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Abstract

Krauss,André Mazal; Vidal, Thibaut Victor Gaston (Advisor); Gérard
Yannick Guigues, Vincent (Co-Advisor). A Branch and Price Algo-
rithm for a Static Ambulance Routing Problem. Rio de Janeiro,
2023. 52p. Dissertação de Mestrado – Departamento de Informática, Pon-
tifícia Universidade Católica do Rio de Janeiro.

Emergency Medical Service (EMS) systems provide life-saving support to
people in emergency situations via first aid treatment and emergency transport
to medical facilities. Such systems must strive to make the best use of their
limited resources; they have thus been studied in the context of static and
dynamic vehicle routing problems. In this work, we study a static ambulance
routing problem aiming to minimize the weighted sum of patients’ waiting
time while considering ambulance compatibility, patients’ priorities, ambulance
redirection, and ambulance reassignment. We implement an exact Branch-and-
Price algorithm over a Set Partitioning Formulation, study the results of this
algorithm, and compare them to previously studied online heuristics using data
from Rio de Janeiro’s public SAMU system. The results obtained allow us to
assess the value of perfect information in such systems, providing a comparative
baseline for subsequent developments of online algorithms.

Keywords
Transportation; Routing; Emergency Medical Services; Column Gen-

eration; Branch and Price.



Resumo

Krauss,André Mazal; Vidal, Thibaut Victor Gaston; Gérard Yannick
Guigues, Vincent. Um algoritmo Branch and Price para um pro-
blema estático de roteamento de ambulâncias. Rio de Janeiro,
2023. 52p. Dissertação de Mestrado – Departamento de Informática, Pon-
tifícia Universidade Católica do Rio de Janeiro.

Serviços Médicos de Emergência (SME) proveem ajuda essencial a pes-
soas em situações de emergência, através de atendimento com primeiros so-
corros e transporte para unidades de saúde. Sistemas SME devem utilizar da
melhor maneira possível seus recursos limitados de atendimento. Esse desafio
já foi amplamente estudado por pesquisadores, na forma de problemas de ro-
teamento de veículos, tanto estáticos quanto dinâmicos. No presente trabalho,
estudamos um problema estático de roteamento de ambulâncias, cujo objetivo
é minimizar o tempo ponderado de espera dos pacientes. O problema con-
sidera também o tempo acumulado de espera, restrições de compatibilidade
de ambulâncias a serviços, seleção de pacientes, redirecionamento de ambu-
lâncias e redistribuição de ambulâncias. Implementamos um algoritmo exato
usando Branch and Price e uma formulação do problema como uma Partição
de Conjuntos, usando código aberto. Estudamos os resultados obtidos com
esse algoritmo e os comparamos com métodos heurísticos online estudados an-
teriormente. Para tal, utilizamos dados obtidos do SAMU da cidade do Rio
de Janeiro. Os resultados possibilitam a avaliação do valor de informação per-
feita nesse contexto e proveem resultados comparativos para embasar o futuro
desenvolvimento de algoritmos online.

Palavras-chave
Transportes; Roteamento; Serviços de Emergência Médica; Geração de

Colunas; Branch and Price.



Table of contents

1 Introduction 11

2 Problem Statement 13
2.1 Definition 13
2.2 Set Partitioning Formulation 14

3 Literature Review 16

4 Methodology 21
4.1 Negative Reduced Cost Routes, Labels, and Label Expansions 22
4.2 Label Expanding Algorithm 25
4.3 Branch and Price 26
4.4 Complete Algorithm 28
4.5 Variations in routing rules 29

5 Experimental Results 31
5.1 Convergence and Performance Considerations 33
5.2 Comparing rules variations and online heuristics 36
5.3 Sensitivity tests on the number of vehicles used 39

6 Conclusing Remarks 42

7 Appendix 48
7.1 Nomenclature Reference Table 48
7.2 48
7.3 Graham CPU Characteristics 52



List of figures

Figure 5.1 Heatmap of mean λ Poisson values for the 76 subregions in
the study. Darker tones indicate larger values 32
Figure 5.2 Comparison of different measures against computation time
for default MIP runs 37

(a) Nb Requests X Time 37
(b) Nb Nodes X Time 37
(c) Nb Pricing Runs X Time 37
(d) Time per Pricing X Time 37

Figure 5.3 Solution cost with varying number of vehicles for instance set
t2_L 40
Figure 5.4 Runtime with varying number of vehicles for instance set t6_M 41



List of tables

Table 5.1 Results for default MIP by time horizon and region size 35
Table 5.2 Aggregated results for 109 instances solved to optimality with
variations 36
Table 5.3 Aggregated results for 109 instances with different variations,
grouped by time horizon 38

Table 7.1 Results for 120 RJ instances 48



List of algorithms

Algorithm 1 Label expansion Pricing Algorithm 26
Algorithm 2 Complete B&P 30



1
Introduction

The term Emergency Medical Service (EMS) refers to the array of services
provided by public and private operators to assist people in need of urgent med-
ical attention. Such systems typically employ fleets of ambulances, but other
vehicle types, such as helicopters or boats, may also be used. Even though each
system is bound to have its particular requirements and limitations, a typical
EMS system will have the objective and/or the legal obligation of servicing a
percentage of calls within a pre-determined response time, which varies accord-
ing to the severity of the emergency. [Reuter-Oppermann et al., 2017]. At the
same time, operators are limited by their budgets, crew, and vehicle capabili-
ties. This naturally gives rise to many optimization problems at the strategic,
tactical, and operational levels, and there is a rich literature on the subject.

In the present work, we’ll focus on a static vehicle routing problem related
to the routing of ambulances in an EMS system. In this problem, we take
the viewpoint of an operator aiming at minimizing the total weighted waiting
time across a set of emergency requests. Each request‘s weight is assumed
proportional to its severity, and all requests are known beforehand. The
operator has at its disposal a fleet of different vehicles. Each vehicle may or
may not be compatible with each request. The vehicles are allowed to service
requests up to a predefined time horizon. If a request isn’t serviced by the
end of the horizon, a penalty is incurred. Even though foreknowledge of all
requests is assumed, vehicles must respect non-anticipativity, that is, they
cannot move towards a request before the request’s release date. This problem
is service-oriented in regard to its objective and is constrained by time and
resource limitations. We propose a Branch-and-Price (B&P) algorithm over a
Set Partitioning formulation and present experimental results based on data
from the public EMS system of the city of Rio de Janeiro.

Despite only developing a method for a static problem, the present work
is still useful for comparing online algorithms against the best offline value
attainable, assessing expected service levels given known conditions, and
possibly imbued as a subproblem in an eventual online algorithm. We aim
to demonstrate that a Set Partitioning approach like ours is suited to the
problem at hand.
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This work is organized as follows: In Section 2 we present the problem
statement, notation, and a set partitioning formulation for it. Section 3 is a
Literature Review about other works in the literature related to EMS systems,
Vehicle Routing Problems (VRP) and similar B&P approaches. In Section 4
we detail the algorithm used for solving the presented problem, and Section 5
shows experimental results.



2
Problem Statement

We will now define the deterministic static vehicle routing problem. The
problem can be modelled as a VRP with heterogeneous fleet, heterogeneous
demand, compatibility constraints, prize-collecting / visit selection and re-
lease dates with minimization of weighted lateness as the objective. See
[Vidal et al., 2020] for a summary of these attributes. Subsequently a set-
partitioning formulation of the problem will be presented.

2.1
Definition

The problem is defined over a complete digraph G = (V, E), where

V = P ∪D∪W ∪{0k|k = 1..m}

is the nodes set and E is a set of directed weighted edges. P is the set
{1, 2, ..., n} of request nodes and D = {n + 1, n + 2, ..., 2n} are destination
nodes; each pickup request i is associated with a drop-off at destination i + n.
Since request-destination pairings are given as input, the choice of optimal
hospitals is not modelled here. W is a set of waiting locations. Each edge
e = (i, j) has weight tij, understood as the travel time between i and j. To
each request i there is a known release time τi, which is the first admissible time
the request can be serviced, and there is a lateness weight wi, proportionate
to the severity of the emergency. The demands should be met by a fleet of
emergency vehicles K = {1, 2, ..., k}, each one with a starting position 0k and
time of availability µk . To represent compatibility constraints between requests
and vehicles, we use a compatibility matrix I, where entry Ik

i is equal to 1 if
the request i may be serviced by the vehicle k, and is equal to 0 otherwise. If
request i isn’t serviced during the planning horizon, a penalty ρi is incurred.
A request i requires si on-site time to be serviced. Finally, time T marks the
end of the planning horizon.

Notice that, in order to service a single request i, a vehicle must spend time
on different steps. Moving to the request’s location takes time tvi if the vehicle
was previously at location v; the vehicle spends si on site and must move to
a hospital at location i + n spending ti,i+n time. Each route should respect
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non-anticipativity and vehicle compatibility constraints, starting at starting
position 0k and moving to compatible request-destination pairs and optional
waiting stations. Additionally, if we allow for redirection, a vehicle moving
towards a waiting station may be rerouted to a request before arriving at the
waiting station, in which case an intermediate point is dynamically computed
and used for calculating the arrival time at said request.

[Guigues et al., 2022] considers two additional possibilities when servicing
a request. The first one are requests where there is no need for the patient
to be transported to a hospital; the second one are requests after which the
ambulance must be cleaned at a specialized cleaning station. Even though we’re
not modelling them directly, both of these possibilities may be incorporated
into the present model by manipulating service times and the distance matrix.
Additionally, it is more usual for EMS systems to use a tiered classification of
vehicle and request types in order to determine priorities and compatibility.
This can be easily translated to the weights and compatibility matrix used
here.

The objective in this problem is to plan routes for all vehicles in a way
that minimizes the sum of weighted lateness among all requests plus the sum
of all non-service penalties, while respecting route constraints. A route is an
ordered sequence of vertices, ie. initial positions, requests, waiting stations
and destinations. A route is always associated with a particular vehicle. We
remark that the objective function in this model is service-oriented instead of
the more usual cost-oriented objectives, and that it is equivalent to minimizing
the average, over all requests, of the weighted waiting time plus penalty. In
some circumstances, it may be mandatory to service all requests. Whenever
this is the case, we may emulate this result by precomputing a sufficiently large
time horizon combined with sufficiently large non-service penalties.

2.2
Set Partitioning Formulation

A Set Partitioning formulation of the problem is expressed below. Ω is the
set of all feasible routes, and Ωk ⊂ Ω is the set of all feasible routes of vehicle
k. λσ is a binary variable indicating if route σ is used in the solution. aσi is
an integer coefficient equal to the number of times the request i appears in
the route σ. For a route σ ∈ Ω, cσ is the total penalty associated with it (and
therefore, with the variable λσ). This is calculated as the weighted penalty of
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each request in the route, that is:

cσ =
∑

i∈σ∩P

wi · (hσi − τi) (2-1)

Where hσi ≥ τi is the instant the ambulance arrives at request i. hσi is
dependent on the route’s structure, and is computed while it is constructed.

All that said, the MIP formulation is as follows:

Objective

min
∑
σ∈Ω

cσλσ +
∑
i∈P

ρiyi (2-2)

Subject to:

∑
σ∈Ωk

λσ ≤ 1 ∀k ∈ K (2-3a)

∑
σ∈Ω

aσiλσ + yi = 1 ∀i ∈ P (2-3b)

λσ ∈ {0, 1} σ ∈ Ω (2-3c)
yi ∈ {0, 1} ∀i ∈ P (2-3d)

The first summation in (2-2) represents the weighted lateness obtained in
all serviced requests. The second summation in (2-2) represents the penalty
incurred for any requests that aren’t serviced. Constraint (2-3a) ensures that
each vehicle is used for no more than one route. Constraint (2-3b) ensures that
each request is serviced by a route, unless its associated penalty is incurred.
Constraint (2-3c) and (2-3d) express that the variables are binary.

This formulation uses a number of variables exponential on the number of
vertices, since there is one for each feasible route. This makes it interesting to
combine the formulation with a Column Generation procedure, as explained
in the methodology section.



3
Literature Review

We start our literature review with a revision on EMS systems and different
types of optimization problems arising therefrom. Next, we briefly bring up
general VRP problems that relate to our own. Lastly, we review previous works
using a Branch and Price(B&P) methodology.

Emergency Medical Services (EMS) Though the term EMS may apply
to a wide range of services and types of vehicles, the typical EMS system
consists of a fleet of ambulances, deployed with the objective of reaching
medical emergencies in a given area and providing adequate medical assistance
and/or transport to a hospital. Since EMS systems have a direct impact on
people’s lives and welfare, and also entail big investments and operational
costs from the public and private sectors, it is unsurprising that the theme
has been widely studied by researchers in the operational research(OR) field.
Furthermore, OR problems arising from the EMS field are varied, ranging
from planning to operational levels, and may have to account for high levels
of unpredictability in the form of stochastic demand. For a general overview
and discussion on EMS systems and their related OR problems, we refer to
[Reuter-Oppermann et al., 2017] and [Aringhieri et al., 2017]. Our work aims
to further research in the EMS field and contribute towards better management
of ambulance fleets. Even though our work solves a static routing problem, we
proceed by reviewing the more general literature on the subject.

Location and coverage problems Looking at previous studies, most early
works were dedicated to planning problems, aiming to distribute ambulances
amongst predetermined positions such that the best quality of service is pro-
vided or costs are minimized. Several authors have employed Markov-based
Hypercube models to estimate a system’s performance given these positions.
[Larson, 1974] propose a hypercube model enabling them to analytically com-
pute mean patient wait times, workload imbalances between vehicles, and other
performance measures from a set of vehicle positions. [De Souza et al., 2015]
extends the usual hyper-cube model to consider request priorities and request
queues, in a way that makes it possible to estimate mean wait times for each
priority class. They present a case study from the city of Ribeirão Preto, Brazil.
[Yoon and Albert, 2018] uses a hypercube model to study the impact of imple-
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menting a cutoff priority queue in an EMS system; that is, a vehicle busyness
threshold above which low-priority requests are queued or discarded entirely.
Another popular methodology for location problems is coverage-based models.
In these models, the service region is represented by a set of demand points that
must be ’covered’ by the ambulances in their designated waiting stations. That
is, the waiting station must be close enough to the demand point to be able to
arrive at it within a predetermined time. These models are similar to the well-
known Set Covering Problem. [Church and Davis, 1992] uses linear program-
ming to solve a Maximal Coverage Location problem, in which the objective
is to maximize the number of demand points within a S distance of an ambu-
lance, using a fixed number of ambulances. This, however, does not consider
that ambulances may already be busy when a call arrives. [Gendreau, 1997]
alleviate this by proposing a double coverage model, solved by tabu search.
Other authors such as [Daskin, 1983] have considered an estimated probabil-
ity q that an ambulance is busy, and use constraints requiring demand points
to be serviced with high probability. Lastly, [Gendreau et al., 2001] have pro-
posed computing one optimal positioning for each possible number of available
ambulances, and transitioning between these configurations dynamically, while
limiting repositioning movements. [Jagtenberg et al., 2017] incorporate cover-
age criteria for dispatching rules within a Markov Decision Process simulation
strategy. We refer to [Brotcorne et al., 2003] for a review on coverage models.

Dynamic Dispatching and Relocation models The present work, however,
concerns itself with evaluating operational decisions arising from the routine
operation of EMS systems. It becomes necessary to model ambulances and re-
quests individually, and, in fact, the problems studied will generally resemble
other problems from the more general literature on dynamic VRPs. In these
problems, current system status and open requests are available, but future
information is unavailable or is represented by stochastic parameters. Amongst
these problems, one of the most fundamental is the ambulance dispatch prob-
lem, which aims to select the best ambulance to send to one or more incoming
requests. Several systems will simply dispatch the closest available ambulance
to an incoming request. This policy is commonly referred to as the closest-
available or closest-idle policy [Aringhieri et al., 2017, p.15]. While the closest-
available policy is simple to implement and understand, more sophisticated
approaches have been studied to try and improve overall performance. For in-
stance, [Andersson and Värbrand, 2007] use a heuristic approach to choose the
most appropriate ambulance while also preserving maximum preparedness, a
value intended to reflect how well the system, in a given moment, is prepared to



Chapter 3. Literature Review 18

service one more request. [Bandara et al., 2014] propose a heuristic approach
that considers request priorities and maximizes expected patient survivability.
[Talarico et al., 2015] use MIP models to minimize the latest completion time
weighted by request priority. [Guigues et al., 2022] propose a stochastic two-
stage approach with a rolling horizon for dispatching ambulances while also
considering how dispatch decisions impact service in a set of future scenarios,
allowing for redirections and optimizing hospital choice.

Another related class of real-time problems is ambulance relocation prob-
lems, in which the optimal redistribution of ambulances across bases is searched
for, considering the current system state and expectation of future requests.
[Berman, 1981] evaluate the incorporation of relocation decisions in a hyper-
cube model. [Gendreau et al., 2006] provide a dynamic relocation strategy
maximizing expected covered demand, and solve it as an integer linear pro-
gram. [Andersson and Värbrand, 2007] also propose an integer linear problem
to solve a dynamic relocation model which aims to rebalance the distribution
of ambulances to raise preparedness above predefined levels across different re-
gions. [Guigues et al., 2022], besides their dispatch model, also define a similar
model for solving ambulance reassignment decisions. Dispatch and relocation
models may be combined in an integrated approach to enable the study of
system operations in full.

We take this opportunity to remind the reader that the present work does
not directly tackles a dynamic VRP, instead, we choose to provide an exact
method for optimally solving a static problem. An optimal solution for this
static problem may then be used for assessing the quality of solutions found
in the dynamic setting, or may even be used as part of a rolling horizon ap-
proach, or hybrid learning and optimization algorithm as in [Parmentier, 2022].
See [Ichoua et al., 2000] for summary of rolling horizon approaches, and the
aforementioned [Guigues et al., 2022] for an example on an EMS problem.

Similarities to general static VRPs Some works from the more general
static VRP literature are also worth briefly discussing here, as the present
work shares several traits with other VRPs. We refer to [Vidal et al., 2020]
for a general survey on VRP variants. Its objective function accumulates
when servicing consecutive requests, similar to the Time Dependent Traveling
Salesman Problem (TDTSP) studied in [Abeledo et al., 2013], the Cumula-
tive Capacitated Vehicle Routing Problem studied in [Ngueveu et al., 2010]
and [Damião et al., 2021] or the Traveling Repairman Problem studied



Chapter 3. Literature Review 19

in [Afrati et al., 1986]. [Abeledo et al., 2013] states that the TDTSP is
harder to solve than its non-cumulative TSP counterpart, suggesting that
our problem may also be more difficult than a non-cumulative ver-
sion of it. Our problem features visit selection / "prize-collecting" like
[Stenger et al., 2013], [Vidal et al., 2016] and [Bulhões et al., 2018]. It features
an heterogenous fleet of vehicles like [Homsi et al., 2020] and prioritized re-
quests like [Smith et al., 2009], in addition to compatibility constraints be-
tween requests and vehicles like [I-Ming et al., 1998] and [Homsi et al., 2020].
The release dates present in our problem can be understood as a time window
without an upper bound. The Vehicle Routing Problem with Time Windows
(VRPTW) has been surveyed in [Bräysy and Gendreau, 2005].

Regarding our problem, specified in Section 2. It is static and deterministic
since all requests are known beforehand and no stochastic information is
considered. I has a heterogeneous fleet since vehicles are sorted into different
types, and heterogenous demand since requests are sorted by type, and also
have an associated weight. It features prize-collecting / visit selection because
requests may not be serviced, in which case a penalty is incurred. We refer to
[Vidal et al., 2020] for more detailed explanations on these definitions.

Solution methods for VRPs Solution techniques for VRPs can in general
be divided into exact or heuristic/meta-heuristic approaches. The first group
is able to find provedly optimal solutions, and usually employ Mixed Integer
Linear Programming (MILP), while the second group trades certified optimal-
ity for smaller runtimes, and have more diverse methodologies. We’ll discuss
exclusively the first group since we use an exact MILP in the present work.
Our algorithm is built on the combination of a Set Partitioning MILP formu-
lation, a pricing procedure to produce new variables, and branch-and-bound
for finding integer solutions. Numerous VRP-related works have employed this
combination. [Desrosiers et al., 1984] apply it to a variation of the VRPTW
with the objetive of minimizing vehicle usage costs and travel costs; exper-
imental results based on school bus transportation problems are presented.
[Desrochers et al., 1992] has applied it to the VRPTW itself and tested against
benchmark instances. [Bulhões et al., 2018] apply the methodology to a VRP
with service levels and visit selection, while [Homsi et al., 2020] use it in a
ship routing problem featuring visit selection, vehicle to cargo compatibility
constraints and vehicle-dependent starting locations.
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[Pessoa et al., 2020] have developed a generic solver for VRPs using Branch-
Cut-and-Price called VRPSolver, and [Damião et al., 2021] have implemented
the Cumulative Capacitated Vehicle Routing Problem within this package.
Even though implementing the present problem with the VRPSolver package
was a promising starting point in our research, we could not model the
cumulative aspect of our objective function within this framework in its current
state. The approach used by [Damião et al., 2021] would not work because it
relies on the fact that customers have the same weight; furthermore, it depends
on reasonable estimates of the maximum number of customers serviced in a
single route.

B&P methods for VRPs often have an Elementary Shortest Path Problem
with Resource Constraints (ESPPRC) as the pricing subproblem, though
the ESPPRC, proven to be NP-Hard in [Dror, 1994], is often relaxed to a
Shortest Path Problem with Resource Constraints(SPPRC), where routes
need not be elementary. Such problems are usually solved with so called "la-
belling" algorithms using dynamic programming, which are often adaptations
of the Bellman-Ford algorithm. This is the case in [Desrosiers et al., 1984].
ESPPRC and SPPRC have also been studied in isolation, precisely because
of their importance for B&P methods, as in [Irnich and Villeneuve, 2006],
[Righini and Salani, 2008] and [Martinelli et al., 2014]. We refer the reader
to [Desrosiers and Lübbecke, 2005], [Lübbecke and Desrosiers, 2005] and
[Barnhart et al., 1998] for more general information on column generation
techniques.



4
Methodology

In the present chapter we discuss the combination of Column Generation
(CG) and branching that constitutes our solving methodology. This combina-
tion has been selected for the present work since it allows us to handle the
complexities of routing in this context, in particular non-antecipativity and a
cumulative route cost function, in a separate pricing subproblem. Other sorts
of MIP formulations, such as flow formulations, would need to handle those in
the MIP itself. This combination has already been successfully explored in the
VRP literature, as discussed in Section 3, and is usually referred to as Branch
and Price (B&P). A B&P methodology.

First, consider the SP formulation. As previously stated, solving it directly
would mean solving a LP with a number of variables exponential on the number
of requests, and this would be intractable for realistic purposes. However,
not all variables are in fact needed; in an optimal solution, most σ variables
would have value 0, since there are many more feasible routes than there are
requests, and a route services multiple requests at once. Knowing that, we
may instead solve the LP with a subset Ω of these variables; this smaller LP is
called the restricted master problem (RMP) [Desrosiers and Lübbecke, 2005].
Solving the RMP will result in a linearly relaxed solution, from which dual
values for each constraint are obtained. This information may in turn be used
to search for variables, not already in Ω, with negative reduced costs. From
LP theory, if these variables exist, they may be added to Ω and will allow for
an improvement of the objective value upon re-optimization of the RMP. If
they do not exist, then the relaxed solution is proved optimal. Finding these
variables, or proving they do not exist, is done in a pricing sub-problem, which
has the dual values and all of the graph information of the problem as input.
In fact, since each variable corresponds to a feasible route, the pricing sub-
problem is routing problem over the graph. This solution approach is known
as Column Generation (CG) because each new variable corresponds to a new
column in the LP matrix.

Once the CG is unable to find new routes, we have obtained an optimal re-
laxed solution to the RMP. This solution possibly contains fractional variables.
If such variables exist, a branch-and-bound procedure is started in which the
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LP search space is split into two distinct cases or child nodes. In the first one,
the sum of some subset of variables is constrained to 0; in the second one, to
1. The optimal integer solution must fall in one of these cases, thus the algo-
rithm is reapplied recursively to each node and the best solution among them
is chosen. Though this may appear excessively costly due to the exponential
nature of exploring the search space in this fashion, a known lower bound of
the solution may be used to eliminate many nodes without exploring them
fully. Thus, the approach is called branch-and-bound.

The previous paragraphs have tried to conceptually explain the B&P
methodology, but an extended discussion of it, contemplating its actual im-
plementation, is not the subject of this work. Most of the B&P implementa-
tion is in fact handled by the SCIP framework (see [Gamrath et al., 2020]).
Instead, we focus only on the problem-specific components which we have im-
plemented. First, we discuss the structure of the negative reduced cost routes
in this problem. Then, the pricing algorithm used to construct these routes.
Next we present the branching rules used, and lastly some remarks are made
about integrating these steps into a complete B&P algorithm.

4.1
Negative Reduced Cost Routes, Labels, and Label Expansions

In order to efficiently search for these new columns in the solution space let
us consider the reduced cost of a route σ for a given basis. Let αk and βi be
the dual variables associated with Constraints (2-3a) and (2-3b) respectively.
The reduced cost c̄σ of variable λσ associated with route σ of vehicle k can be
expressed as:

c̄σ = cσ − αk −
∑
i∈P

aσiβi (4-1)

From this equation a direct relationship between c̄σ and σ can be inferred.
In fact, one can easily compute c̄σ by iterating over every request i ∈ σ. One
should simply sum up each −βi, use the arrival times at requests to compute
cσ as per Equation 2-1 and lastly subtract αk. Also important is the fact that
adding a new request j to the end of a route only changes its reduced cost in a
known manner; it suffices to subtract βj and then add in the lateness incurred
in this new request. This enables us to construct longer routes by repeatedly
expanding smaller ones. We’ll now define labels for representing routes and
define expansion rules between labels, which will later be used in the pricing
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algorithm.

We start by defining a label L. A label L = (v(L), c̄(L), t(L)) contains
respectively the last vertex in the route, the reduced cost up to and including
v(L), and the arrival time at v(L). An initial label Lk for vehicle k will be
constructed simply as

Lk =
(
0k,−αk, µk

)
(4-2)

Two cases are possible when expanding a label L. The first is extending L
to a request vertex, and the second is expanding to a waiting station vertex.
Expanding to initial positions is not needed since they must appear only at
the beginning of routes, and expanding to destinations is done implicitly when
expanding to requests. For simplicity, labels whose v(L) are requests are called
request labels and labels whose v(L) are waiting stations are called waiting
station labels. That said, let us consider the three possible expansion cases:
request label to waiting station vertex, request label to request vertex, and
waiting label to request vertex. For expansions, initial labels are treated exactly
as request labels.

Expanding a request label Li = (i, c̄, t) of vehicle k to another request j is
permitted under the conditions (let f = t+si + ti,i+n be the time when vehicle
is ready to leave destination vertex i + n):

– Ik
j = 1, ie. vehicle k is compatible with request j

– f ≥ τj, ie. expansion does not violate non-antecipativity

– f + ti+n,j ≤ T , ie. j is reached within the time horizon T

And the expanded label Lj is:

Lj = (j, c̄ + wj · (f + ti+n,j − τj)− βj, f + ti+n,j) (4-3)

Additionally, the option to consider vehicle redirection from a waiting station
to a request has been implemented, and it affects the above request-to-
request expansion. The idea is to allow vehicles to change their course from
a waiting station to an incoming request, before arriving at said waiting
station. It may thus arrive sooner at the request. In order to do this, we
must also consider requests happening between f and f + ti+n,w, where w

is the appropriate waiting station dependant on rerouting rules. Thus, we
replace the second condition above to f + ti+n,w ≥ τj. Whenever redirection
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is performed, additional movement computations are performed on-the-fly,
computing geodesic distances from i + n to an intermediate point and then
further to j.

Expanding the same request label to a waiting station w is permitted under
the condition that f + ti+n,w ≤ T , ie. w is reached within the time horizon T .
The expanded label Lw is:

Lw = (w, c̄, f + ti+n,w) (4-4)

Lastly, expanding a waiting station label Lw = (w, c̄, t) to a request i is
allowed under condition t + tw,i ≤ T , and the new label i:

Li = (i, c̄ + wi · (max(t, τi) + tw,i − τi)− βi, max(t, τi) + tw,i) (4-5)

Expansions between waiting stations are not allowed in this problem setting.
Thus the three expansions above are enough to cover all possible expansion
cases. In each case, route feasibility is guaranteed by the necessary precondi-
tions. In particular, non-antecipativity is guaranteed by only allowing waiting
when expanding out of waiting station labels; notice the max term in Equation
(4-5).

Also of note is that the request to waiting station expansion in (4-4) assumes
that the waiting station w is chosen before-hand. The default behaviour is that
the waiting station closest to t(σ) + n is chosen. This policy is named Closest
Waiting Station. Another possibility often used in practice is that ambulances
always return to their "home base". We refer to this policy as Fixed Waiting
Station. Additionally, it is simple to explore different waiting station choices in
the context of this pricing algorithm. One can simply perform one expansion
for each feasible waiting station. We name this policy Free Waiting Station and
remark that it will be later used to assess the possible impact of ambulance
reassignment decisions.

Lastly, let it be noted that every label is associated with a feasible route,
unlike other dynamic pricing procedures which have additional criteria for
closing routes from existing labels. Here, every route is implicitly closed.
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4.2
Label Expanding Algorithm

Having defined the labels and expansions rules, we now define an algorithm
able to find the routes with negative reduced costs defined above, if any
exist, given the problem data, a vehicle k and the dual values α and β. If no
viable routes with negative reduced costs exist, the algorithm is able to detect
this and report it. We use a simple label expanding algorithm, adapted from
the Bellman-Ford algorithm, in which, starting from small routes, successive
expansions are made to construct larger routes, until no more expansions are
possible. Multiple labels are kept per vertex, however, dominance checks are
performed to discard unnecessary ones.

A simple dominance rule would be that label l1 = (i, c̄1, t1) dominates
l2 = (i, c̄2, t2) if c̄1 ≤ c̄2 and t1 ≤ t2. This is the rule used for waiting station
labels. However, because of the non-antecipativity constraint, it is possible
that, with request labels, l2 would still generate routes better than l1’s for
some expansions. Thus, we’ve chosen to use a partial enumeration procedure to
complement the simpler rule. We test possible expansions to requests arriving
between times t1 and t2, and if any of l2’s expansions beat l1’s then l2 isn’t
dominated; othewise, it is. Though this procedure is costly, we’ve found that
it manages to significantly reduce computation times while maintaining routes
that would be ignored by the simpler dominance rule.

Once no new expansions are possible, the n request labels with the best
negative reduced cost are selected. If no labels with negative reduced cost
exists, the algorithm returns fail. Waiting station labels are not returned
since, by construction, there must exist an equivalent request label with the
same reduced cost and coverage. Reconstructing routes from labels is done by
iterating backward, given that each non-initial label stores the label from which
it originated. The pseudo-code for this procedure is presented in Algorithm 1.

This algorithm is exact in the sense that it always finds the best routes if
any exist. This is understood more easily by considering the same algorithm
without dominance checks. If this were the case, every feasible route possible
would be constructed, including of course the n best that would be returned. It
suffices then to realize that dominance checks do not eliminate the best labels,
because they can’t be dominated by any other labels. Likewise, none of their
partial routes can be dominated either, because it would then be possible to
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Algorithm 1: Label expansion Pricing Algorithm
Data: vector P of requests, vehicle k with starting position 0k,

number n of desired routes, Dual values α and β
Result: n best routes found or FAIL

1 Initialize L[|P |+ |W |][] a vector of binary search trees of labels ;
2 success← True ;
3 while success do
4 success← False ;
5 for i in P ∪W do
6 label← next unexpanded label in L[i] ;
7 if not label continue ;
8 for j in P ∪W st. j ̸= i do
9 l′ ← LabelExpansion(l, j, βj) ;

10 if expansion successful and l′ isn’t dominated by any label
in L[j] then

11 insert l′ in L[j] ;
12 remove any dominated labels from L[j] ;
13 success← True ;

14 Select n best request labels. If any of them have a negative reduced
cost, reconstruct their associated routes and return them

construct routes that dominate the best routes. However, it should be noted
that this algorithm may generate routes with cycles. These repetitions will be
eliminated with the convergence of the B&P tree towards the optimal solution,
and they do not cause the pricing algorithm to loop infinitely because routes
are limited by the time horizon.

A heuristic version of the same algorithm has also been implemented, in
which, at each expansion step for request i, only the label with the largest
negative reduced cost is expanded. The goal is to have a faster running version
of the pricing algorithm, giving up on exactness. A similar approach is used
on [Homsi et al., 2020]. The usage of this heuristic pricing in the final B&P is
explained in Section 4.4.

4.3
Branch and Price

Given that integer solutions for the problem are desired, a branching
procedure is required. We use a total of three branching rules. When branching
is required, the algorithm selects which rule to apply based on ’most-fractional’
rule. That is, the rule whose sum of variables is closest to 0.5 is selected. Then,
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new constraints are created in the MIP that restrict the sum to either 0 or 1.
The first one of these rules performs branching by detecting fractional usage
of vehicles and constraining a vehicle to be either fully used or unused. The
second rule detects fractional usage of edges and constrains an edge to be either
fully used or not used. The third rule simply restricts a single y variable to 0
or 1. We explain these rules in further detail as follows. All branching rules
may cause LP infeasibility at certain nodes. Whenever this happens, a Farkas
Pricing method is used to construct new routes that will restore feasibility at
that node [Gamrath, 2010, p. 49]. The Farkas pricing method is identical to the
usual pricing method used, however it uses Farkas values for each constraint,
instead of the usual dual values.

4.3.1
Branching on Vehicles

Branching on vehicles may be applied when, for any k ∈ K, ∑
σ∈Ωk λσ is

fractional. If this rule is applied, two child nodes are created; the first one has
branching constraint ∑

σ∈Ω̄k λσ = 0, the second one ∑
σ∈Ωk λσ = 1. There are

some precautions that need to be taken when using this branching rule. First,
when creating the new child nodes, every existing λ variable associated with
σ must be added to the respective branching constraint. Secondly, each future
priced variable associated with σ must likewise be added to the constraint.
Lastly, the dual values of these new constraints must be considered during
pricing. Fortunately, this can be done without changing the pricing algorithm
itself, as it suffices to tweak each αk value used by adding to it the dual value
of the respective branching constraint.

4.3.2
Branching on Edges

The second branching rule branches on implicit request-request edges, that
is, a pair of requests serviced sequentially. Let eσ

ij = 1 if requests i and j are
serviced sequentially in route σ; that is, i directly follows j or vice-versa, while
ignoring waiting stations and redirections. If this is not the case, eσ

ij = 0. Now
consider Equation (4-6). µij represents the total usage of edge (i−j) in a given
solution. µij may be fractional only if at least one route σ that uses (i − j)
has fractional λσ. Whenever µij is fractional for any i, j ∈ P , we may choose
to apply this branching rule, creating two child nodes. To the first one the
constraint µij = 0 is added, and µij = 1 to the second one. This means usage of
edge (i−j) is forbidden or required respectively. Once again, some precautions
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must be taken. Already existing variables must be considered when creating
the new constraints, and so do any variables created futurely. Additionally,
once again, the dual values of branching constraints must be considered when
pricing is performed. In order to do this, let us consider constraints µij = 0 and
µij = 1 separately. When µij = 0, edge (i− j) is forbidden and all new priced
routes must not use it, otherwise, they’d be unused at the current MIP node.
Thus, we may simply ignore edge (i− j) in the pricing algorithm. As a result,
newly priced variables will not be associated with the branching constraint and
are unaffected by its dual value. If µij = 1, whenever the pricing algorithm uses
an edge (i− j) that has an edge constraint associated with it, the constraint’s
dual value is subtracted from the reduced cost obtained.

µij =
∑
σ∈Ω

eσ
ijλσ (4-6)

4.3.3
Branching on y variables

If fractional y variables are obtained in a relaxation, we may simply create
two branches with y fixed to 0 or 1. Branching does not affect the duals of the
linear program, however, it does affect the pricing algorithm. When pricing
routes at a child node, any request i whose variable yi has been fixed to 1 is
ignored since any route servicing i is guaranteed to not be used in the solution
due to Constraint (2-3b). Constraining a y variable to 0 has no effect on the
pricing algorithm.

4.4
Complete Algorithm

Finally, we present a complete description of the B&P algorithm. This closely
follows the typical B&P algorithm, however, we have to account for some
problem specifics. First, though this isn’t strictly necessary, we have chosen
to construct initial columns using routes obtained from a heuristic. This helps
ensure that the MILP model is feasible at the root node and accelerates the
algorithm. Secondly, both pricing approaches are used ie. the usual reduced
cost pricing and Farkas pricing.

Since each vehicle imposes a different pricing subproblem, the pricing
algorithm must be run separately for each one. One could simply run the
pricing algorithm for every vehicle every time pricing is performed. However,
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we determined experimentally that it is better to repeatedly price the last
vehicle for which routes have been found, and reoptimize the MILP. This is
justified because reoptimization is cheap compared to pricing, and enables us
to use dual values that are more up-to-date. Once the pricing algorithm fails to
find new columns for the current vehicle, the next vehicle is priced, looping back
to the first if needed. Pricing fails entirely when no vehicle yields new routes.
This is repeated at every node in the B&P tree, however, at the root node, we
start by using the heuristic pricing algorithm, and switch to the usual exact
pricing only once the heuristic version failed for all requests. Restricting the
usage of heuristic pricing to the root node has been experimentally determined
to be better than applying it at every B&P node.

Additionally, notice the usage of NbDesiredRoutes to determine the max-
imum number of columns added each time the pricing algorithm is run. This
meta-parameter does not affect the objective value of solutions, but may af-
fect the speed at which solutions are found. A value too small will mean good
columns are wasted and convergence will happen slowly; too big and an ex-
cessive amount of superfluous columns will be added, slowing the algorithm
down. We have used a value of 10 in our experiments.

Algorithm 2 presents a simplified version of the B&P algorithm focusing on
the components that were implemented by us in the scope of this project. Other
crucial components such as construction of the branching tree, node selection,
managing LP solvers, tree pruning and variable aging/cleanup are handled by
the SCIP Optimization suite version 7.0.3, and have thus been omitted here.
For more details on SCIP’s implementation, we refer to [Gamrath et al., 2020]
and [Achterberg, 2009].

4.5
Variations in routing rules

Lastly, we summarize the rules variations mentioned throughout this section.
Each one of the bullet points below represent independent options, that may
combined in any way.

1. Closest Waiting Station vs Fixed Waiting Station vs Free Waiting Station
- These options refer to the way in which ambulances are reassigned
after finishing their service of a request. If Closest Waiting Station is
used, the algorithm must send ambulances back to the closest waiting
station. If Fixed Waiting Station is used, individual ambulances always



Chapter 4. Methodology 30

Algorithm 2: Complete B&P
Data: complete problem data

1 Construct initial solution using the best myopic heuristic
2 Construct Set Partioning MILP model using initial solution
3 LastSuccesfullyPricedV ehicle← 0
4 while Open Nodes Exist do
5 Select an open tree node node
6 Solve a linear relaxation of the MILP problem in node.
7 if feasible solution found then
8 Set α, β to the dual values of solution found
9 else

10 Set α, β to the Farkas values of the linear relaxation
11 for i = 0..|K| do
12 k ← (LastSuccesfullyPricedV ehicle + i)%|K|
13 routes← PricingAlgorithm(k, NbDesiredRoutes, α, β)
14 if Pricing sucessfull then
15 create a new column for each route in routes
16 LastSuccesfullyPricedV ehicle← k
17 break

18 if new routes were added then
19 continue with next iteration
20 else if solution found is not integer then
21 select most fractional branching rule and apply it

return to the same waiting station, referred to as their "home-base". If
Free Waiting Station is used, the waiting station resulting in the fastest
arrival to the next request is selected.

2. Redirection - If redirection is allowed, an ambulance is allowed to change
its course midway from a waiting station to an incoming request. If
redirection isn’t allowed, the ambulance must arrive at the waiting
station first before being deployed again. This option changes some
criteria for route expansion and, subsequently, may use a redirect value
computed on demand, based on geodesic distances from an intermediate
point.



5
Experimental Results

For the following results, we consider the implementation made available
at GitHub (https://github.com/amk1710/StaticAmbulanceVRP). It was made
using C++, double precision floating point arithmetic, and compiled using
GCC 9.3.0; it uses the SCIP optimization suite version 7.0.3 with the lin-
ear optimizer SoPlex 5.0.2. SCIP is an open-source, non-comercial solver for
MIP problems developed at the Zuse Institut Berlin, Berlin, Germany (see
[Gamrath et al., 2020] and [Achterberg, 2009]). We ran our tests on the Gra-
ham cluster located at the University of Waterloo, Ontario, Canada. Graham
is part of Canada’s national Advanced Research Computing infrastructure and
is currently maintained by the Digital Research Alliance of Canada. Graham
is an heterogeneous cluster with different types of CPU cores, which means
we cannot precisely determine in which CPU each run of our algorithm has
been processed. However, differences in performance between different cores
are expected to be small. See the appendix for a list of the CPU cores used.

The instances used here have been generated using data from the SAMU
public system of Rio de Janeiro, Brazil. This is the same system underlying the
case study in [Guigues et al., 2022]. This system has three types of ambulances,
called basic, intermediate and advanced; and requests are sorted into 3 types
with the same names. A request may be serviced by any ambulance with
an equivalent type or better. That is, basic requests may be serviced by any
ambulance, intermediate requests may be serviced by intermediate or advanced
ambulances, and advanced requests must be serviced by advanced ambulances.
These compatibility constraints may be trivially translated into the matricial
format used in our formulation. A request i’s given priority wi is derived from
its type. The values are 1, 2 and 4 for basic, intermediate and advanced requests
respectively. Requests have been sampled from Poisson distributions calibrated
using real call data from the city. The service time si is set to 40 minutes for
all requests, where 20 minutes are assumed to be used on pick-up procedures
on location, and 20 minutes on drop-off procedures at a hospital. Instances
have been generated with a combination of 4 time horizons and 3 differently
sized study regions within the city. 10 instances have been generated for each
combination, totalling 120 instances. The size of the time horizons are 2, 4, 6,
and 8 hours, centered around Friday 19:00; that is, the 2 hour time horizon is
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set to Friday from 18:00 to 20:00, while the 8 hour time horizon is set to Friday
from 15:00 to 23:00. These intervals have been selected because they contain
the busiest periods for this particular system. The study regions considered
are built using 11, 38 or 76 sub-regions of the city, out of a total of 76. This is
done in such a way that smaller study regions are fully contained within larger
study regions. The study regions will be referred to as Small (S), Medium (M)
and Large (L) respectively. The smallest instance has 9 requests, while the
larger one has 157. Requests are always directed to the nearest hospital. Real
locations of hospitals and ambulance bases are used, totalling 10 hospital and
34 ambulance bases, however, only hospitals and bases inside of each study
region are considered. As a result, small, medium and large sized regions use
12, 25 and 34 bases respectively. At each ambulance base, one ambulance is
initially stationed. Ambulances are distributed as equally as possible between
the three types. Travel times are calculated using geodesic distances and an
ambulance speed of 60 km/h.

The sub-regions used to construct the study regions have been obtained by
intersecting the city’s boundaries with a 10X10 grid of rectangles contained
within its bounding box, and then discarding the rectangles without any
overlap. For each resulting sub-region a λ value has been calculated for each
combination of week-day, half-hour period and request priority. An overview
of the resulting values is shown in Figure 5.1.

Figure 5.1: Heatmap of mean λ Poisson values for the 76 subregions in the
study. Darker tones indicate larger values
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We remind the reader that the objective of the present work is limited
to developing and evaluating a solution methodology for a static ambulance
routing problem. We’d like to stress that the current experiments are designed
to validate our methodology and to assess its suitability for future extension
to more robust studies and applications considering dynamic requests. The
results presented here should not be interpreted as representative of the real
conditions of the SAMU system of the city of Rio de Janeiro, and they should
not, under any circumstances, be taken as validation for policy changes in the
real world.

5.1
Convergence and Performance Considerations

First, we’d like to present experiments showing how well the method is able
to find solutions for the proposed problem. That is, how often does the method
find optimal solutions, and how long does the solving process take. Out of the
120 RJ instances described above, 115 have been successfully solved within the
2 hours time limit set, when considering the default MIP run. The 5 unsolved
instances all belong to the t8_L group. For more details, refer to Table 7.1
in the appendix; unsolved instances have been marked with an ’*’. For every
table in this section, the column Obj Value and Penalty show the mean total
objective cost and mean objective cost from non-service penalties respectively.
Nb Routes shows the mean number of routes in solutions. Not Serviced or Not
S. shows the mean number of requests left unattended. RT shows the mean
response time over all serviced requests, in minutes, and Weighted RT or WRT
shows the mean response time weighted by request priority. Table 5.1 shows
aggregated results for the 115 solved instances, grouped by time horizon and
region size; Group t8_L has been marked with an ’*’ as a reminder that some
of its instances were unsolved and thus excluded from this comparison. Column
Runtime(s) shows the mean runtime in seconds spent running the method. Nb
Vars is the mean number of variables created for instances in the group, while
Nb Nodes is the mean number of nodes. Lastly, Reqs/Routes shows the mean
ratio of requests to routes. Correlations are easily found between increases in
the size of the time horizon and of the study region to increases in runtime and
number of variables. This is further explored in Figure 5.2. It shows runtime
results for the RJ instances on the y axis, against other metrics on the x axis.
Each dot represents an instance, with blue and red dots representing solved
and unsolved instances respectively.
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Overall, the method has successfully obtained results for most instances
within our time horizon and region size specifications. Larger time horizons
and regions have proven more challenging to solve; smaller instances are solved
within fractions of a second, while some larger ones were unsolved after 2 hours.
It is worth noting that, across all instances, the runtime of the pricing algorithm
is responsible for 99.7% of total runtime.
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Table 5.2: Aggregated results for 109 instances solved to optimality with
variations

Obj. Value Penalty RT(m) Weighted RT
Online Closest Avail 2171.95 1102.82 6.27 19.31
Offline Mip 1202.74 465.55 4.99 13.31
Mip w fixed station 1429.29 603.14 5.36 14.92
Mip w Opt Reass 846.19 440.72 2.67 7.32
Mip w Redirection 1201.85 465.55 4.98 13.30
Mip w Opt Reass and Red 789.77 412.78 2.43 6.81

5.2
Comparing rules variations and online heuristics

So far we have shown results only for the default MIP procedure. We
now compare how online heuristics and other MIP variants perform. See
Section 4.5 for a description of variations. In Table 5.2 aggregated results
for 109 RJ instances and six solving variations are presented. Eleven instances
have not been optimally solved for every variation and have been excluded.
In Table 5.3 the same results are presented, but segregated by size of the
time horizon. For assessing the value of perfect information on dispatch
decisions, one should compare the Offline MIP, which obtains an optimal
solution using complete information over all requests, to the Online Closest
Available heuristic, in which the closest available vehicle is always dispatched
to a request [Aringhieri et al., 2017, p.15]. This comparison indeed shows an
improvement of 31% on the mean weighted wait time and 20% on the mean
wait time. In turn, measuring the improvement obtained in the reassignment
decisions should be done by comparing how the variations to the reassignment
behaviour affects the objective metrics. The simple Offline MIP, which uses the
closest waiting station rule, has a weighted response time about 10% smaller
than the fixed waiting station rule. A larger improvement is obtained when
incorporating total freedom in reassignment decisions, that is, when using the
Free Waiting Station variation. This yields a large improvement of 45% on the
weighted RT when compared to the default MIP, and 51% when compared
to the fixed waiting station rule. While incorporating rerouting from waiting
stations to requests into the simple offline approach only produced a negligible
improvement, using both rerouting and Free Waiting Station simultaneously
yielded the best overall result.
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5.3
Sensitivity tests on the number of vehicles used

We now present sensitivity tests varying the number of vehicles available in
the system. For this test, instance groups t2_L and t6_M have been selected,
in order to showcase the two principal considerations from this test. When
varying the number of vehicles, vehicles are distributed sequentially across all
bases in the study region. The instances are otherwise unchanged. Figure 5.3
shows a boxplot of the mean objective value with a varying number of vehicles
for instance set t2_L. As expected, the value decreases with an increase in
the number of vehicles. Still, one can see that the improvement provided by
additional vehicles diminishes when more vehicles are available, and that this
improvement is quite small after 30 vehicles. This is justified by the fact that
the instance set has only 33 requests per instance on average. The second
consideration to this test is the fact that using fewer vehicles has a strong
impact on the method’s runtime, as fewer vehicles means a more challenging
instance with more requests per route on average. This is shown in Figure 5.4,
where red dots indicate that some instances in the group weren’t solved to
optimality within two hours.
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Figure 5.3: Solution cost with varying number of vehicles for instance set t2_L
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Figure 5.4: Runtime with varying number of vehicles for instance set t6_M



6
Conclusing Remarks

In this work, we have considered a static ambulance routing problem and
developed a Set Partioning-based B&P methodology to obtain exact solutions
for it. We tested our method on a number of differently sized instances
constructed from data obtained from the city of Rio de Janeiro, Brazil. Our
tests show that the method can successfully solve smaller instances in runtimes
sufficiently small to enable its usage in real-time applications. Larger instances
proved more challenging, but most could still be solved optimally within two
hours. Stress situations, when the number of requests is excessively larger than
the number of ambulances, have proved challenging even with medium-sized
instances.

There are multiple possible venues of future research. It would be in-
teresting to further enhance the method with speed-up techniques, par-
ticularly in the pricing algorithm, such as with 2 and 3-cycle elimi-
nations ([Irnich and Villeneuve, 2006]), ng-routes and Decremental State-
space relaxation as in [Righini and Salani, 2008], [Desaulniers et al., 2002] and
[Martinelli et al., 2014]), and possibly some subproblem aggregation strategy
for exploiting similarities between pricing runs with different vehicles and dual
values. Another important research venue is developing an online algorithm
using this offline approach as a subprocedure. This is possible, for example, by
using a rolling horizon as in [Guigues et al., 2022], or using a hybrid learning
and optimization algorithm as in [Parmentier, 2022]. Lastly, one could study
the incorporation of resources with a cumulative property into the generic
solver developed by [Pessoa et al., 2020], which would hopefully enable it to
solve this problem as well as other TDTSP-like VRPs.
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7
Appendix

7.1
Nomenclature Reference Table

Set of Request vertices P

Set of Destination vertices D

Set of Waiting Station vertices W

Travel time between vertices i and j dij

Release time of request i τi

Service time of request i si

Required cleaning time of request i li

Lateness weight of request i wi

Non-service penalty of request i ρi

Set of vehicles K

Starting position of vehicle k 0k

Time when vehicle k is first available AVk

Compatibility boolean between request i and vehicle k Ik
i

Time horizon T

7.2

Full table of results of MIP for RJ instances

Table 7.1: Results for 120 RJ instances

Instance Obj. Value Runtime(s) Nb Nodes Nb Vars

RJ_t2_S-0-12 245.15 0.02 1 85
RJ_t2_S-1-16 706.71 0.02 1 92
RJ_t2_S-2-13 181.03 0.01 1 53
RJ_t2_S-3-18 408.02 0.02 1 147
RJ_t2_S-4-11 218.22 0.01 1 64
RJ_t2_S-5-14 884.27 0.01 1 80
RJ_t2_S-6-13 103.88 0.02 1 71
RJ_t2_S-7-9 54.83 0.01 1 34

Continued on next page
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Table 7.1: Results for 120 RJ instances

Instance Obj. Value Runtime(s) Nb Nodes Nb Vars

RJ_t2_S-8-18 2044.87 0.02 1 107
RJ_t2_S-9-15 162.19 0.02 1 154
RJ_t2_M-0-21 476.21 0.02 1 84
RJ_t2_M-1-19 217.65 0.02 1 121
RJ_t2_M-2-20 224.46 0.03 1 177
RJ_t2_M-3-22 214.24 0.02 1 117
RJ_t2_M-4-16 213.11 0.01 1 112
RJ_t2_M-5-15 90.65 0.02 1 112
RJ_t2_M-6-19 301.28 0.02 1 179
RJ_t2_M-7-25 144.39 0.03 1 121
RJ_t2_M-8-23 243.61 0.03 1 121
RJ_t2_M-9-13 227.52 0.01 1 28
RJ_t2_L-0-30 927.79 0.07 5 154
RJ_t2_L-1-33 398.65 0.04 1 196
RJ_t2_L-2-31 899.39 0.04 1 319
RJ_t2_L-3-25 705.50 0.02 1 106
RJ_t2_L-4-28 601.93 0.03 1 178
RJ_t2_L-5-36 673.64 0.06 1 238
RJ_t2_L-6-37 633.79 0.08 1 419
RJ_t2_L-7-41 1010.33 0.05 1 342
RJ_t2_L-8-40 844.74 0.07 1 377
RJ_t2_L-9-31 1450.59 0.03 1 217
RJ_t4_S-0-28 701.00 0.06 1 373
RJ_t4_S-1-32 2265.17 0.16 1 452
RJ_t4_S-2-22 1586.63 0.02 1 223
RJ_t4_S-3-23 293.68 0.06 1 377
RJ_t4_S-4-29 536.21 0.08 1 443
RJ_t4_S-5-25 1186.73 0.06 1 407
RJ_t4_S-6-25 1727.29 0.15 1 442
RJ_t4_S-7-21 1144.96 0.02 1 149
RJ_t4_S-8-19 771.44 0.07 1 369
RJ_t4_S-9-26 2720.42 0.19 1 400
RJ_t4_M-0-51 527.95 0.54 5 934
RJ_t4_M-1-46 417.78 0.18 1 617

Continued on next page
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Table 7.1: Results for 120 RJ instances

Instance Obj. Value Runtime(s) Nb Nodes Nb Vars

RJ_t4_M-2-40 1156.42 0.10 1 331
RJ_t4_M-3-43 401.03 0.29 5 809
RJ_t4_M-4-37 665.51 0.11 1 535
RJ_t4_M-5-52 877.43 0.36 3 891
RJ_t4_M-6-45 559.71 0.74 17 766
RJ_t4_M-7-53 607.24 1.42 1 1325
RJ_t4_M-8-49 1310.54 0.23 1 725
RJ_t4_M-9-46 1682.19 0.43 3 645
RJ_t4_L-0-63 826.59 1.26 1 1217
RJ_t4_L-1-56 1507.74 0.24 1 721
RJ_t4_L-2-64 1339.38 0.64 1 971
RJ_t4_L-3-69 790.23 2.43 33 1352
RJ_t4_L-4-80 1908.04 1.78 1 1515
RJ_t4_L-5-58 976.42 0.36 1 820
RJ_t4_L-6-77 1161.88 1.14 1 1478
RJ_t4_L-7-84 2339.88 1.95 1 1677
RJ_t4_L-8-68 1074.96 0.89 3 1122
RJ_t4_L-9-46 528.90 0.12 1 548
RJ_t6_S-0-48 1435.06 72.47 1 1673
RJ_t6_S-1-34 1683.86 0.09 1 474
RJ_t6_S-2-42 517.24 1.40 3 1488
RJ_t6_S-3-35 1667.95 0.10 1 529
RJ_t6_S-4-33 380.65 0.26 1 707
RJ_t6_S-5-33 1381.74 5.25 1 1093
RJ_t6_S-6-34 823.89 0.78 1 956
RJ_t6_S-7-47 1898.71 143.22 1 1623
RJ_t6_S-8-40 361.13 0.35 1 830
RJ_t6_S-9-41 466.61 0.99 5 1249
RJ_t6_M-0-71 683.56 3.51 5 1777
RJ_t6_M-1-92 2914.35 104.33 1 4140
RJ_t6_M-2-60 432.27 26.65 1 3352
RJ_t6_M-3-68 647.87 2.08 1 1480
RJ_t6_M-4-68 799.18 28.63 1 2711
RJ_t6_M-5-74 1279.05 2.57 1 1812

Continued on next page
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Table 7.1: Results for 120 RJ instances

Instance Obj. Value Runtime(s) Nb Nodes Nb Vars

RJ_t6_M-6-70 631.77 7.49 1 2374
RJ_t6_M-7-80 632.08 6.42 3 2304
RJ_t6_M-8-79 909.74 8.49 1 2320
RJ_t6_M-9-75 1325.26 171.32 63 2684
RJ_t6_L-0-91 2270.62 41.13 1 3532
RJ_t6_L-1-83 1310.82 13.97 1 2389
RJ_t6_L-2-99 1259.29 163.79 1 3711
RJ_t6_L-3-97 1606.87 37.88 1 3566
RJ_t6_L-4-102 1217.76 7.92 1 2661
RJ_t6_L-5-76 924.34 11.34 23 2535
RJ_t6_L-6-73 2137.93 3.34 3 1724
RJ_t6_L-7-92 2635.33 7.53 1 2384
RJ_t6_L-8-89 1237.87 9.87 16 2144
RJ_t6_L-9-89 2625.23 98.75 7 2714
RJ_t8_S-0-56 1185.87 211.35 1 5487
RJ_t8_S-1-60 1240.52 197.47 1 4539
RJ_t8_S-2-43 413.29 3.62 1 1390
RJ_t8_S-3-43 2293.39 0.61 1 1218
RJ_t8_S-4-49 1161.06 2.27 1 1229
RJ_t8_S-5-48 482.02 2.12 1 1474
RJ_t8_S-6-50 513.00 11.24 1 2074
RJ_t8_S-7-61 4732.70 301.02 5 3462
RJ_t8_S-8-60 944.12 11.50 1 2280
RJ_t8_S-9-56 1001.64 112.69 17 3555
RJ_t8_M-0-99 2847.99 95.11 13 3860
RJ_t8_M-1-101 1340.42 616.83 2 7956
RJ_t8_M-2-93 1401.99 26.47 1 2769
RJ_t8_M-3-98 3369.44 373.03 35 4950
RJ_t8_M-4-103 991.87 2514.97 3 6887
RJ_t8_M-5-102 4752.75 3511.36 8 7793
RJ_t8_M-6-94 866.12 4679.74 7 8808
RJ_t8_M-7-83 1437.80 38.34 1 4196
RJ_t8_M-8-79 606.95 10.67 9 2071
RJ_t8_M-9-98 1515.90 4855.79 1 9338

Continued on next page
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Table 7.1: Results for 120 RJ instances

Instance Obj. Value Runtime(s) Nb Nodes Nb Vars

RJ_t8_L-0-107 1733.42 940.10 1 7314
RJ_t8_L-1-157* 8411.99 7221.95 1 4096
RJ_t8_L-2-140 4124.83 6508.09 125 10454
RJ_t8_L-3-147* 9627.78 7198.67 1 810
RJ_t8_L-4-133* 4831.55 7203.93 1 5050
RJ_t8_L-5-125 3099.14 363.20 1 5932
RJ_t8_L-6-120 3790.21 1092.60 1 8210
RJ_t8_L-7-136 3289.61 534.62 3 10115
RJ_t8_L-8-133* 6583.33 7198.43 1 2648
RJ_t8_L-9-127* 2482.76 7040.82 33 10443

7.3
Graham CPU Characteristics

The following list shows the different types of CPUs available on the Graham
cluster, used to run the experiments, as of 11/2022. This information was
obtained from Graham Cluster’s Webpage (https://docs.alliancecan.ca/
wiki/Graham) on 21/11/2022.

– Intel E5-2683 v4 Broadwell @ 2.1GHz

– Intel E7-4850 v4 Broadwell @ 2.1GHz

– Intel Xeon Gold 5120 Skylake @ 2.2GHz

– Intel Xeon Gold 6248 Cascade Lake @ 2.5GHz

– Intel Xeon Silver 4110 Skylake @ 2.10GHz

– Intel Xeon Gold 6238 Cascade Lake @ 2.10GHz

https://docs.alliancecan.ca/wiki/Graham
https://docs.alliancecan.ca/wiki/Graham
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