1228 2.09% -31.2658 4.89%
30 -29.5861 -36.4672 18.86% -29.2811 1.04% -28.0165 5.60%
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Figure 4.28: Absolute error for the configuration cos(nϕ), with f = 13 GHz.
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Table 4.29: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ) with

f = 13.5 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -61.1854 -68.3865 11.76% -59.2348 3.18% -59.1572 3.31%
10 -49.1113 -56.2852 14.60% -47.3020 3.68% -47.1512 3.99%
15 -42.0173 -49.1482 16.97% -40.4069 3.83% -40.1258 4.50%
20 -36.9788 -44.0307 19.06% -35.6080 3.70% -35.1268 5.00%
25 -33.0284 -40.0182 21.16% -31.9779 3.18% -31.2160 5.48%
30 -29.7647 -36.7133 23.34% -29.1058 2.21% -27.9816 5.99%
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Figure 4.29: Absolute error for the configuration cos(nϕ), with f = 13.5 GHz.
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Table 4.30: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ)

with f = 14 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -61.0041 -68.5099 12.30% -58.6114 3.92% -58.5302 4.05%
10 -48.9130 -56.4113 15.32% -46.6626 4.60% -46.5153 4.90%
15 -41.7875 -49.2781 17.92% -39.7440 4.89% -39.4726 5.53%
20 -36.6877 -44.1654 20.38% -34.9122 4.83% -34.4465 6.10%
25 -32.6627 -40.1580 22.94% -31.2414 4.35% -30.5177 6.56%
30 -29.3029 -36.8574 25.78% -28.3187 3.35% -27.2640 6.95%
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Figure 4.30: Absolute error for the configuration cos(nϕ), with f = 14 GHz.
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Table 4.31: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ) with

f = 14.5 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -56.9713 -68.5304 20.28% -53.5585 5.99% -53.4414 6.19%
10 -44.7625 -56.4340 26.07% -41.6020 7.06% -41.2832 7.77%
15 -37.4248 -49.3045 31.74% -34.6902 7.30% -34.0093 9.12%
20 -31.9817 -44.1963 38.19% -29.8624 6.62% -28.7157 10.21%
25 -27.4924 -40.1935 46.19% -26.1803 4.77% -24.4654 11.01%
30 -23.5031 -36.8976 56.99% -23.2179 1.21% -20.8390 11.33%
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Figure 4.31: Absolute error for the configuration cos(nϕ), with f = 14.5 GHz.

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



Chapter 4. MMT Algorithm Validation and Results 86

Table 4.32: Results of the reflection coefficient for TEz
11 mode as a cos(nϕ)

with f = 15 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -66.1701 -68.4378 3.42% -53.9895 18.40% -53.9406 18.48%
10 -54.2230 -56.3432 3.91% -42.0059 22.53% -41.9129 22.70%
15 -47.2587 -49.2173 4.14% -35.0386 25.85% -34.8743 26.20%
20 -42.3369 -44.1129 4.19% -30.1426 28.80% -29.8787 29.42%
25 -38.5865 -40.1146 3.96% -26.3950 31.59% -26.0041 32.60%
30 -35.5770 -36.8234 3.50% -23.3840 34.27% -22.8417 35.79%
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Figure 4.32: Absolute error for the configuration cos(nϕ), with f = 15 GHz.
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Table 4.33: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 10 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm (with
n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -56.5396 -51.8239 8.34% -53.4275 5.50% -53.4221 5.51%
10 -44.3731 -39.7949 10.31% -41.3269 6.86% -41.3356 6.84%
15 -37.2632 -32.7682 12.06% -34.2075 8.20% -34.2376 8.11%
20 -32.1692 -27.7873 13.62% -29.1111 9.50% -29.1628 9.34%
25 -28.1792 -23.9212 15.11% -25.1144 10.87% -25.1826 10.63%
30 -24.8764 -20.7511 16.58% -21.8106 12.32% -21.8913 11.99%
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Figure 4.33: Absolute error for the configuration sin(nϕ), with f = 10 GHz.
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Table 4.34: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 10.5 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -54.0413 -50.9334 5.75% -51.8786 4.00% -51.8717 4.01%
10 -41.9789 -38.8678 7.41% -39.7627 5.27% -39.7641 5.27%
15 -34.8580 -31.7811 8.82% -32.6123 6.44% -32.6256 6.40%
20 -29.7527 -26.7191 10.19% -27.4735 7.66% -27.4952 7.58%
25 -25.7346 -22.7540 11.58% -23.4249 8.97% -23.4444 8.89%
30 -22.3943 -19.4713 13.05% -20.0600 10.42% -20.0815 10.32%
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Figure 4.34: Absolute error for the configuration sin(nϕ), with f = 10.5 GHz.
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Table 4.35: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 11 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm (with
n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -50.1684 -48.4147 3.49% -48.9597 2.40% -48.9543 2.42%
10 -38.1259 -36.3091 4.76% -36.8148 3.43% -36.8159 3.43%
15 -30.9851 -29.1584 5.89% -29.6130 4.42% -29.6212 4.40%
20 -25.8538 -24.0132 7.11% -24.4077 5.59% -24.4199 5.54%
25 -21.8014 -19.9522 8.48% -20.2833 6.96% -20.2885 6.93%
30 -18.4239 -16.5698 10.06% -16.8393 8.60% -16.8305 8.64%
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Figure 4.35: Absolute error for the configuration sin(nϕ), with f = 11 GHz.
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Table 4.36: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 11.5 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -36.3409 -35.9744 1.00% -35.5954 2.05% -35.5921 2.06%
10 -24.6505 -24.2345 1.68% -23.8379 3.29% -23.8266 3.34%
15 -18.1631 -17.6450 2.85% -17.2405 5.07% -17.2103 5.24%
20 -13.8862 -13.1997 4.94% -12.8323 7.58% -12.7676 8.05%
25 -10.8593 -9.9511 8.36% -9.7263 10.43% -9.6076 11.52%
30 -8.63290 -7.5536 12.50% -7.6078 11.87% -7.4393 13.82%
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Figure 4.36: Absolute error for the configuration sin(nϕ), with f = 11.5 GHz.
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Table 4.37: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 12 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm (with
n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -49.4170 -47.9491 2.97% -46.5507 5.80% -46.5386 5.82%
10 -37.4759 -35.8998 4.20% -34.5234 7.87% -34.4891 7.96%
15 -30.537 -28.8378 5.56% -27.5084 9.91% -27.4324 10.16%
20 -25.6888 -23.8071 7.32% -22.5482 12.22% -22.4026 12.79%
25 -21.9982 -19.8796 9.63% -18.7132 14.93% -18.4782 16.00%
30 -19.0530 -16.6432 12.64% -15.5899 18.17% -15.2301 20.06%
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Figure 4.37: Absolute error for the configuration sin(nϕ), with f = 12 GHz.
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Table 4.38: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 12.5 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -52.4460 -50.3721 3.95% -48.5765 7.37% -48.5605 7.40%
10 -40.4250 -38.2832 5.29% -36.5269 9.64% -36.4862 9.74%
15 -33.4341 -31.1568 6.81% -29.4764 11.83% -29.3900 12.09%
20 -28.5322 -26.0402 8.73% -24.4674 14.24% -24.3036 14.82%
25 -24.7777 -22.0097 11.17% -20.5702 16.98% -20.3122 18.02%
30 -21.7554 -18.6587 14.23% -17.3691 20.16% -16.9765 21.96%
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Figure 4.38: Absolute error for the configuration sin(nϕ), with f = 12.5 GHz.
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Table 4.39: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 13 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm (with
n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -54.2802 -51.7205 4.71% -49.6568 8.51% -49.6376 8.55%
10 -42.1496 -39.6047 6.03% -37.5920 10.81% -37.5484 10.91%
15 -35.1509 -32.4339 7.72% -30.5174 13.18% -30.4280 13.43%
20 -30.2060 -27.2566 9.76% -25.4748 15.66% -25.3115 16.20%
25 -26.4087 -23.1516 12.33% -21.5331 18.46% -21.2710 19.45%
30 -23.3373 -19.7155 15.51% -18.2764 21.68% -17.8874 23.35%
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Figure 4.39: Absolute error for the configuration sin(nϕ), with f = 13 GHz.

DBD
PUC-Rio - Certificação Digital Nº 2112302/CA



Chapter 4. MMT Algorithm Validation and Results 94

Table 4.40: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 13.5 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -55.4273 -52.6227 5.05% -50.3375 9.18% -50.3142 9.22%
10 -43.3269 -40.4839 6.56% -38.2588 11.69% -38.2131 11.80%
15 -36.3198 -33.2746 8.38% -31.1619 14.20% -31.0732 14.44%
20 -31.3407 -28.0437 10.51% -26.0875 16.76% -25.9279 17.27%
25 -27.4957 -23.8715 13.18% -22.1025 19.61% -21.8499 20.53%
30 -24.3660 -20.3577 16.45% -18.7919 22.87% -18.4202 24.40%
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Figure 4.40: Absolute error for the configuration sin(nϕ), with f = 13.5 GHz.
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Table 4.41: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 14 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm (with
n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -56.1095 -53.2811 5.04% -50.7385 9.57% -50.7085 9.62%
10 -44.1459 -41.1208 6.85% -38.6473 12.45% -38.5966 12.57%
15 -37.0917 -33.8749 8.67% -31.5296 14.99% -31.4388 15.24%
20 -32.0709 -28.5923 10.84% -26.4227 17.61% -26.2649 18.10%
25 -28.1511 -24.3546 13.48% -22.3948 20.44% -22.1514 21.31%
30 -24.9228 -20.7637 16.68% -19.0270 23.65% -18.6811 25.04%
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Figure 4.41: Absolute error for the configuration sin(nϕ), with f = 14 GHz.
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Table 4.42: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 14.5 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm
(with n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -55.4519 -53.7868 3.00% -49.6914 10.38% -49.6279 10.50%
10 -43.4413 -41.6055 4.22% -37.6377 13.35% -37.4941 13.69%
15 -36.1927 -34.3233 5.16% -30.5721 15.52% -30.2988 16.28%
20 -30.914 -28.9888 6.22% -25.5176 17.45% -25.0666 18.91%
25 -26.6462 -24.6840 7.36% -21.5284 19.20% -20.8818 21.63%
30 -22.9735 -21.0135 8.53% -18.1710 20.90% -17.3457 24.49%
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Figure 4.42: Absolute error for the configuration sin(nϕ), with f = 14.5 GHz.
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Table 4.43: Results of the reflection coefficient for TEz
11 mode as a sin(nϕ) with

f = 15 GHz and θ (2θ12) ranging from 5° to 30°, using Matlab algorithm (with
n = 1, 2, and 3 and p = 1) and comparing with CST simulation.

Matlab Error Matlab Error Matlab Error
θ CST n = 1 p = 1 ∆% n = 2 p = 1 ∆% n = 3 p = 1 ∆%
5 -60.0475 -54.1888 9.75% -48.9636 18.45% -48.9399 18.49%
10 -48.0063 -41.9865 12.53% -36.8742 23.18% -36.8307 23.27%
15 -40.9661 -34.6674 15.37% -29.7529 27.37% -29.6764 27.55%
20 -35.9690 -29.2788 18.59% -24.6323 31.51% -24.5127 31.85%
25 -32.0640 -24.9031 22.33% -20.5739 35.83% -20.4086 36.35%
30 -28.8078 -21.1479 26.58% -17.1540 40.45% -16.9454 41.17%
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Figure 4.43: Absolute error for the configuration sin(nϕ), with f = 15 GHz.

Analyzing Figs. 4.22–4.32, we can observe that as the frequency and the
angle increases, the configuration with better results for TEz

11 as a cos(nϕ)
changes from n = 3 and p = 1 to n = 2 and p = 1, i.e. we have more precision
with a smaller number of modes. This may be happening due to a limited
number of p-terms used in our simulations. Also, when we have a frequency
of 15 GHz, we have the worst case of precision, with high errors for the three
set of modes used. The same occurs when we take the results for TEz

11 as a
sin(nϕ), from Figs. 4.33–4.43 we can verify that the configuration with less
number of modes (n = 1 and p = 1) have the minor absolute error for higher
frequencies and smaller angles. And again, the biggest errors occurs when we
have a frequency of 15 GHz.
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Figure 4.44: Reflection coefficient from CST for TEz
11 = cos(nϕ).
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Figure 4.45: Reflection coefficient from our algorithm (n = 2 and p = 1) for
TEz

11 = cos(nϕ).
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Figure 4.46: Reflection coefficient from CST for TEz
11 = sin(nϕ).
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Figure 4.47: Reflection coefficient from our algorithm (n = 1 and p = 1) for
TEz

11 = sin(nϕ).

Figs 4.44 and 4.45 compiles the results for all frequencies from CST and
from our algorithm (for n = 2 and p = 1), respectively, for TEz

11 as a cos(nϕ).
The same is exposed in Figs. 4.46 and 4.47, from CST and from our algorithm
(for n = 1 and p = 1) for TEz

11 as a sin(nϕ). Despite the observed error we can
notice that, except when the frequency is close to 15 GHz, both answers from
our algorithm presents the same behavior as the CST responses.
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5
Conclusion

In this final chapter, will be presented a review and a resume about
the topics addressed in this research, by commenting the results obtained and
making suggestions to future works.

In Chapter 1, we briefly discuss about how the evolution of technology in
the area of communications systems eventually generated a need to use devices
with connections made by curved transmission lines, often miniaturized. Thus,
the need for knowledge of the behavior and modeling of electromagnetic field
propagation in curved waveguides has become a subject of relevant importance.
Since, depending on the geometry of the problem, some cases of transmission
lines do not have a simple solution, it has become necessary to conduct
studies for computational modeling of electromagnetic fields in regions of
discontinuity in transmission lines. The numerical methods normally used to
analyze geometries with complex shapes are based on the solution of Maxwell’s
equations in a brute force way, based on the discretisation of the 3D domain,
but these methods demands high computational resources to obtain accurate
answers, so that limitations of RAM memory and CPU processing speed may
prevent an improvement of solutions by these cited techniques. Thus, the object
of study of the present study was a semi-analytical approach which have a
lower computational cost to model waveguide segment junctions considering
along oblique surfaces. Thus, the focus of the work consisted in modeling
and analyzing the reflection coefficient at oblique junctions of cylindrical
waveguides through a solution based on MMT and by computing the GSM
associated with each junction.

In Chapter 2, we briefly discuss the mathematical formulation for
representing electromagnetic fields in cylindrical coordinates. Through a review
of the literature, we present the cylindrical harmonics that solve the boundary
values problems of TE and TM field configurations and thus we define
the cutoff frequencies and the associated propagation constants of circular
waveguides..

In Chapter 3, we presented our MMT formulation along oblique surfaces
in terms of reaction integrals. Thus, in this chapter, the reaction integrals
were developed to deal with modal coupling in the region of interest and we
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obtain the GSM matrix. Also, we present a procedure to cascade a pair of
GSM matrices in order to perform analysis of more complex structures formed
by the subsequent junction of three or more waveguide segments. Besides this,
a numerical algorithm was implemented in the Matlab platform in order to
validate the capabilities of the mathematical model presented. The results
obtained through the Matlab simulations of our approach were compared with
the results obtained for the analysis of the same problem using the commercial
CST Studio Suite software.

In Chapter 4, the numerical results of the application of our MMT
are presented. We presented results for the reflection coefficient in decibel
of the dominant mode versus the frequency and, in cases where guides
with oblique junctions were explored, we present the curves of the reflection
coefficient versus the oblique junction angle, given a fixed operating frequency.
Initially, we performed tests in different scenarios for direct junctions between
segments of curvatureless (straight) waveguides in order to verify and ensure
the functionality and convergence of the developed method. In these tests, we
varied frequency, electromagnetic characteristics, and explored the cascading
of waveguide segments. When comparing the results obtained in these initial
tests with those obtained by the model in FEM results form CST, we can
observe the convergence and the accuracy of the method even using a minimum
number of modes for the solution. After ensuring that the method works
properly, scenarios where oblique junctions existed between two waveguide
segments were analyzed. Since the existence of an angular junction between
two waveguides generates a discontinuity where the higher modes end up
interacting with the propagating mode, tests were performed considering two
situations for the fundamental mode: the first one for an input excitation of
the sin(nϕ) type and the second one considering an input in the cos(nϕ) form.
To calibrate the algorithm, tests were performed varying the number of modes
used to analyze the problem. The results for the tests were different for each of
the situations explored. The results for the input in the sin(nϕ) form showed
a good accuracy of the method, guaranteeing very small errors for angulations
up to 60°. On the other hand, the results for the input in the cos(nϕ) format
presented larger errors, but constant, for angulations up to 60° and, despite
the errors, the behavior was the same as expected by the basis of comparison.
AS a guess for the constant error, we suspect that they may be caused by some
numerical integration error that degenerates the accuracy of the MMT.

The scientific contribution of this work consists in the application of the
MMT in oblique junctions of circular waveguides, so that the results obtained
in this work have not been previously found in the literature. It is important to
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note that the oblique junctions analyzed in this work consist of abrupt angular
deformations and that practical cases would require a specific adaptation and
modeling that can be performed, for example, via GSM matrix cascading.

For future work, we recommend the implementation of the developed
equations in a different mathematical application software in order to verify the
continuity of the numerical error found for one of the curved guide solutions.
In addition, we suggest the real curvature analysis of waveguides through
an approximation made by discretization and cascading of the curvature at
oblique junctions presented in this work.
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