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Abstract

de Jesus Dantas, Paulo Roberto; Simon da Rosa,
Guilheme (Advisor). Mathematical Modeling of Curved
Rectangular Waveguides using the Variational Rayleigh-
Ritz Method. Rio de Janeiro, 2023. 50p. Dissertação de Mestrado
– Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.

This study presents a computational method for modeling
electromagnetic fields in curved rectangular waveguides with uniform cross-
section, using the variational Rayleigh-Ritz method. The potential applications
of this research in engineering include the design of feeders for antennas,
microwave mode converter devices, filters, among others. While various
models have been proposed to solve this problem, conventional numerical
techniques based on finite elements, finite differences, and finite volumes
require high computational costs. To overcome these issues, a variational
formulation for solving Maxwell’s equations in a local toroidal coordinate
system was developed via a novel functional introduced in this work. The
functional was adapted to handle uniformly bend domains with arbitrary cross-
section, and analytical investigations were conducted to confirm its stationary
characteristics. The Rayleigh-Ritz formalism was employed to convert the
functional into an equivalent problem of eigenvalues and eigenvectors using an
expansion in terms of rectangular harmonics of a straight waveguide as basis
functions for modeling a bend rectangular waveguide. A numerical algorithm
was developed in Matlab to validate our model, and the results were compared
against reference perturbational and numerical solutions, demonstrating high
accuracy and lower computational costs.

Keywords
Curved Rectangular Waveguides; Rayleigh-Ritz Method; Variational;

Mathematical Modeling; Toroidal Coordinate.
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Resumo

de Jesus Dantas, Paulo Roberto; Simon da Rosa, Guilheme.
Modelagem Matemática de Guias de Onda Retangulares
Curvados usando o Método Variacional de Rayleigh-Ritz.
Rio de Janeiro, 2023. 50p. Dissertação de Mestrado – Departamento
de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

Este estudo apresenta um método computacional para modelar campos
eletromagnéticos em guias de onda retangulares curvados com seção transversal
uniforme, usando o método variacional de Rayleigh-Ritz. Potenciais aplicações
desta pesquisa em engenharia incluem o projeto de alimentadores para antenas,
conversores de modais na faixa de micro-ondas, filtros, entre outros. Embora
vários modelos tenham sido propostos para resolver este problema, as técnicas
numéricas convencionais baseadas em elementos finitos, diferenças finitas e
volumes finitos requerem altos custos computacionais. Para superar esses
problemas, foi desenvolvida uma formulação variacional para resolver as
equações de Maxwell em um sistema de coordenadas toroidal local, por meio
de um novo funcional introduzido neste trabalho. O funcional foi adaptado
para domínios uniformemente curvados com seção transversal arbitrária, e
investigações analíticas foram conduzidas para confirmar suas características
estacionárias. O formalismo Rayleigh-Ritz foi utilizado para converter o
funcional em um problema equivalente de autovalores e autovetores, usando
uma expansão em harmônicas retangulares de um guia de onda reto como
funções de base para modelar um guia de onda retangular curvo. Um algoritmo
numérico foi desenvolvido emMatlab para validar nosso modelo, e os resultados
foram comparados com soluções perturbacionais e numéricas de referência,
demonstrando alta precisão e menor custo computacional.

Palavras-chave
Guias de onda retangulares curvados; Método de Rayleigh-Ritz;

Formulação variacional; Modelagem matemática; Coordenadas Toroidal.
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1
Introduction

1.1
General Introduction

The advancement of technology in electrical engineering, coupled with
the use of high-frequency systems, has resulted in an increasing demand for
compact devices that can propagate guided waves in curved structures as
depicted in Fig. 1.1. In this case, curved rectangular waveguides where used to
make connections in a complex microwave device.

Uniform bend rectangular waveguides are commonly used in microwave
device applications. To analyze the boundary-value problem associated with
these waveguides, cylindrical harmonics can be used to derive characteris-
tic equations for transverse electric (TE) and magnetic (TM) modes [1].
The problem is typically formulated for E- and H-plane bend waveguide
configurations, and determining the modal fields requires solving non-linear
eigenvalue problems that involve finding the zeros of transcendental equations
with cross-product combinations of Bessel functions. Zero-finding algorithms
are typically used to solve these equations [2, Sec. 8.1]. The eigenvalues that
must be found correspond to the orders of Bessel and Neumann functions.

Figure 1.1: Curved rectangular waveguides of Radar TA10.
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Chapter 1. Introduction 13

However, as the radius of curvature R of the waveguide (refer to Fig. 2.1)
increases, the absolute values of the proper eigenvalues also increase, which
poses a significant challenge for conventional numerical libraries that compute
cylindrical functions.

The study in [3] provides approximate formulas for the fundamental
propagating modes (which correspond to large real orders of cylindrical
functions) for large values ofR. However, numerical problems such as underflow
and overflow can arise when solving for imaginary eigenvalues. This issue
led to the investigation of asymptotic approximations for Bessel functions of
imaginary orders in [4].

While the techniques outlined in [3, 4] can help to avoid ill-conditioned
equations, it is important to carefully consider the trade-off between accuracy
and computational efficiency, especially in scenarios where R is not sufficiently
large.

In [2, Ch.4], a local coordinate system was used to express Maxwell’s
equations, which includes a 2D Cartesian coordinate system and an orthogonal
curved longitudinal axis. The corresponding Helmholtz wave equations were
then solved by expanding the field solutions in a series of inverse powers of
the radius of curvature (R−1). This perturbation solution method produced
zeroth-order fields and propagating constants that resemble those of a straight
rectangular waveguide. First- and second-order corrections were obtained in [2]
by solving differential equations associated with the coefficients R−1 and R−2,
respectively.

In a similar fashion, a perturbation approach was used in [5] to model
curved microstrip bend transmission lines.

Furthermore, the mode-coupling theory can be employed to take into
account the effects of bends in rectangular waveguides. For instance, in [6], the
coupled-mode approach was used to analyze the fields in curved and twisted
waveguides.

The method of local modes was used to analyze E-plane and H-plane
bend waveguides in [7]. In this method, the field in a curved waveguide section
is expressed as a superposition of modes of the locally straight waveguide.
The modal coupling is then described by a system of generalized telegrapher’s
equations.

The authors of [8] introduced a multimode equivalent network model for
the analysis of uniform E-plane and H-plane bends in rectangular waveguides.

The method of moments (MoM) has been employed in several works for
rigorously describing the propagation in bent waveguides. For instance, in [9],
a combined MoM and mode-matching technique was used for the analysis of
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curved parallel-plate waveguides.
In [10], a method was proposed for modeling waveguide bends by

cascading sections of straight rectangular waveguides. The resulting system of
coupled ordinary differential equations for the field components was then solved
using the MoM. The accuracy of the method was validated by comparing the
computed electromagnetic propagation in bent waveguides with experimental
results.

The work in [11] presents a finite-difference-based approach for modeling
curved waveguides by discretizing Maxwell’s equations in orthogonal curvilin-
ear coordinates. This approach, which is free of staircase effects, was used for
the eigenvalue analysis of curved waveguides in the frequency domain. The
method is capable of avoiding the need for a fine mesh, which is advantageous
for modeling highly curved structures.

Recently, in [12], a novel scaling procedure that stabilizes Bessel functions
of the exact boundary-value problem of a bent rectangular waveguide. This
work presents new scaled representations for Hankel functions of first and
second kinds into a numerically stable representation that accurately describe
the behavior of electromagnetic fields in curved rectangular waveguides using
double-precision floating-point arithmetic. Besides that, the solution is limited
to lossless waveguides.

At higher frequencies, curved dielectric waveguides are fundamental
building blocks in many optical devices [13]. The analysis of optical waveguide
bends can be accomplished using modified versions of the methods described
above. In particular, reliable solutions can be achieved when the curved
waveguide is treated as an equivalent straight waveguide approximation [14].
More accuracy can be provided by vectorial meshless-based methods [15] or
via transformation optics principles assisted by the FEM [16].

In [1], a variational method for solving Maxwell’s equations in straight
waveguides is presented. Improvements of this approach are shown in [17].

To the best of our knowledge, there are no semi-analytic methods to
characterize field propagation in rectangular waveguides that are: a) adequate
for modeling small curvature scenarios, b) do not require complex-tailored
special functions, c) proof against spurious modes, and d) allow the modeling
of lossy waveguide scenarios. This led us to develop a variational formulation of
Maxwell’s equations using the Rayleigh-Ritz method in the toroidal coordinate
system, which offers a more efficient solution to this problem than conventional
numerical techniques such as finite elements, differences, or finite volumes.
This research is significant in the field of engineering because it offers potential
applications in the design of feeders for antennas and microwave devices, filters,
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and other related devices.
The analytical and computational methodology developed in this study

provides a means of modeling electromagnetic fields in toroidal coordinates of
curved rectangular waveguides with uniform cross-section, using a variational
formula via the Rayleigh-Ritz method. The functional obtained from this
methodology was adapted to handle boundary conditions in rectangular cross-
sectional waveguides, and analytical investigations were conducted to confirm
the stationary characteristics of the functional. An expansion in terms of
complete eigenfunctions was used to convert the functional into an equivalent
problem of eigenvalues and eigenvectors. A numerical algorithm was developed
to validate the technique, and the results were compared to reference solutions
in several representative cases. The proposed methodology achieved good
accuracy while requiring a lower computational cost, making it an attractive
option for researchers and engineers in the field of electrical engineering.

1.2
Scientific Contributions

The scientific contributions of this work are listed bellow:

– Development of a variational formula in toroidal coordinates for modeling
curved waveguides with uniform cross-section.

– Development of an analytical and computational methodology for mod-
eling electromagnetic fields in toroidal coordinates of curved rectangular
waveguides with uniform cross-section, utilizing the presented variational
formula via the Rayleigh-Ritz method.

– Introduction of a variational formulation capable of characterizing waveg-
uides filled with lossy media, which is not possible using the semi-analytic
method presented in [12].

1.3
Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2, we
present the development of a variational formula in toroidal coordinates for
modeling curved waveguides with uniform cross-section, and its solution via
the Rayleigh-Ritz method.

In Chapter 3, we describe an analytical and computational methodology
for modeling electromagnetic fields in waveguides with uniform cross-section
in toroidal coordinates, using the Rayleigh-Ritz method to solve for a H-plane
bend.
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Finally, in Chapter 4, we conclude with a summary of our findings and
suggestions for future research directions.
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2
Variational Formulation

2.1
Variational Formula for Waveguides with Curved Longitudinal Axis

In what follows, we adopt a notation similar to that in [1], where the
time-harmonic dependence in the form exp(+jωt) is assumed and omitted.
Maxwell’s curls equation in an isotropic media can be written as

−∇× E = jωµH + M (2-1)

∇×H = jωεE + J. (2-2)

We consider the geometry of a uniform bend waveguide with a constant radius
of curvature R depicted in Fig. 2.1, where the longitudinal direction refers to
the ζ-axis. The waveguide cross-section can either be described in terms of the
2D Cartesian coordinates (x, y) or its polar correspondent (ρ, φ). The forward
and backward ζ-traveling waves are associated with the electric and magnetic
fields

E± = e±(ρ, φ) e∓jkζζ

= [et(ρ, φ)± uζ eζ(ρ, φ)] e∓jkζζ , (2-3)

H± = h±(ρ, φ) e∓jkζζ

= [±ht(ρ, φ) + uζ hζ(ρ, φ) e∓jkζζ ], (2-4)

for ζ ≷ 0. In the above, the subscripts ζ and t are used to describe axial (along
ζ) and transversal (to ζ) components, respectively. A unit vector pointing to
the α-direction is denoted as uα, where α can be any direction in a coordinate
system.

By substituting (2-3) and (2-4) into (2-1) and (2-2), we obtain for the
+ζ traveling wave

−∇× (e+ e−jkζζ) = jωµh+ e−jkζζ + M, (2-5)

∇× (h+ e−jkζζ) = jωε e+ e−jkζζ + J. (2-6)

Note that the (ρ, φ) dependence was omitted in the above expressions for
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Figure 2.1: Geometry of a curved waveguide with an arbitrary cross section.

simplicity. By writing the nabla operator as ∇ = ∇t + uζ ∇ζ , where

∇t = uρ
∂

∂ρ
+ uφ

1
ρ

∂

∂φ
, (2-7)

∇ζ = 1
h

∂

∂ζ
, (2-8)

with the metric coefficient of the ζ-direction is given by h = 1 −
R−1 ρ cos(φ) [18, App. C], [19], we obtain

−(∇t + uζ∇ζ)× [(e+
t + uζ e+

ζ ) e−jkζζ ] = jωµh+ e−jkζζ + M, (2-9)

(∇t + uζ∇ζ)× [(h+
t + uζ h+

ζ ) e−jkζζ ] = jωε e+ e−jkζζ + J. (2-10)

The above has the extended forms

− (∇t × e+
t + ∇t × uζ e+

ζ + uζ∇ζ × e+
t + uζ∇ζ × uζ e+

ζ ) e−jkζζ =

+ jωµh+ e−jkζζ + M, (2-11)

(∇t × h+
t + ∇t × uζ h+

ζ + uζ ∇ζ × h+
t + uζ ∇ζ × uζ h+

ζ ) e−jkζζ =

+ jωε e+ e−jkζζ + J. (2-12)

Since ∇ζ is a function of (ρ, φ) and uζ is not a constant vector, the terms
uζ ∇ζ × e+

t e
−jkζζ and uζ ∇ζ × uζ e+

ζ e
−jkζζ need to be further investigated

once there are no obvious simplifications as in the curvature-vanishing special
scenario in which R−1 → 0.
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We found:

uζ ∇ζ × et e−jkζζ = uζ h−1 ∂

∂ζ
× et e−jkζζ (2-13)

= uζ h−1 × ∂

∂ζ

(
uρ eρ e−jkζζ + uφ eφ e−jkζζ

)
(2-14)

= uζ h−1 ×
[
eρ

∂

∂ζ

(
uρ e−jkζζ

)
+ eφ

∂

∂ζ

(
uφ e−jkζζ

)]
(2-15)

= uζ h−1 ×
[
eρ

(
uρ

∂

∂ζ
e−jkζζ + e−jkζζ

∂

∂ζ
uρ
)

+ eφ

(
uφ

∂

∂ζ
e−jkζζ + e−jkζζ

∂

∂ζ
uφ
)]
(2-16)

= uζ h−1 ×
[
eρ

(
uρ (−jkζ) e−jkζζ + e−jkζζ uζ

∂h

∂ρ

)

+ eφ

(
uφ (−jkζ) e−jkζζ + e−jkζζ uζ ρ−1 ∂h

∂φ

)]
(2-17)

= −jkζ h−1 uζ × (uρ eρ + uφ eφ) e−jkζζ (2-18)

= −jkζ h−1 uζ × et e−jkζζ . (2-19)

Notice in the above we have used that the unit vectors uρ and uφ are inde-
pendent of ζ, and that ∂uρ/∂ζ = uζ ∂h/∂ρ and ∂uφ/∂ζ = uζ ρ−1 ∂h/∂φ [19,
App. A].

In addition, we have found:

uζ ∇ζ × uζ eζ e−jkζζ = uζ h−1 ∂

∂ζ
× uζ eζ e−jkζζ (2-20)

= h−1 eζ uζ ×
(

uζ
∂

∂ζ
e−jkζζ + e−jkζζ

∂

∂ζ
uζ
)

(2-21)

= h−1 eζ e
−jkζζ uζ ×

∂

∂ζ
uζ (2-22)

= h−1 eζ e
−jkζζ uζ × (R−1 ux) (2-23)

= uy R−1 h−1 eζ e
−jkζζ (2-24)

= [uρ sin(φ) + uφ cos(φ)]R−1 h−1 eζ e
−jkζζ . (2-25)

In the above, we used ∂uζ/∂ζ = R−1 ux.
Now, by multiplying (2-11) and (2-12) by e+jkζζ , with the help of (2-19)

and (2-25), we obtain

∇t × e+
t + ∇t × uζ e+

ζ − jkζ h−1 uζ × e+
t + uy R−1 h−1 e+

ζ =
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− jωµh+ −M e+jkζζ , (2-26)

∇t × h+
t + ∇t × uζ h+

ζ − jkζ h−1 uζ × h+
t + uy R−1 h−1 h+

ζ =

+ jωε e+ + J e+jkζζ . (2-27)

Analogously, for −ζ traveling wave, there exist equations dual to (2-26) and
(2-27), i.e.,

∇t × e−t + ∇t × uζ e−ζ + jkζ h
−1 uζ × e−t + uy R−1 h−1 e−ζ =

− jωµh− −M e−jkζζ , (2-28)

∇t × h−t + ∇t × uζ h−ζ + jkζ h
−1 uζ × h−t + uy R−1 h−1 h−ζ =

+ jωε e− + J e−jkζζ . (2-29)

Now, by dot-multiplying (2-26) with h−, and (2-29) with e+, we obtain

h− ·∇t× e+
t + h− ·∇t×uζ e+

ζ − jkζ h−1 h− ·uζ × e+
t + h− ·uy R−1 h−1 e+

ζ =

− jωµh− · h+ − h− ·M e+jkζζ , (2-30)

e+ ·∇t×h−t + e+ ·∇t×uζ h−ζ + jkζ h
−1 e+ ·uζ ×h−t + e+ ·uy R−1 h−1 h−ζ =

+ jωε e+ · e− + e+ · J e−jkζζ . (2-31)

Adding the last two equations yields

h− ·∇t × e+
t + e+ ·∇t × h−t + h− ·∇t × uζ e+

ζ + e+ ·∇t × uζ h−ζ
− jkζ h−1 (h− · uζ × e+

t − e+ · uζ × h−t ) +R−1 h−1(h−y e+
ζ + e+

y h
−
ζ ) =

− jωµh− · h+ + jωε e+ · e− − h− ·M e+jkζζ + e+ · J e−jkζζ . (2-32)

By using the circular-shift invariance of scalar triple product, we can
verify that

h− · uζ × e+
t = −e+

t · uζ × h−. (2-33)

Also, by noticing that only transverse field components contribute to the above,
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we can verify that

h− · uζ × e+
t − e+ · uζ × h−t = −2 (e+

t × h+
t ) · uζ , (2-34)

because h−t = −h+
t . If we now define the source-like terms M = m+(ρ, φ) e−jkζζ

and J = j−(ρ, φ) e+jkζζ , we can rearrange (2-32) to obtain

h− ·∇t × e+
t + e+ ·∇t × h−t + h− ·∇t × uζ e+

ζ + e+ ·∇t × uζ h−ζ
+R−1 h−1(h−y e+

ζ + e+
y h
−
ζ ) + jωµh− · h+ − jωε e+ · e− + h− ·m+ − e+ · j−

= −2jkζ h−1 (e+
t × h+

t ) · uζ . (2-35)

Recalling that e+ = e+
t + uζ e+

ζ and h− = h−t + uζ h−ζ , we can reduces (2-35)
to

h− ·∇t × e+ + e+ ·∇t × h− + jωµh− · h+ − jωε e+ · e−

+ h− ·m+ − e+ · j− +R−1 h−1(h−y e+
ζ + e+

y h
−
ζ ) = −2jkζ h−1 (e+

t × h+
t ) · uζ .

(2-36)

Integrating the above over the waveguide cross-sections, after trivial rearrange-
ment, yields:

kζ = IN
ID
, (2-37)

where

IN =
∫
S

[
ωε e+ · e− − ωµh− · h+ + j h− ·∇t × e+ + j e+ ·∇t × h−

+ j h− ·m+ − j e+ · j− + j R−1 h−1(h−y e+
ζ + e+

y h
−
ζ )
]
ds (2-38)

ID = 2
∫
S
h−1 (e+

t × h+
t ) · uζ ds. (2-39)

In the special source-free (m+ → 0 and j− → 0) and curvature vanishing
scenario (R−1 → 0), we have h → 1, uζ → uz, and the above -reduces to the
variational formula in [1, eq. (7-86)].

IN =
∫
S

[
ωε e+ · e− − ωµh− · h+ + j h− ·∇t × e+ + j e+ ·∇t × h−

]
ds

(2-40)

ID = 2
∫
S

(e+
t × h+

t ) · uz ds. (2-41)
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2.2
A Rayleigh-Ritz Solution

Let us define the field expansion as

e+ =
N∑
i=1

ei(ρ, φ) aei = ĒT Āe = ĀeT Ē (2-42)

h+ =
N∑
i=1

hi(ρ, φ) ahi = H̄T Āh = ĀhT H̄. (2-43)

where the harmonics fields of the expansion, ei or hi, can be written in system
of a vectors Ē or H̄ and aei and ahi are variational parameters, that can be
conveniently arranged into an unknown vector Ā. We can use the mirror-
mode symmetric relation for obtaining e− and h− via (2-3). In the above, the
superscript T refers to a transpose of a vector.

Accordingly, all terms of the equation (2-40) and (2-41) can be written
in a matrix form as

IN = ĀT ¯̄NĀ, (2-44)

ID = ĀT ¯̄DĀ. (2-45)

Now we have defined the constant matrices ¯̄N and ¯̄D, the longitudinal
wavenumber formula in (2-37) can be written as

kζ = (ĀT ¯̄DĀ)−1(ĀT ¯̄NĀ). (2-46)

Next, the stationary conditions

∂

∂Ai
kζ = 0, for i = {1, 2, 3, . . . , N} (2-47)

will provide the best approximations for Ā. Accordingly, we must enforce

IDI
′
N − INI ′D
I2
D

= 0, for i = {1, 2, 3, . . . , N}. (2-48)

where the prime (′) represents ∂/∂Ai. Assuming that I2
D is free of singularities,

we have to solve the system of equations

IDI
′
N − INI ′D = 0, for i = {1, 2, 3, . . . , N}. (2-49)
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Substituting (2-44) and (2-45) into the above, we obtain

ĀT ¯̄DĀ ∂

∂Ai

(
ĀT ¯̄NĀ

)
− ĀT ¯̄NĀ ∂

∂Ai

(
ĀT ¯̄DĀ

)
= 0, for i = {1, 2, 3, . . . , N}.

(2-50)

The above set of equations can be compactly written as the vector equation

ĀT ¯̄DĀ ∂

∂Ā

(
ĀT ¯̄NĀ

)
− ĀT ¯̄NĀ ∂

∂Ā

(
ĀT ¯̄DĀ

)
= 0̄. (2-51)

Using the result [20, eq. (81)]

∂

∂Ā

(
ĀT ¯̄MĀ

)
= ( ¯̄M + ¯̄MT )Ā, (2-52)

assuming ¯̄M = { ¯̄N, ¯̄D} is a symmetric matrix with ¯̄M = ¯̄MT , we obtain

∂

∂Ā

(
ĀT ¯̄MĀ

)
= 2 ¯̄MĀ. (2-53)

Equation (2-51) then yields

2ĀT ¯̄DĀ ¯̄NĀ− 2ĀT ¯̄NĀ ¯̄DĀ = 0̄. (2-54)

Next, division of the above by 2ĀT ¯̄DĀ yields

¯̄NĀ− (ĀT ¯̄DĀ)−1(ĀT ¯̄NĀ) ¯̄DĀ = 0̄. (2-55)

Using (2-46), we obtain

¯̄NĀ− kζ ¯̄DĀ = 0̄, (2-56)

or

( ¯̄N − kζ ¯̄D)Ā = 0̄, (2-57)
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3
H-plane Bend Rectangular Waveguide

3.1
Theory

In the case of a rectangular waveguide depicted in Fig. 3.1, a TEζ mode
can be defined in terms of the wave potential

ψTE
mn(x, y, z) =

M∑
m=1

Am cos mπx
a

cos nπy
b

e−jkzz. (3-1)

The fundamental mode in an straight (R → ∞) waveguide with a > b

has a TEz10 field with m = 1 and n = 0, i.e., ∂/∂y = 0 is main configuration
of interest. For a finite R, our fields will also have ∂/∂y = 0, and will be
associated with the modal index n = 0.

According to [1, eq. (3-89)], ex , eζ and hy will be null and as n = 0, the
field component ey is the only non-null electric field inside the waveguide [21,
p. 366]. Accordingly, we express the modal electric field via

eTEy = ∂ψ

∂x
=

M∑
m=1
−Am

mπ

a
sin mπx

a
. (3-2)

By using the relations in [22, p. 50], in a toroidal coordinate system we

Figure 3.1: H-plane bend rectangular waveguide.
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have to satisfy

∂ez
∂y
− ∂ey

∂ζ
= −jωµ hhx, (3-3)

where h is the metric component for the ζ-direction adapted to the problem
in Fig. 3.1, i.e., h = 1−R−1 (x− a/2).

We can express the x-component of the magnetic field via

hx = (jωµ)−1 h−1 ∂ey
∂ζ

(3-4)

= (jωµ)−1 h−1 (−jkζ)ey (3-5)

= (jωµ)−1 h−1 (−jkζ)
M∑
m=1
−Am

mπ

a
sin mπx

a
(3-6)

= (ωµ)−1
M∑
m=1

Am h
−1 kζ

mπ

a
sin mπx

a
. (3-7)

An important point to note is that the presence of kζ in hx, that is a direct
result of the partial derivative with respect to ζ, which should be taken into
consideration in (2-37).

Using the relations below for hζ in the formulas in [22, p. 50], we can
write

∂ey
∂x
− ∂ex

∂y
= −jωµ hζ , (3-8)

where hζ can be written as

hζ = (−jωµ)−1 ∂ey
∂x

(3-9)

= (jωµ)−1
M∑
m=1

Am

(
mπ

a

)2
cos mπx

a
. (3-10)

Let us now use the above into our variational formula in (2-37). The first
term of IN in (2-40) will be denoted here as IN1:

IN1 =
∫
S

(
ωε e+ · e−

)
ds, (3-11)

that can be expressed as
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IN1 =
∫
S
ωε
(
et + eζ

)
·
(
et − eζ

)
ds (3-12)

=
∫
S
ωε
(
ex ex + ey ey

)
− eζ eζ ds. (3-13)

Since ex and eζ are null, the above can be written as

IN1 = bωε
∫ a

x=0
ey ey dx. (3-14)

Additionally, we can be write

IN1 =
∫ a

x=0
ĀT ēyēy

T Ā dx, (3-15)

or

IN1 = ĀT ¯̄N1Ā, (3-16)

where we have introduced the matrix ¯̄N , filled according to

¯̄N1|m,m′ = bωε
∫ a

x=0
ey,m ey,m′ dx (3-17)

= bωε
∫ a

x=0

[
mπ

a
sin mπx

a

]
.

[
m′π

a
sin m

′πx

a

]
dx. (3-18)

The modal amplitudes Am were arranged in the column vector Ā.
The second term in IN will be denoted as IN2, such as

IN2 =
∫
S
−
(
ωµh− · h+

)
ds. (3-19)

As this mode do not have hy, the above can be written as

IN2 =
∫
S
−ωµ

[
−
(
uxhx + uyhy

)
+ uζhζ ·

(
uxhx + uyhy

)
+ uζhζ

]
ds (3-20)

=
∫
S
−ωµ

[(
− uxhx + uζhζ

)
·
(
uxhx + uζhζ

)]
ds (3-21)

= −ωµ
∫
S

[
−
(
hxhx

)
+
(
hζhζ

)]
ds (3-22)

= −bωµ
∫ a

x=0

[
−
(
hxhx

)
+
(
hζhζ

)]
dx. (3-23)

Moreover, the above can be rewritten as

IN2 = −bωµ
∫ a

x=0

(
− ĀT h̄xh̄x

T
Ā+ ĀT h̄ζ h̄ζ

T
Ā
)
dx (3-24)
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and finally

IN2 = ĀT ¯̄N21Ā+ ĀT ¯̄N22Ā. (3-25)

In the above, we introduced the matrix ¯̄N21, such as

¯̄N21|m,m′ = bωµ
∫ a

x=0
hx,m hx,m′ dx (3-26)

= bωµ
∫ a

x=0

[
(ωµ)−1h−1 kζ

mπ

a
sin mπx

a

]
.

[
(ωµ)−1 h−1 kζ

m′π

a
sin m

′πx

a

]
dx. (3-27)

Notice that in ¯̄N21 have appeared a term proportional to k2
ζ . The other matrix

constituent of IN2 in (3-25) is given by

¯̄N22|m,m′ = −bωµ
∫ a

x=0
hζ,m hζ,m′ dx (3-28)

= −bωµ
∫ a

x=0

[
(jωµ)−1(mπ

a
)2 cos mπx

a

]
.

[
(jωµ)−1 (m

′π

a
)2 cos m

′πx

a

]
dx. (3-29)

The third term of IN in (2-40) is denoted here as IN3, and is given by

IN3 =
∫
S

+j h− ·∇t × e+ ds, (3-30)

where the transversal nabla is given by

∇t = ux
∂

∂x
+ uy

∂

∂y
. (3-31)

Since ∂/∂y = 0 and hy, eζ and ex are null, the above can by further simplified:

IN3 =
∫
S

+j h− · ux
∂

∂x
× uy ey ds (3-32)

=
∫
S

+j h− · uζ
∂

∂x
ey ds (3-33)

=
∫
S

+j
[
− (ux hx + uy hy) + uζ hζ

]
· uζ

∂

∂x
ey ds (3-34)

=
∫
S

+j uζ hζ · uζ
∂

∂x
ey ds (3-35)

=
∫
S

+j hζ
∂

∂x
ey ds (3-36)

= jb
∫ a

x=0
hζ

∂

∂x
ey dx. (3-37)
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In the vector form, the above becomes

IN3 = jb
∫ a

x=0
ĀT h̄ζ

∂

∂x
ēTy Ā dx. (3-38)

By introducing the matrix ¯̄N3, we have

IN3 = ĀT ¯̄N3Ā (3-39)

where

¯̄N3|m,m′ = jb
∫ a

x=0
hζ,m

∂

∂x
ey,m′ dx (3-40)

= jb
∫ a

x=0

[
(jωµ)−1(mπ

a
)2 cos mπx

a

]

.
∂
[
−m′π

a
sin m′πx

a

]
∂x

dx (3-41)

= jb
∫ a

x=0

[
(jωµ)−1

(mπ
a

)2 cos mπx
a

]
.

[
−
(m′π
a

)2 cos m
′πx

a

]
dx. (3-42)

The fourth term of IN in (2-40) was defined as

IN4 =
∫
S

+j e+ ·∇t × h− ds. (3-43)

The above can be written as

IN4 = j
∫
S

uyey ·
[
ux

∂

∂x
× (−uxhx + uζhζ)

]
ds (3-44)

IN4 = j
∫
S

uyey ·
(
− uy

∂

∂x
hζ
)
ds (3-45)

IN4 = j
∫
S
− ey

∂

∂x
hζ ds (3-46)

IN4 = −jb
∫ a

x=0
ey

∂

∂x
hζ dx. (3-47)

In the vector form, we have

IN4 = −jb
∫ a

x=0
ĀT ēy

∂

∂x
h̄Tζ Ā dx. (3-48)

By introducing the matrix ¯̄N4, we have

IN4 = ĀT ¯̄N4Ā (3-49)
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where

¯̄N4|m,m′ = −jb
∫ a

x=0
ey,m

∂

∂x
hζ,m′ dx (3-50)

= −jb
∫ a

x=0

[
−mπ

a
sin mπx

a

]
.
∂
[
(jωµ)−1

(
m′π
a

)2
cos m′πx

a

]
∂x

dx (3-51)

= −jb
∫ a

x=0

[
mπ

a
sin mπx

a

]
.
[
(jωµ)−1

(m′π
a

)3
sin m

′πx

a

]
dx. (3-52)

The fifth term of IN in (2-40) can be defined as

IN5 =
∫
S

+R−1 h−1(h−y e+
ζ + e+

y h
−
ζ ) ds. (3-53)

In the TEζ mode, the above becomes

IN5 =
∫
S

+jR−1 h−1(e+
y h
−
ζ ) ds, (3-54)

and as h−ζ by the mirror-mode symmetric relation is equal to h+
ζ , we have

IN5 = +j
∫
S
R−1 h−1(ey hζ) ds (3-55)

= +jb
∫ a

x=0
R−1 h−1(ey hζ) dx (3-56)

In the vector form, we can write

IN5 = +jb
∫ a

x=0
R−1 h−1 h−1ĀT ēyh̄ζ

T
Ā dx, (3-57)

or

IN5 = ĀT ¯̄N5Ā, (3-58)

where we have introduced the matrix ¯̄N5 via

¯̄N5|m,m′ = +jb
∫ a

x=0
R−1 h−1ey,m hζ,m′ dx (3-59)

= +jb
∫ a

x=0
R−1 h−1

[
−mπ

a
sin mπx

a

]
.

[
(jωµ)−1

(m′π
a

)2
cos m

′πx

a

]
dx. (3-60)

The denominator ID in (2-37) can be written as

ID = 2
∫
S
h−1 (e+

t × h+
t ) · uζ ds (3-61)

= 2
∫
S
h−1 [(uxex + uyey)× (uxhx + uyhy)] · uζ ds (3-62)
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= 2
∫
S
h−1 (uyey × uxhx) · uζ ds (3-63)

= 2
∫
S
h−1 (−uζey hx) · uζ ds (3-64)

= −2
∫
S
h−1 ey hx ds (3-65)

= −2b
∫ a

x=0
h−1 ey hx dx. (3-66)

In the vector form, the above becomes

ID = −2b
∫ a

x=0
h−1ĀT ēyh̄x

T
Ā dx, (3-67)

or

ID = ĀT ¯̄DĀ, (3-68)

where the matrix ¯̄D is given by

¯̄D|m,m′ = −2b
∫ a

x=0
h−1ey,m hx,m′ dx (3-69)

= −2b
∫ a

x=0
h−1

[
−mπ

a
sin

(
mπx

a

)]
×
[
(ωµ)−1 h−1 kζ

m′π

a
sin

(
m′πx

a

)]
dx (3-70)

Notice that we have a term proportional to kζ in ¯̄D and to k2
ζ in the matrix

¯̄N21. In view of obtaining a linear eigenvalue problem, we can express (2-37)
in the shape of (2-46) via

k2
ζ Ā

T ˜̄̄
DĀ = ĀT

˜̄̄
NĀ. (3-71)

where

˜̄̄
N = ¯̄N1 + ¯̄N22 + ¯̄N3 + ¯̄N4 + ¯̄N5, (3-72)

˜̄̄
D = k−1

ζ
¯̄D − k−2

ζ
¯̄N21. (3-73)

We can now impose the stationary conditions into (3-71), resulting in

∂

∂Ā

[
ĀT

(
k2
ζ

˜̄̄
D − ˜̄̄

N
)
Ā
]

= 0̄. (3-74)
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The above renders

k2
ζ

 ˜̄̄
D + ˜̄̄

DT

2

 Ā−
 ˜̄̄
N + ˜̄̄

NT

2

 Ā = 0̄. (3-75)

Introducing the double-tild matrices

˜̄̄̃
N =

˜̄̄
N + ˜̄̄

NT

2 , (3-76)

˜̄̄̃
D =

˜̄̄
D + ˜̄̄

DT

2 , (3-77)

(3-78)

we obtain the linear eigenvalue problem(
k2
ζ

˜̄̄̃
D −

˜̄̄̃
N

)
Ā = 0̄. (3-79)

We have used the Matlab framework [23] to solve the generalized
eigenvalue problem in (3-79) via the command

[mat_V, mat_L] = eig( mat_tilde_tilde_N, mat_tilde_tilde_D );

Note that mat_L is a diagonal matrix with the eigenvalues of the problem,
that allows us to obtain the longitudinal wavenumbers kζ via the command

k_zeta = sqrt( diag(mat_L));

The associated eigenvectors Ā (for all of the found kζ) are assembled into the
columns of the computational matrix mat_V.

3.2
Numerical Results

3.2.1
H-plane bend waveguide with R/a = 0.75

We first consider an H-plane bend waveguide with a = 22.86 mm and
b = 10.16 mm, operating at 10 GHz and with radius R/a as depicted in Fig. 3.2.

The first 10 normalized longitudinal wavenumbers for TEζm0 modes
obtained by our method with R/a = 0.75 are shown in Tables 3.1–3.4. Our
method were compared against the exact (reference) [12] and perturbation [2]
solutions. Perturbational methods involve solving a problem by making a small
change, or perturbation, to an existing solution or model and assumes that the
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Figure 3.2: Radius of a curved waveguide (a) R/a = 0.75, (b) R/a = 1 and (c)
R/a = 2.

problem can be simplified by analyzing the effects of small deviations from a
known solution. The approximated longitudinal wavenumbers are denoted as
kζ , and we evaluate the convergence as M = {10, 15, 20}. The results obtained
via the present variational method show good agreement. Note that the relative
error observed in the first modes in the perturbational results are generally
larger than the ones observed in our method. The error of the perturbational
approach in Table 3.1 becomes asymptotically close to 1.2%. This is due to
the methods in [2] being limited up to O(R−2) correction.

Table 3.1: Normalized longitudinal wavenumbers kζ/k for TEζ modes in an
H-plane bend waveguide (with R/a = 0.75) obtained by the exact (reference)
solution [12] and the perturbation solution [2].

Mode Ref. [12] Perturbation Ref. [2] Rel. error (%)

TEζ10 7.4023e-01 7.4045e-01 2.9991e-02
TEζ20 −j 6.7168e-01 −j 6.7591e-01 6.2892e-01
TEζ30 −j 1.3716e+00 −j 1.3867e+00 1.1072e+00
TEζ40 −j 1.9816e+00 −j 2.0050e+00 1.1822e+00
TEζ50 −j 2.5635e+00 −j 2.5947e+00 1.2162e+00
TEζ60 −j 3.1323e+00 −j 3.1709e+00 1.2329e+00
TEζ70 −j 3.6937e+00 −j 3.7396e+00 1.2417e+00
TEζ80 −j 4.2505e+00 −j 4.3035e+00 1.2468e+00
TEζ90 −j 4.8043e+00 −j 4.8644e+00 1.2499e+00
TEζ10,0 −j 5.3560e+00 −j 5.4231e+00 1.2520e+00
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Table 3.2: Normalized longitudinal wavenumbers kζ/k for TEζ modes in an
H-plane bend waveguide (with R/a = 0.75) obtained by the exact (reference)
solution [12] and our method with M = 10.

Mode Ref. [12] Our method with M = 10 Rel. error (%)

TEζ10 7.4023e-01 7.4023e-01 5.6351e-05
TEζ20 −j 6.7168e-01 −j 6.7170e-01 1.8381e-03
TEζ30 −j 1.3716e+00 −j 1.3721e+00 3.7460e-02
TEζ40 −j 1.9816e+00 −j 1.9871e+00 2.8132e-01
TEζ50 −j 2.5635e+00 −j 2.5964e+00 1.2827e+00
TEζ60 −j 3.1323e+00 −j 3.2548e+00 3.9120e+00
TEζ70 −j 3.6937e+00 −j 4.0174e+00 8.7635e+00
TEζ80 −j 4.2505e+00 −j 4.9480e+00 1.6409e+01
TEζ90 −j 4.8043e+00 −j 6.1413e+00 2.7829e+01
TEζ10,0 −j 5.3560e+00 −j 7.9690e+00 4.8785e+01

Table 3.3: Normalized longitudinal wavenumbers kζ/k for TEζ modes in an
H-plane bend waveguide (with R/a = 0.75) obtained by the exact (reference)
solution [12] and our method with M = 15.

Mode Ref. [12] Our method with M = 15 Rel. error (%)

TEζ10 7.4023e-01 7.4023e-01 5.0312e-06
TEζ20 −j 6.7168e-01 −j 6.7168e-01 1.3177e-04
TEζ30 −j 1.3716e+00 −j 1.3716e+00 2.2378e-03
TEζ40 −j 1.9816e+00 −j 1.9818e+00 1.4713e-02
TEζ50 −j 2.5635e+00 −j 2.5654e+00 7.1858e-02
TEζ60 −j 3.1323e+00 −j 3.1412e+00 2.8389e-01
TEζ70 −j 3.6937e+00 −j 3.7269e+00 8.9950e-01
TEζ80 −j 4.2505e+00 −j 4.3459e+00 2.2447e+00
TEζ90 −j 4.8043e+00 −j 5.0236e+00 4.5647e+00
TEζ10,0 −j 5.3560e+00 −j 5.7820e+00 7.9537e+00
TEζ11,0 −j 5.9062e+00 −j 6.6471e+00 1.2544e+01
TEζ12,0 −j 6.4552e+00 −j 7.6505e+00 1.8518e+01
TEζ13,0 −j 7.0033e+00 −j 8.8604e+00 2.6517e+01
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Table 3.4: Normalized longitudinal wavenumbers kζ/k for TEζ modes in an
H-plane bend waveguide (with R/a = 0.75) obtained by the exact (reference)
solution [12] and our method with M = 20.

Mode Ref. [12] Our method with M = 20 Rel. error (%)

TEζ10 7.4023e-01 7.4023e-01 7.8912e-07
TEζ20 −j 6.7168e-01 −j 6.7168e-01 1.9312e-05
TEζ30 −j 1.3716e+00 −j 1.3716e+00 2.8661e-04
TEζ40 −j 1.9816e+00 −j 1.9816e+00 1.6195e-03
TEζ50 −j 2.5635e+00 −j 2.5637e+00 6.8354e-03
TEζ60 −j 3.1323e+00 −j 3.1331e+00 2.5443e-02
TEζ70 −j 3.6937e+00 −j 3.6969e+00 8.6075e-02
TEζ80 −j 4.2505e+00 −j 4.2616e+00 2.6149e-01
TEζ90 −j 4.8043e+00 −j 4.8373e+00 6.8624e-01
TEζ10,0 −j 5.3560e+00 −j 5.4379e+00 1.5290e+00
TEζ11.0 −j 5.9062e+00 −j 6.0782e+00 2.9132e+00
TEζ12.0 −j 6.4552e+00 −j 6.7715e+00 4.8999e+00
TEζ13,0 −j 7.0033e+00 −j 7.5288e+00 7.5043e+00
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In order to verify the convergence characteristics of the presented
variational formulation, Fig. 3.6 and Fig. 3.7 show the relative error on the
longitudinal wavenumber of TEζ10 and TEζ20 (R/a = 0.75) as a function of
the number of harmonics M . The analytical solution from [12] was used as a
reference, where the computation are presented in a 10-digit double-precision,
i.e., the eigenvalues may present a relative error of 10−10 or less. We observe
that using M = 60 harmonics in our formulation the relative error is smaller
than 10−10, proving the accuracy and the convergence of our method. As a
reference for the computational cost, the CPU time required by our Matlab
code (running on a regular laptop) to calculate M longitudinal wavenumbers
is presented in Fig. 3.8.
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Figure 3.3: Relative error on the longitudinal wavenumber of TEζ10 as a function
of the number of harmonics M .
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Figure 3.4: Relative error on the longitudinal wavenumber of TEζ20 as a function
of the number of harmonics M .
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Figure 3.5: CPU time for computing M longitudinal wavenumbers.

3.2.2
H-plane bend waveguide with R/a = 1

Now we consider an H-plane bend waveguide with a = 22.86 mm and
b = 10.16 mm, operating at 10 GHz. The first 10 normalized longitudinal
wavenumbers for TEζm0 modes obtained by our method withR/a = 1 are shown
in Tables 3.5 and 3.6. Our method (with M = 15) were compared against
the exact (reference) [12] and perturbation [2] solutions. The approximated
longitudinal wavenumbers are denoted as kζ . The results obtained via the
present variational method again show good agreement.

Table 3.5: Normalized longitudinal wavenumbers kζ/k for TEζ modes in an
H-plane bend waveguide (with R/a = 1) obtained by the exact (reference)
solution [12] and the perturbation solution [2].

Mode Ref. [12] Perturbation Ref. [2] Rel. error (%)

TEζ10 7.4677e-01 7.4686e-01 1.1067e-02
TEζ20 −j 7.5520e-01 −j 7.5625e-01 1.3813e-01
TEζ30 −j 1.5250e+00 −j 1.5288e+00 2.4900e-01
TEζ40 −j 2.1926e+00 −j 2.1985e+00 2.6800e-01
TEζ50 −j 2.8298e+00 −j 2.8376e+00 2.7700e-01
TEζ60 −j 3.4530e+00 −j 3.4627e+00 2.8154e-01
TEζ70 −j 4.0684e+00 −j 4.0799e+00 2.8402e-01
TEζ80 −j 4.6791e+00 −j 4.6925e+00 2.8549e-01
TEζ90 −j 5.2867e+00 −j 5.3018e+00 2.8641e-01
TEζ10,0 −j 5.8921e+00 −j 5.9090e+00 2.8702e-01

In order to verify the convergence characteristics of the presented
variational formulation, Fig. 3.6 and Fig. 3.7 show the relative error on the
longitudinal wavenumber of TEζ10 and TEζ20 as a function of the number
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Table 3.6: Normalized longitudinal wavenumbers kζ/k for TEζ modes in an
H-plane bend waveguide (with R/a = 1) obtained by the exact (reference)
solution [12] and our method with M = 15.

Mode Ref. [12] Our method Rel. error (%)

TEζ10 7.4677e-01 7.4677e-01 6.2071e-07
TEζ20 −j 7.5520e-01 −j 7.5520e-01 8.8741e-06
TEζ30 −j 1.5250e+00 −j 1.5250e+00 1.2727e-04
TEζ40 −j 2.1926e+00 −j 2.1926e+00 7.1067e-04
TEζ50 −j 2.8298e+00 −j 2.8299e+00 3.2205e-03
TEζ60 −j 3.4530e+00 −j 3.4534e+00 1.3152e-02
TEζ70 −j 4.0684e+00 −j 4.0705e+00 5.2882e-02
TEζ80 −j 4.6791e+00 −j 4.6882e+00 1.9530e-01
TEζ90 −j 5.2867e+00 −j 5.3202e+00 6.3371e-01
TEζ10,0 −j 5.8921e+00 −j 5.9908e+00 1.6757e+00
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Figure 3.6: Relative error on the longitudinal wavenumber of TEζ10 as a function
of the number of harmonics M .

of harmonics M . The analytical solution from [12] was used as a reference,
where the computation are presented in a 10-digit double-precision, i.e., the
eigenvalues may present a relative error of 10−10 or less. We observe that using
M = 60 harmonics in our formulation the relative error is smaller than 10−10,
proving the accuracy and the convergence of our method. As a reference for
the computational cost, the CPU time required by our Matlab code (running
on a regular laptop) to calculate M longitudinal wavenumbers is presented in
Fig. 3.8.
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Figure 3.7: Relative error on the longitudinal wavenumber of TEζ20 as a function
of the number of harmonics M .
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Figure 3.8: CPU time for computing M longitudinal wavenumbers.

3.2.3
H-plane bend waveguide with R/a = 2

Now we consider an H-plane bend waveguide with a = 22.86 mm and
b = 10.16 mm, operating at 10 GHz. The first 10 normalized longitudinal
wavenumbers for TEζm0 modes obtained by our method withR/a = 2 are shown
in Tables 3.7 and 3.8. Our method (with M = 15) were compared against
the exact (reference) [12] and perturbation [2] solutions. The approximated
longitudinal wavenumbers are denoted as kζ . The results obtained via the
present variational method again show good agreement.
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Table 3.7: Normalized longitudinal wavenumbers kζ/k for TEζ modes in an
H-plane bend waveguide (with R/a = 2) obtained by the exact (reference)
solution [12] and the perturbation solution [2].

Mode Ref. [12] Perturbation Ref. [2] Rel. error (%)

TEζ10 7.5297e-01 7.5298e-01 7.4979e-04
TEζ20 −j 8.2630e-01 −j 8.2635e-01 6.5071e-03
TEζ30 −j 1.6541e+00 −j 1.6542e+00 1.1906e-02
TEζ40 −j 2.3699e+00 −j 2.3702e+00 1.2888e-02
TEζ50 −j 3.0532e+00 −j 3.0537e+00 1.3365e-02
TEζ60 −j 3.7219e+00 −j 3.7224e+00 1.3611e-02
TEζ70 −j 4.3826e+00 −j 4.3832e+00 1.3746e-02
TEζ80 −j 5.0384e+00 −j 5.0391e+00 1.3828e-02
TEζ90 −j 5.6911e+00 −j 5.6919e+00 1.3880e-02
TEζ10,0 −j 6.3415e+00 −j 6.3424e+00 1.3915e-02

Table 3.8: Normalized longitudinal wavenumbers kζ/k for TEζ modes in an
H-plane bend waveguide (with R/a = 2) obtained by the exact (reference)
solution [12] and our method with M = 15.

Mode Ref. [12] Our method Rel. error (%)

TEζ10 7.5297e-01 7.5297e-01 3.2882e-08
TEζ20 −j 8.2630e-01 −j 8.2635e-01 2.1588e-07
TEζ30 −j 1.6541e+00 −j 1.6541e+00 2.8329e-06
TEζ40 −j 2.3699e+00 −j 2.3699e+00 1.1290e-05
TEζ50 −j 3.0532e+00 −j 3.0532e+00 4.5240e-05
TEζ60 −j 3.7219e+00 −j 3.7219e+00 1.2519e-04
TEζ70 −j 4.3826e+00 −j 4.3826e+00 4.3711e-04
TEζ80 −j 5.0384e+00 −j 5.0385e+00 1.2911e-03
TEζ90 −j 5.6911e+00 −j 5.6914e+00 5.1057e-03
TEζ10,0 −j 6.3415e+00 −j 6.3428e+00 1.9624e-02
TEζ11,0 −j 6.9904e+00 −j 6.9968e+00 9.1691-02

3.2.4
H-plane bend waveguide with R/a = 10

Now we consider an H-plane bend waveguide with a = 22.86 mm and
b = 10.16 mm, operating at 10 GHz. The first 10 normalized longitudinal
wavenumbers for TEζm0 modes obtained by our method with R/a = 10
are shown in Tables 3.9 and 3.10. Our method (with M = 15) were
compared against the exact (reference) [12] and perturbation [2] solutions.
The approximated longitudinal wavenumbers are denoted as kζ . The results
obtained via the present variational method again show good agreement.
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Table 3.9: Normalized longitudinal wavenumbers kζ/k for TEζ modes in an
H-plane bend waveguide (with R/a = 10) obtained by the exact (reference)
solution [12] and the perturbation solution [2].

Mode Ref. [12] Perturbation Ref. [2] Rel. error (%)

TEζ10 7.5493e-01 7.5493e-01 1.2208e-06
TEζ20 −j 8.4756e-01 −j 8.4756e-01 9.6088e-06
TEζ30 −j 1.6924e+00 −j 1.6924e+00 1.7645e-05
TEζ40 −j 2.4226e+00 −j 2.4226e+00 1.9130e-05
TEζ50 −j 3.1196e+00 −j 3.1196e+00 1.9858e-05
TEζ60 −j 3.8018e+00 −j 3.8018e+00 2.0233e-05
TEζ70 −j 4.4759e+00 −j 4.4759e+00 2.0441e-05
TEζ80 −j 5.1451e+00 −j 5.1451e+00 2.0566e-05
TEζ90 −j 5.8112e+00 −j 5.8112e+00 2.0646e-05
TEζ10,0 −j 6.4750e+00 −j 6.4750e+00 2.0700e-05

Table 3.10: Normalized longitudinal wavenumbers kζ/k for TEζ modes in an
H-plane bend waveguide (with R/a = 10) obtained by the exact (reference)
solution [12] and our method with M = 15.

Mode Ref. [12] Our method Rel. error (%)

TEζ10 7.5493e-01 7.5493e-01 7.3883e-10
TEζ20 −j 8.4756e-01 −j 8.4756e-01 2.5738e-09
TEζ30 −j 1.6924e+00 −j 1.6924e+00 3.9058e-08
TEζ40 −j 2.4226e+00 −j 2.4226e+00 1.0345e-07
TEζ50 −j 3.1196e+00 −j 3.1196e+00 4.9971e-07
TEζ60 −j 3.8018e+00 −j 3.8018e+00 8.2061e-07
TEζ70 −j 4.4759e+00 −j 4.4759e+00 3.3375e-06
TEζ80 −j 5.1451e+00 −j 5.1451e+00 4.7374e-06
TEζ90 −j 5.8112e+00 −j 5.8112e+00 2.0576e-05
TEζ10,0 −j 6.4750e+00 −j 6.4750e+00 2.9381e-05

3.2.5
Dielectric-Filled Bend Waveguide

We now investigate the effect of filling an H-plane bend waveguide with
R/a = 1 defined in previous section with a dielectric material with ε = ε0 εr.
The FIT solver of CST Studio Suite [24] was used to compute the longitudinal
wavenumber of an equivalent waveguide that emulates the curved one. Please
see [12] for further details. The first normalized longitudinal wavenumbers
obtained by our method (with M = 15) were compared against the exact
(reference) [12] and by the FIT for εr = {2, 4, 6}, are shown in Tables 3.11–3.16.
The relative error was computed using the solution from [12] as a reference.
Good agreement is observed for the first modes in all methods.
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As a benchmark for the computational cost, the CPU time required to
calculate the first 5 modes for the waveguide of last scenario with εr = 6
was 0.324 s using the solution from [12] using double-precision Fortran code
running on a regular laptop. The present method took 0.23 s to run our Matlab
code on a regular laptop to compute 15 modes, where the relative error on the
fifth modes as 7.26e-4%, as shown in Table 3.16. In contrast, FIT results took
478 s to solve the same problem using a dedicated HP Z820 Workstation with
a six-core 2.10-GHz Intel Xeon CPU E5-2620 v2 processor. Note that the FIT
results use only the port modes with the standard options with a discretization
of 100 hexahedral cells per wavelength in the FIT solver of CST [24]. Although
this finely-discretized lattice, the accuracy of FIT deteriorates for high-order
modes in the waveguide with εr = 6.

When small relative errors are acceptable, the computational time of
our proposed method is comparable to that of the exact method presented
in [12]. Moreover, our variational formulation enables the characterization of
waveguides filled with lossy media, which is not possible using the method
in [12]. As examples of this flexibility, Tables 3.17 and 3.18 shows the first
normalized longitudinal wavenumbers obtained by our method (with M = 15)
when εr = 6 and σ = {10−4, 10−3} S/m. Note that this lossy configuration only
changes the complex-valued permittivity that now becomes ε = ε0 εr − jσ/ω.
Since ε (and the associated wavenumber k) appears outside of the constituent
integrals of our method, the CPU time is almost the same of that of the lossless
scenarios.

Table 3.11: Normalized longitudinal wavenumbers kζ/k in an H-plane bend
waveguide (with R/a = 1) filled with a material with εr = 2 obtained by exact
(reference) solution [12] and by FIT.

Mode Ref. [12] FIT from [24] Rel. error (%)

TEζ10 9.1384e-01 9.1384e-01 2.4488e-04
TEζ20 3.4188e-01 3.4189e-01 2.3565e-03
TEζ30 −j 8.6045e-01 −j 8.6043e-01 2.4484e-03
TEζ40 −j 1.4031e+00 −j 1.4031e+00 3.3527e-03
TEζ50 −j 1.8874e+00 −j 1.8873e+00 4.7393e-03
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Table 3.12: Normalized longitudinal wavenumbers kζ/k in an H-plane bend
waveguide (with R/a = 1) filled with a material with εr = 2 obtained by exact
(reference) solution [12] and by our method with M = 15.

Mode Ref. [12] Our method Rel. error (%)

TEζ10 9.1384e-01 9.1384e-01 3.3402e-07
TEζ20 3.4188e-01 3.4188e-01 1.8027e-06
TEζ30 −j 8.6045e-01 −j 8.6045e-01 6.4313e-05
TEζ40 −j 1.4031e+00 −j 1.4031e+00 4.9202e-04
TEζ50 −j 1.8874e+00 −j 1.8874e+00 2.4875e-03
TEζ60 −j 2.3486e+00 −j 2.3489e+00 1.0716e-02
TEζ70 −j 2.7979e+00 −j 2.7991e+00 4.4859e-02
TEζ80 −j 3.2400e+00 −j 3.2456e+00 1.7187e-01
TEζ90 −j 3.6775e+00 −j 3.6988e+00 5.7881e-01
TEζ10,0 −j 4.1118e+00 −j 4.1767e+00 1.5794e+00
TEζ11,0 −j 4.5438e+00 −j 4.7048e+00 3.5430e+00
TEζ12,0 −j 4.9742e+00 −j 5.3091e+00 6.7324e+00

Table 3.13: Normalized longitudinal wavenumbers kζ/k in an H-plane bend
waveguide (with R/a = 1) filled with a material with εr = 4 obtained by exact
(reference) solution [12] and by FIT.

Mode Ref. [12] FIT from [24] Rel. error (%)

TEζ10 1.0341e+00 1.0341e+00 1.1063e-04
TEζ20 6.8698e-01 6.8699e-01 6.6766e-04
TEζ30 1.6688e-01 1.6694e-01 3.6821e-02
TEζ40 −j 7.5193e-01 −j 7.5188e-01 6.0275e-03
TEζ50 −j 1.1621e+00 −j 1.1620e+00 6.3429e-03
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Table 3.14: Normalized longitudinal wavenumbers kζ/k in an H-plane bend
waveguide (with R/a = 1) filled with a material with εr = 4 obtained by exact
(reference) solution [12] and by our method with M = 15.

Mode Ref. [12] Our method Rel. error (%)

TEζ10 1.0341e+00 1.0341e+00 2.0679e-07
TEζ20 6.8698e-01 6.8698e-01 3.1409e-06
TEζ30 1.6688e-01 1.6688e-01 2.1447e-06
TEζ40 −j 7.5193e-01 −j 7.5193e-01 1.9779e-04
TEζ50 −j 1.1621e+00 −j 1.1621e+00 1.4137e-03
TEζ60 −j 1.5233e+00 −j 1.5234e+00 6.9606e-03
TEζ70 −j 1.8634e+00 −j 1.8640e+00 3.1816e-02
TEζ80 −j 2.1918e+00 −j 2.1947e+00 1.3144e-01
TEζ90 −j 2.5130e-01 −j 2.5250e+00 4.7787e-01
TEζ10,0 −j 2.8293e+00 −j 2.8687e+00 1.3932e+00
TEζ11,0 −j 3.1423e+00 −j 3.2454e+00 3.2824e+00
TEζ12,0 −j 3.4527e+00 −j 3.6748e+00 6.4349e+00

Table 3.15: Normalized longitudinal wavenumbers kζ/k in an H-plane bend
waveguide (with R/a = 1) filled with a material with εr = 6 obtained by exact
(reference) solution [12] and by FIT.

Mode Ref. [12] FIT from [24] Rel. error (%)

TEζ10 1.0924e+00 1.0924e+00 1.2459e-05
TEζ20 7.9239e-01 7.9240e-01 8.2146e-04
TEζ30 5.2127e-01 5.2129e-01 3.5325e-03
TEζ40 −j 3.3334e-01 −j 3.3326e-01 2.2357e-02
TEζ50 −j 7.8895e-01 −j 7.9229e-01 4.2388e-01

DBD
PUC-Rio - Certificação Digital Nº 2112307/CA



Chapter 3. H-plane Bend Rectangular Waveguide 44

Table 3.16: Normalized longitudinal wavenumbers kζ/k in an H-plane bend
waveguide (with R/a = 1) filled with a material with εr = 6 obtained by exact
(reference) solution [12] and by our method with M = 15.

Mode Ref. [12] Our method Rel. error (%)

TEζ10 1.0924e+00 1.0924e+00 4.9454e-07
TEζ20 7.9239e-01 7.9239e-01 8.4594e-07
TEζ30 5.2127e-01 5.2127e-01 1.6828e-05
TEζ40 −j 3.3334e-01 −j 3.3334e-01 3.9641e-05
TEζ50 −j 7.8895e-01 −j 7.8895e-01 7.2593e-04
TEζ60 −j 1.1234e+00 −j 1.1234e+00 4.3606e-03
TEζ70 −j 1.4231e+00 −j 1.4234e+00 2.2097e-02
TEζ80 −j 1.7059e+00 −j 1.7076e+00 9.8779e-02
TEζ90 −j 1.9787e-01 −j 1.9864e+00 3.8886e-01
TEζ10,0 −j 2.2451e+00 −j 2.2724e+00 1.2163e+00
TEζ11,0 −j 2.5070e+00 −j 2.5828e+00 3.0228e+00
TEζ12,0 −j 2.7657e+00 −j 2.9352e+00 6.1312e+00

Table 3.17: Normalized longitudinal wavenumbers kζ/k in an H-plane bend
waveguide (with R/a = 1) filled with a lossy material with εr = 6 and
σ = 10−4 S/m obtained by our method with M = 15.

Mode <e(kζ/k) =m(kζ/k)

TEζ10 1.0924e+00 -4.0326e-06
TEζ20 7.9239e-01 -7.0188e-06
TEζ30 5.2127e-01 -1.4001e-05
TEζ40 3.9968e-05 -3.3334e-01
TEζ50 2.7386e-05 -7.8895e-01
TEζ60 2.8098e-05 -1.1234e+00
TEζ70 3.0396e-05 -1.4234e+00
TEζ80 3.3284e-05 -1.7076e+00
TEζ90 3.6585e-05 -1.9864e+00
TEζ10,0 4.0361e-05 -2.2724e+00
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Table 3.18: Normalized longitudinal wavenumbers kζ/k in an H-plane bend
waveguide (with R/a = 1) filled with a lossy material with εr = 6 and
σ = 10−3 S/m obtained by our method with M = 15.

Mode <e(kζ/k) =m(kζ/k)

TEζ10 1.0924e+00 -4.0326e-05
TEζ20 7.9239e-01 -7.0188e-05
TEζ30 5.2127e-01 -1.4001e-04
TEζ40 3.9968e-04 -3.3334e-01
TEζ50 2.7386e-04 -7.8895e-01
TEζ60 2.8098e-04 -1.1234e+00
TEζ70 3.0396e-04 -1.4234e+00
TEζ80 3.3284e-04 -1.7076e+00
TEζ90 3.6585e-04 -1.9864e+00
TEζ10,0 4.0361e-04 -2.2724e+00
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4
Conclusions

In this concluding chapter, we will provide a comprehensive review and
summary of the topics covered in this work. We will also offer comments on
the results obtained and propose potential directions for future research.

On Chapter 2, we developed a variational formula in toroidal coordinates
for curved waveguides with uniform cross-section. The development of an
analytic and computational methodology for modeling electromagnetic fields
in toroidal coordinates of curved rectangular waveguides with uniform cross-
section was presented in Chapter 3, applying the variational formula presented
via the Rayleigh-Ritz method in an H-Plane Bend curved rectangular waveg-
uide.

In conclusion, the development of a variational formulation of Maxwell’s
equations using the Rayleigh-Ritz method for the toroidal coordinate system
has provided an efficient solution to the increasing demand for compact devices
that can propagate guided waves in curved structures, which is a common
requirement in the design of antennas, microwave devices, and filters. The
analytical and computational methodology developed in this study offers a
means of modeling electromagnetic fields in toroidal coordinates of curved
rectangular waveguides with uniform cross-section, using a variational formula
via the Rayleigh-Ritz method. This methodology achieved good accuracy while
requiring a lower computational cost than conventional brute force numerical
techniques such as finite elements, finite differences or finite volumes, making
it an attractive option for researchers and engineers in the field of electrical
engineering. Overall, this research has significant potential applications in the
field of engineering and offers a promising direction for future studies.

An important point regarding the computational resources was that our
method requires a CPU time comparable to that of the exact method presented
in [12]. As an advantage, the present method does not requires the employment
of specifically designed cylindrical functions with complex-valued orders and
real-valued arguments as in [12], being more flexible to be implemented in any
computational language that supports basic linear algebra system. In addition,
our variational formulation enables the characterization of waveguides filled
with lossy media without additional cost.
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For future research, we recommend exploring the application of this
method to other geometries of waveguides, in addition to the curved rectangu-
lar waveguides studied in this research. Additionally, investigating the use of
the sources of current proposed in the variational formulation presented in this
study could further enhance the accuracy and efficiency of the methodology.
Such investigations could provide valuable insights and expand the scope of
applications of the proposed methodology in the field of electrical engineering.
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