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Abstract

Sánchez Pérez, Carlos; Carvalho, Márcio (Advisor); Maza, Dan-
mer (Co-Advisor). Microscale Flows of Thixotropic Liquids.
Rio de Janeiro, 2023. 111p. Tese de doutorado – Departamento de
Engenharia Mecânica, Pontifícia Universidade Católica do Rio de
Janeiro.
Many particle suspensions behave as thixotropic-viscous materials

and they are present in different industrial processes, including coating
applications. Specifically, the production of battery electrodes involves slot
coating of a thixotropic liquid. In most cases, the flow of slurries and other
particle suspensions is described by using a time-independent model that
assumes the viscosity to be solely a function of the local deformation rate.
However, the viscosity of thixotropic fluids is associated to the evolution
of its microstructuring level, which does not change instantaneously with
the shear stress (or deformation rate). In the case of imposing constant
shear stress (or shear rate), the microstructure evolves until reaching an
equilibrium state; but this process takes time. Even in a steady-state flow,
the liquid flows through regions where there are significant changes in the
levels of shear stress and the flow is transient in a Lagrangian point of
view. Therefore, assuming that the viscosity at each point of the flow is the
steady-state viscosity described by a time-independent model may lead to
an inaccurate flow description. The relative magnitude of the characteristic
response time of the liquid and the residence time of the flow becomes an
important parameter. This is particularly relevant in small scale flows with
very small residence time. Flows of a thixotropic-viscous liquid through
a constricted microcapillary and in a slot coating process were analyzed
here using two rheological models: a time-independent model (TIM) and
a thixotropic model that takes into account the liquid time-dependent
response. The resulting set of fully coupled, non-linear equations was solved
by the Galerkin and SUPG Finite Element Method. The results show that
the use of a TIM to describe thixotropic viscous materials, such as some
particle suspensions, can lead to very large errors on the predicted flow
behavior. Furthermore, time-independent models are not able to predict
complex flow phenomena, like hysteresis, which could lead to unstable flows.
These inaccuracies highlight the need for a more complete model that takes
into account time-dependency of the flowing liquid in a certain range of flow
parameters.
Keywords

thixotropy; time-independent model; particle suspensions; fluidity;
hysteresis;
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Resumo

Sánchez Pérez, Carlos; Carvalho, Márcio; Maza, Danmer. Escoa-
mentos a Microescala de Líquidos Tixotrópicos. Rio de Ja-
neiro, 2023. 111p. Tese de Doutorado – Departamento de Engenha-
ria Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.
Muitas suspensões de partículas se comportam como materiais tixotró-

picos e estão presente em muitos processos industriais, incluindo aplicações
de revestimentos de filmes finos. Especificamente, operações de extrusão de
fluidos tixotrópicos estão envolvidos na produção de eletrodos de baterias.
Na maioria dos casos, o escoamento de suspensões de partículas é descrito
por modelos independentes no tempo, que assumem que a viscosidade como
uma função somente da taxa local de deformação local. No entanto, a vis-
cosidade dos fluidos tixotrópicos é associada com a evolução do seu nível
de microestruturação que não muda instantaneamente com a tensão (ou
taxa de deformação). No caso da imposição de uma tensão constante (ou
taxa de cisalhamento), a microstrutura evolui até alcançar um estado de
equilíbrio, porém este processo leva tempo. Mesmo em escoamentos em re-
gime permanente, o líquido escoa através de regiões onde tem mudanças
significativas nos níveis de tensão, sendo assim o escoamento transiente de
um ponto de vista Lagrangiano. Então, assumir que a viscosidade, em todo
ponto do escoamento, é à viscosidade em regime permanente pode gerar
uma descrição errada do escoamento. A magnitude relativa do tempo de
resposta do líquido e do seu tempo de residência torna-se num parâmetro
importante, especialmente em escoamentos em pequena escala com tempos
de residência muito curtos. O escoamento de um líquido tixotrópico através
de um microcapilar com constrição e no processo de revestimento por ex-
trusão foram analisados aqui, usando dois modelos reológicos: um modelo
independente no tempo (TIM) e um modelo tixotrópico que leva em conta
a resposta transiente do líquido. O conjunto de equações não lineares foi
resolvido utilizando o método de Galerkin/SUPG de elementos finitos. Os
resultados mostram que o uso de um modelo simples TIM para descrever
materiais tixotrópicos, como suspensões de partículas, pode levar a erros
muito significativos na predição do comportamento de escoamento. Além
disso, os modelos independentes no tempo não têm a capacidade de pre-
dizer certos fenômenos de escoamento, como a histerese, que pode gerar
escoamentos instáveis. Essas imprecisões indicam a necessidade de usar um
modelo mais completo que considere a resposta transiente do líquido.
Palavras-chave

tixotropia; modelo independente no tempo; suspensões de partículas;
fluidez; histerese;
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1
Introduction

There are interesting and important fluids in industry and other human
activities that do not show the linear Newtonian behavior. The mechanical
behavior of complex liquids, such as polymeric solutions, waxy oils, muds,
pharmaceutical and cosmetic products, paints, clay suspensions, processed
food, among others [5, 10], cannot be described by a simple linear relationship
between shear stress and rate of strain.

A common behavior of complex liquids is that the viscosity varies
with the deformation rate, which is often modeled by empirical and time-
independent models (TIM) like Bingham, Power-law and Carreau. Table 1.1
presents the functional form and corresponding parameters of these models.

Table 1.1: Selected rheological models at steady state condition

Name Viscosity equation
Simple viscous models

Power-law [11] η =Kγ̇n−1

Carreau - Yasuda [12] η = η∞ + (η0 − η∞)[1 + (Ωcyγ̇)a]
n−1

a

Visco-plastic models, for σ ≥ σy

Bingham [13] η = σyγ̇−1 +K
Herschel-Bulkley [14] η = σyγ̇−1 +Kγ̇n−1

Lin et al. [15] (bentonite/laponite s.) η = ηadj(σ/σy)−1 +K ′(σ/σy)m + η∞
σ: shear stress, σy: yield stress stress; K: consistency index; n: flow-behavior index;

η0: zero-shear viscosity; η∞: infinite-shear viscosity ; ηadj , m, Ωcy, and K ′ are
fitting factors

The viscosity of the models presented in table 1.1 is solely a function of
the shear rate. Examples of non-linear relations between the shear stress and
shear rate for different fluids are shown in Fig. 1.1a. According to this non-
linear behavior, non-Newtonian fluids can be subdivided into three groups:
shear-thinning or pseudoplastic, viscoplastic, shear-thickening or dilatant [1].

Pseudoplasticity is the most common behavior of many different non-
Newtonian fluids. It is characterized by the decrease of viscosity as shear rate
increases. The fluids, which exhibit this behavior, are usually mathematically
modeled by the Power-law and Carreau-Yasuda models (shown in table 1.1),
where the value of n is lower than 1.
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Dilatant fluids exhibit the opposite behavior to pseudoplasticity, the
viscosity increases with increasing shear rate. They are also mathematically
modeled by the Power-law, but n>1.

Viscoplasticity is characterized by the existence of yield stress, which
must be exceeded before the liquid starts flowing (i.e. σ ≥ σy). Otherwise, the
material will deform elastically (or moves like a rigid body), if the external
shear stress applied (σ) is lower than the yield stress [1]. Viscoplastic fluids are
usually modeled by Bingham and Herschel-Bulkley models. A Bingham plastic
fluid has a linear flow curve for σ ≥ σy. In a most general fashion, viscoplastic
fluids are usually characterized by Herschel-Bulkley model.

Figure 1.1: Time-independent vs time-dependent viscosity fluids: a) Different
kind of time-independent non-Newtonian fluids, b) Representative data show-
ing thixotropy in a 54% (by weight) red mud suspension [1]

The viscosity of a liquid as a function of shear rate is usually measured
in rotational rheometers, where a shear rate is imposed according to the
selected rotational velocity. Then, the resulting torque is measured and the
corresponding shear stress is evaluated. The local viscosity is just the ratio
between shear stress and shear rate. At each imposed shear rate, it takes some
time for the shear stress to reach a steady state in complex liquids, as indicated
in Fig. 1.1b. This time-dependent behavior is associated with the evolution of
the liquid microstructure. For instance, many particle suspensions, like that
shown Fig. 1.1b, show a viscosity dependence on both shear rate and time. In
the example shown in Fig. 1.1b , the steady values are just achieved for times
larger than 2000 s at the lowest shear rate.

1.1
Definition of thixotropy

Freundlich [16] introduced the term of thixotropy, when rheology was
emerging as a discipline. However, the term was coined, by Peterfi [17], from
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the Greek words: Θίξιζ (Thixis: shaking or shearing) and τρέπω (Trepos:
turning or changing). Nowadays, thixotropy is generally defined as: continuous
decrease of viscosity with time, while a constant stress is applied to a sample
that has been previously at rest, and the subsequent recovery of viscosity in
time as the flow ceases [5, 18]. Time-dependence also implies “fluid memory”
which is associated with shear history [5].

Thixotropy is usually associated with reversible microscopic arrange-
ments of the particles in a suspension [2, 5, 9, 18, 19, 20, 21]. Different
microstructure arrangements, and their effect on the macroscopic rheological
properties of thixotropic materials, are illustrated in Fig. 1.2. Initially, there
is a highly structured material that is not flowing. However, if this material is
under shaking or shearing it will start flowing. Eventually, the liquid will be
completely unstructured and its viscosity may achieve a minimum value. As
this process is reversible, if the material is allowed to rest, the initial micro-
scopic arrangement is recovered when the liquid stops flowing.

Figure 1.2: Sketch of breakdown and build-up of a 3D thixotropic structure. ta
and tc are the characteristic times of the thixotropic material (Adapted from
[2, 3])

The times associated to changes in the particle arrangement at micro-
scopic scale are called characteristic times. They are denoted as ta and tc in
Fig. 1.2. ta is the avalanche time and it is associated to the breakage of inter-
particle bonds. On the opposite case, the construction time (tc) is associated
with the microstructure build-up. When the rates of breakage and formation
of interparticle bonds are balanced, a steady-state or equilibrium condition is
achieved. As a result, macroscopic rheological properties, like local viscosity,
also have steady-state values at this condition. Otherwise, these properties are
time-dependent.
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The opposite behavior to thixotropy is anti-thixotropy or rheopexy (in
some literature). The viscosity of the fluids that belongs to this class increases
as the liquid is under shaking or shearing.

Both thixotropic and anti-thixotropic behaviors are reversible by defini-
tion [5, 19], although irreversible microstructure changes are also present in
everyday life. Some examples of irreversible microstructure changes are asso-
ciated to chemical reactions, like reacting polymers or in drying cement [5].
Nevertheless, these kind of applications are beyond to the scope of this thesis.

Shear stress history also affects the viscosity of time-dependent fluids.
The shear stress of a time-independent liquid is unaffected by the direction of
change of the shear rate. Figure 1.3 shows the shear stress-shear rate curves
of two slurries. The curve of the slurry B (Black line) is the same whether the
shear rate has been increased or decreased during the experiment. That is the
behavior of a time-independent liquids. For slurry A (red line), the shear stress
measured as the shear rate has been raised is higher than the value obtained
as the shear rate has been decreased.

Figure 1.3: Hysteresis loop of a thixotropic slurry of lithium-ion battery (A),
retrieved from [4]

The hysteresis loop, shown in Fig. 1.3, is characteristic of a time-
dependent liquid. Generally speaking, the larger the enclosed area, stronger is
the time-dependent behavior of the material [1]. Likewise, structural hysteresis
is an inherent property of time-dependent liquids. The features of a hysteresis
loop also depend on duration of the shearing, the rate of increasing/decreasing
of shear rate and the past shear history of the sample [1].

It is possible to obtain a flow curve (steady-state viscosity curve) for a
particular thixotropic liquid, but it is necessary to allow it enough time to
accommodate itself to new flow conditions. For example, considering the red
mud suspension presented in Fig. 1.1b, there is an unique viscosity curve if the
viscosity at each shear rate is obtained after 2000 s (i.e. the viscosity values
become time-independent). So, in this case, the viscosity is solely a function
of the shear rate from this time and onward. On the other hand, there could
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be different viscosity curves for times lower than about 2000s and hysteresis
loops are registered for this time range. Considering an equilibrium expression
for viscosity in a complex flow, at which liquid particles are subjected to shear
stress changes as they flow through different regions at time scales lower than
the time required to achieve an equilibrium value of viscosity, may lead to
significant errors in the flow description.

Figure 1.4: Various types of response to a sudden reduction in shear rate (a):
b) viscoelastic; c) inelastic thixotropic; d) most general [5]

During the last decades, rheologists have striven to distinguish
thixotropic from viscoelastic behavior. In both cases, the stress evolution
after a step change in shear rate varies with time until reaching steady state.
The key experiment to distinguish both kind of fluids is a step down of shear
rate [5], as shown in Fig. 1.4. Viscoelastic fluids present a sustained decrease
of the stress (Figure 1.4b) . On the other hand, thixotropic fluids show an
instantaneous drop of the stress and an overall recovery of it after some time.
Inelastic thixotropic materials show a gradual increase of the stress, just after
of the sudden drop (Figure 1.4c). However, in the most general case, they have
a fast relaxation time and they finally experience a gradual and slow increase
of their stress, and viscosity, until achieving a stable value (Figure 1.4d).

Most thixotropic materials present time-dependent features in combi-
nation with plastic and viscoelastic responses. Materials that present this
behavior are classified as thixotropic-elasto-visco-plastic (TEVP) materials
[9, 18, 19, 22]. Elasticity is not present in ideal thixotropic materials. They
are classified as thixotropic-visco-plastic (TVP) materials. An example of liq-
uid that presents this response is laponite suspension. Among TVP materials,
there are few examples that present very low or null values of yield stress. The
last group is referred to thixotropic-viscous (TV) materials.

After considering thixotropic characterization, it is necessary to discuss
thixotropic modeling. This topic is addressed in chapter 2 in more detail. Most
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models are based on empirical parameters and phenomenological equations. In
addition, most models are restricted to ideal thixotropic materials. The works
by Souza Mendes and Thompson [9, 23, 24] presented two models applicable
to both TVP and TEVP materials. One of them is based on the traditional
structure parameter (λ) [24], reported by the vast majority of the literature,
while the other is based on the concept of fluidity (i.e. reciprocal of viscosity)
[9].

1.2
Rheological modeling of particle suspensions

Particle suspensions are characterized by solid particles dispersed in a
liquid phase. Despite the Newtonian nature of the solvent, the addition of
solid-dispersed phase introduces different non-Newtonian behaviors [25]. In
many cases, the addition of particles in a certain solvent is done to fulfill a
particular application.

Despite the nature of the solvent, there are many factors that influence
the rheological properties of a suspension, as for instance, the size of the parti-
cles. For example, colloidal systems (i.e. particle size smaller than 1 µm [26]),
like clay suspensions, usually exhibit thixotropic characteristics [27]. Further-
more, thixotropy has also been found in macroscopic or non-Brownian sus-
pensions, at which particle arrangements are also responsible for the increased
liquid viscosity [28]. Other variables that affect suspension rheological proper-
ties are particle volume fraction (φ), inter-particle interaction forces, particle
shape, spacial arrangement of the particle, and size- and shape- distribution
of the particles [25]. Non-spherical particles strengthen the thixotropic nature
of particle suspensions since they may form 3D arrangements in lower volume
fraction than that for spherical particles [2].

In spite of the complex nature of particle suspensions, they are usually
modeled by equations that do not consider the time-dependency originated
by the evolution of the particle structure. In fact, these equations describe
the liquid viscosity as a function of the deformation rate only. Non-Newtonian
models like Bingham, Power-Law, Carreau, shown in table 1.1, are usually
employed to describe how the viscosity varies with shear rate.

The simplest model for shear-thinning fluids is the Power-law or Ostwald-
de-Walde equation. This model has important shortcomings, like the inability
of predicting the low and high shear plateaus η0 and η∞. Therefore, it is just
adequate in a very restricted operability range far from viscosity plateaus.
Despite this and other disadvantages, the Power-law model is the most widely
used in the literature dealing with industrial engineering applications [1]. On
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the other hand, Carreau-Yasuda model is able to predict the viscosity plateaus
and it is used when a better description of the flow is necessary.

A drawback of the Carreau-Yasuda model is its inability to model visco-
plastic fluids (i.e. materials which needs an initial stress to start flowing). Table
1.1 presents models that are used to describe visco-plastic liquids. Bingham
and Herschel-Buckley (HB) are widely used to model this class of fluids. The
latter is largely used to describe viscoplastic liquids that show shear-thinning
behavior. However, it is unable to predict viscosity plateaus. Lin et al. [15]
proposed a model which considers η0 and η∞ in the description of viscoplastic
liquids. Furthermore, Souza Mendes et al. [9] also proposed a steady-state
model for a laponite suspension with similar features as part of their thixotropic
model. The last model is discussed in detail in section 2.2.2.

As mentioned before, the rheological response of particles suspensions
strongly depends on the particle concentration. In fact, works, like Lin et
al. [15], have demonstrated the effect of the solid-phase concentration on
rheological parameters such as yield stress, consistency and flow indexes [25,
15]. Table 1.2 presents common models to describe how the viscosity changes
with particle concentration. As the concentration increases, the complexity of
the required equation increases as well. For example, Einstein’s model is only
valid for very diluted suspensions. Furthermore, particle interactions, shape
and distribution of particles, and other factors might restrict the applicability
range of a particular model.

Table 1.2: Selected rheological models based on particle concentration at steady
state condition

Name Viscosity equation
Rigid spherical particles

Einstein [29] η
ηsolv
= 1 +Bφ

Krieger-Dougherty [30] η
ηsolv
= (1 − φ

φm
)
−[η]φm

Non-spherical particles
Santamarıa-Holek & Mendoza [31] η

ηsolv
= [1 − ( φ

1−cmφ)]
−[η]

B: Einstein’s coefficient, φm: filling fraction at maximum packing, cm = 1 − φc/φc

where φc is the crowding factor, [η]: intrisic viscosity.

Precise flow models of particle suspensions should consider that particle
concentration φ is not uniform throughout the domain. Shear-induced particle
migration models, like that by Phillips et al. [32], are used to evaluate local
particle concentration in a flow.

The use of a time-independent model to describe flow of particle sus-
pensions and other complex liquids may lead to strong inaccuracies. In these
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models, the local viscosity is just a function of the local shear rate, and in some
cases also a function of the local particle concentration. As discussed before,
it takes some time for the viscosity to reach a steady-state value after a step
change in shear rate. TIM are not able to describe this behavior. It can be very
important if the flow characteristic time is in the same order of the avalanche
or construction time of the liquid.

Grillet et al. [6] compared measured viscosity values of a suspension,
of polydisperse alumina in polyether triamine, and values obtained from
the Carreau-Yasuda model during step changes of shear rate. As expected,
the model could not capture the transient response of the suspension under
changes in the equilibrium conditions. However, as the steady-state condition
is achieved, the time-independent model has an excellent agreement with the
experimental data, as shown in Fig. 1.5. The data about shear rate history and
other parameters are presented in table 1.3. The viscosity rate constant (κ) is
obtained from exponential fitting of the experimental data and it is inversely
proportional to the liquid characteristic time (i.e. ta or tc ). In the case of
an increase of shear rate, κ is inversely proportional to the avalanche time.
Otherwise, κ∝ 1/tc.

Table 1.3: Shear history data from Fig.1.5 [6]

Time Shear rate Steady-state viscosity Rate constant
(s) (s−1) at 70ºC (Pa.s) (s−1)

Pre-shearing (t<0) 2.00 - -
0 - 1999.7 0.02 58.2 0.002

2000 - 2199 0.20 11.3 0.068
2200 - 2399.7 2.00 4.2 0.102

2401.2 - 3398.7 0.20 11.2 0.010

Figure 1.5: Viscosity of an alumina suspension at 70ºC (expt’l data) vs
Carreau-Yasuda (model fit) [6]

Analyzing figure 1.5 and table 1.3, it is possible to affirm that the major
errors in modeling thixotropic flows by TIM are related to large characteristic
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times. For example, tc is about 2000 s in the first segment while ta is lower than
about 15 s in the second and third segments respectively. Then, it is possible to
explain the very poor fitting by Carreau-Yasuda model during the first build-
up step while it has a much better performance in the microstructure breaking
stages.

According to the results shown above, it might be possible to affirm that
it is adequate to employ TIM in case of short thixotropic characteristic times.
However, it might be very arbitrary to determine when the time is short or
large. As a result, it should be useful to establish a time of reference. In a
Lagrangian frame of reference (i.e. frame of reference that moves with the
material particle), a residence time might be a good choice. Actually, the ratio
between the liquid characteristic time and the flow residence time is defined
as thixotropy number [33]. The latter parameter defines the importance of
thixotropy impact in complex flows.

1.3
Small scale flows explored

In the present work, we have been particularly interested in small scale
flows, which generally present very short residence times and consequently
large thixotropic numbers.

First, the flow of thixotropic liquid through a constricted microcapillary
is analyzed. Despite its simplicity, the flow kinematics show regions of fully-
developed flow, regions of structure breakdown near the constriction , and
regions of buildup near the expansion. In order to evaluate the importance of
thixotropy in the flow, the flow predictions of a TIM and thixotropic model
are compared at different flow conditions. A sketch of a constricted capillary
is shown in Fig 1.6.

Figure 1.6: Sketch of half micro-channel with a constriction

The second application considered is the flow that occurs in slot coating
process. Coating is an industrial process where one or more liquid layers are
deposited on a surface; then they are dried or cured to form solid films to
serve a particular purpose [34]. This technique is used in the manufacturing of
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many products, including battery production. A sketch of this flow is shown
in Fig. 1.7. The suspension is pumped and delivered into a coating die. Then,
the coating liquid is applied onto a solid surface (substrate) through a narrow
slot. As a result, the suspension fills the gap between the adjacent die lip and
the substrate. The area covered by the suspension in the gap, bounded by the
upstream and downstream gas-liquid interfaces, is called coating bead.

Figure 1.7: Sketch of the slot coating process (Adapted from [7])

To maintain a stable coating bead and/or produce a thin deposited film
without defects, the upstream gas pressure is usually below ambient pressure
(Pvac shown in Fig. 1.7) by employing a vacuum chamber (Beguin (1954) as
cited by Rebouças et al.[35]). However, in some specific processes where thick
film is produced, vacuum pressure is not necessary [36].

Slot coating belongs to a class of coating methods known as pre-metered
coating. The thickness of the coated liquid layer (h) is set by the flow rate (q)
fed into the die and the speed of the moving substrate (Vw), i.e. h = q/Vw.
Therefore, it is independent of other process variables [37]. Thus pre-metered
methods are ideal for high precision coating. However, the uniformity of the
deposited layer and therefore the quality of the product depend on other
parameters, such as liquid viscosity and its rheology, vacuum pressure applied,
superficial tension, coating gap, slot die configuration, etc [38]. As a result,
there are limits in operating conditions of slot coating. Working beyond these
limits leads to a coating product with defects.

The most common defects related to the operating limits of slot coating
are: air entrainment, dripping and rivulets [38]. One of these operating limits
defines the minimum coated film thickness achievable (hmin), which is also
called low flow limit. Beyond this limit, the downstream free surface penetrates
into the coating bead. This phenomenon occurs since this air-liquid interface
is very curved, so it becomes unstable. As a result, it is registered a periodic
variation in the transverse section in the film thickness deposited onto the solid
surface. Eventually, the non-uniformity leads to alternating stripes of coated
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and uncoated layers, called rivulets [38, 39]. The other two operating limits
are defined by the vacuum pressure applied. If Pvac is too low, for a given
film thickness (h) , the downstream meniscus invades the coating bead and
rivulets could be formed in the coated layer. In the case of a too high Pvac, the
upstream meniscus invades the vacuum chamber. This phenomenon is called
dripping, at which the pre-metered characteristic of slot coating is lost.

The region bounded by the operating limits mentioned above, at which
a coating product is delivered with acceptable quality, is defined as coating
window. Figure 1.8 offers a sketch of typical coating window for Newtonian
fluids. Defining the limits of these windows is a difficult task, even for Newto-
nian fluids. Nevertheless, there is extensive literature about coating windows
for Newtonian liquids. For instance, Higgings and Scriven [40] analytically de-
fined the vacuum pressure and film thickness operating ranges, extending the
work of Ruschak [41]. The work by Higgings and Scriven [40] presents the
visco-capillary model used as a reference for coating of Newtonian liquids.
Furthermore, Carvalho and Kheshgi [37] presented a more extensive analysis
about the low flow limit; including theory, numerical and experimental work.
According to the latter paper, hmin could be much lower than that predicted
by the visco-capillary model at high capillary numbers.

Figure 1.8: Sketch of a typical coating window for Newtonian fluids (Adapted
from [8])

Yoon et al. [36] discuss the use of slot coating without applying vacuum.
Without vacuum pressure, slot coating is only able to provide thick coating
films, which are usually in the order of half of the coating gap. However, there is
demand of this kind of products for thick coated films, as for instance, battery
electrodes and membrane coatings. The model by Yoon et al. [36] is restricted
to Newtonian fluids, although they argue that the same principles might be
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applied to non-Newtonian fluids. However, battery slurries are usually strongly
non-Newtonian fluids with time-dependent behavior, which are not taken into
account in the available literature.

In the case of non-Newtonian coating, the literature is much more re-
stricted. However, there are various works where the rheology of the coating
liquid is considered. Many of this works have incorporated generalized Newto-
nian equations into the visco-capillary method. For instance, Tsuda [42] uses
the Power-law model and the pressure field equation proposed by Higgings
and Scriven [40]. The results show variations on the operability parameters
compared to the Newtonian models. Koh et al.[43] and Creel et al. [44] incor-
porated a more complex model, e.g. Carreau, to obtain the coating window for
complex fluids.

Lee et al.[45] incorporated viscoelastic liquids in their analysis by using
the Oldroyd-B equation (for a constant shear viscosity). They compared the
solutions for Newtonian liquids. Siqueira and Carvalho [7] determined the
operability limits for non-colloidal particle suspensions. The inclusion of time-
dependence response adds much more complexity and computing costs in
modeling a complex thixotropic flow. On the other hand, modeling complex
flows of thixotropic materials using models that neglect time-dependent effects
may lead to inaccurate predictions [33, 46]. In the particular case of slot coating
of particle suspensions, the inaccurate prediction of the process limits may lead
to the prediction of process conditions that will yield products with defects.

1.4
Objectives

The main goal of this work is to analyze small scale flows of thixotropic
liquids and determine the range of parameters at which neglecting the time-
dependent effect leads to inaccurate results.

Predictions were obtained using two rheological models: a thixotropic
model, where time-dependency is considered, and a time-independent model.
It was considered two small scale steady state flows of a non-Newtonian
suspension, which exhibits shear-thinning and thixotropy.

In small scale flows, the residence times are usually very short and
typically much lower than the characteristic times of thixotropic liquids.

1.5
Outline

This thesis is divided in six chapters.
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In this chapter, Chapter 1, a brief introduction to the problem is
presented.

Chapter 2 is a literature review about the different thixotropic models
that have been discussed in the literature and it is presented the model used
in this work

Chapter 3 provides a description of the numerical method used to solve
the resulting differential equations.

The results of the flow though a constricted microcapillary is presented
in Chapter 4.

Chapter 5 provides the results of slot coating flow modeling.
Finally, conclusions and future steps are presented in Chapter 6.
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2
Thixotropy Modeling

Thixotropy modeling is a difficult task. There are many complex phenom-
ena involved, which are difficult to put all together in a single model. Barnes
[2] argues that an ideal model should consider the physics behind thixotropy
at microscopic level, and consider for example: size and orientation angle of
particles, and density of the entanglements. The simplest models predict that
these parameters change instantaneously. However, the author explains that
the rheology-determining physical entity (i.e. microstructure) takes time to
change when the flow field around it has changed or is changing. Therefore,
it would be possible to predict the overall flow behavior if it is known how
microstructure change with stress.

Some authors have tried to consider the microstructure nature of
thixotropic materials as well its evolution in the rheological model. These mod-
els are called microstructural models [2, 18]. Fractal theory, population balance
and other considerations have also been employed. However, these models are
still under development and their applicability is restricted. In fact, most pop-
ulation balance models (PBM) focus mainly on the dynamics of aggregate
size distribution instead of rheological properties, although there is a growing
interest in constructing thixotropic constitutive models from them [18].

On the other hand, most research has been focused on studying the
impact of the microstructure changes on the bulk rheology. An example of this
class of models is structural kinetics models (SKM), which will be described
in the next section. These models have been the mostly used in research and
industry so far. However, they are restricted to thixotropic visco-plastic liquids.
Souza Mendes and Thompson [10, 24, 9] incorporated thixotropic liquids with
visco-elastic features in their models by employing mechanical analogues as
described in section 2.2. Other class of models uses a rational continuum
mechanics approach, where memory functions have been used [47, 48, 49].
Nonetheless, their applicability has been very restricted so far [5].
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2.1
Structural kinetics models (SKM) for inelastic thixotropic materials

Most models used to describe thixotropic liquids use a kinetic approach
to represent rupture and formation of bonds in the microstructure. A scalar
and empirical structure parameter λ is used to associate the degree of material
structuring to its bulk rheology. Despite the empirical nature of these models,
they have been relatively successful to describe inelastic thixotropic liquids.
The models, under this category, follow two general equations. The first relates
the stress to the deformation rate and structure level, while the second defines
the rate of structuring change [5, 50]:

σ(t) = f1[λ(t), γ̇(t)] , (2-1)

dλ

dt
= f2[λ(t), γ̇(t)] . (2-2)

For visco-plastic materials, Eq.2-1 is written as:

σ(t) = σy[λ(t)] + ηλ[λ(t), γ̇(t)]γ̇(t) + ηλ=0[γ̇(t)]γ̇(t) , (2-3)

the first term on the right-hand side of Eq. (2-3) represents the yield stress,
while ηλ and ηλ=0 are the structural and residual viscosities respectively. The
latter is related to the viscosity for a fully unstructure material. It is usually
assumed as a constant value (i.e. Newtonian behavior) or a Power law function
of the shear rate. Different expressions of the terms σy[λ(t)] and ηλ(λ(t), ˙γ(t))
are presented in table 2.1.

Table 2.1: Some relations between rheological parameters and the structure
parameter λ [5]

Author(s) σy(λ) ηλ(λ, γ̇)
Moore (1959) - λη0

Worrall & Tuliani (1964) σy,0 λη0
Tiu & Boger (1974) λσy,0 λK0γ̇n−1

Houska (1980) λ(σy,0 − σy,∞) + σy,∞ λK0γ̇n−1

Nguyen & Boger (1985) λσy,0 -
Toorman (1997) λσy,0 λη0

Coussot et al. (2002) - λaη∞

Regarding the evolution equation of λ, it is given by Eq. 2-4. Expressions
for the breaking up and build-up components have been proposed in the
literature and are shown in table 2.2.

dλ

dt
= −k1γ̇

aλb + [k2(1 − λ)c + k3γ̇
fσd(1 − λ)e] (2-4)
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Table 2.2: Expressions for the kinetic equations [5]

Author(s) Breakdown Build-up
(Brownian) (Shear)

Worrall & Tuliani (1964) k1λγ̇ - k3γ̇(1 − λ)
Houska (1980) k1λaγ̇ k2(1 − λ) -

Coussot et al. (2002) k1λγ̇ k2 -
Pinder (1964) k1λ2 k2 -

Lee & Brodkey (1971) k1σλb k2(1 − λ)c k3σd(1 − λ)e
Yziquel et al. (1999) k1λσγ̇ k2(1 − λ) -

Burgos (2001) k1γ̇eaγ̇λ k2(1 − λ) -

According to table 2.1, the terms from Eq. 2-1 are usually fitted in
different ways depending on the measured rheological response. Some works
like Souza Mendes [10, 19] and Souza Mendes and Thompson [23, 24] have tried
to unify thixotropic rheological equations in a constitutive model that is able
to describe the mechanical behavior of both inelastic and TEVP materials. In
fact, the models presented in this section are unable to describe viscoelastic
behavior in thixotropic liquids.

Regarding the evolution equation of λ, the terms of the equation are also
fitted using one of the models that have been proposed in the literature (as
shown in table 2.2).

2.2
Models based on mechanical analogues

In order to incorporate viscoelastic behavior in thixotropic models and
solve other issues presented in SKM, models based on mechanical analogues
have been proposed, such as those by Souza Mendes [19] and Souza Mendes
and Thompson [24]. The proposed models are based on Jeffreys mechanical
analogue, sketched in Fig. 2.1a. The inelastic version of the model is sketched
in Fig. 2.1b.

Figure 2.1: a) Representation of a TEVP liquid respond, and, b) representation
of a inelastic liquid respond by Jeffreys analogues

In the analogue presented in Fig. 2.1a, JS represents the elastic compo-
nent of the material and it is called the shear modulus of the microstructure,
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ηS is the structural viscosity, and η∞ is the viscosity for the fully unstructured
liquid. The total strain γ can be split into the elastic γe and viscous γv strains.

Based on the mechanical analogue presented in Fig. 2.1a, Souza Mendes
[19] proposed the model presented in Eq. (2-5). This equation resembles the
Oldroyd-B equation for viscoelastic fluids.

γ̇ +Ψ2γ̈ =
1
ηv

(σ +Ψ1σ̇) , (2-5)

where, Ψ1 = ηS/JS, Ψ2 = η∞
ηv

Ψ1, and ηv ≡ ηS + η∞. Ψ1 and Ψ2 are the relaxation
and retardation times respectively.

Equation (2-5) can be generalized for 3D flows. Therefore, the shear
stress intensity, defined as σ ≡

√
(1/2)trσ2 (tr is the tensor’s trace) , is replaced

by the tensor σ in Eq. (2-5). The shear rate (γ̇) is replaced by the tensor γ̇

(i.e. γ̇ = (∇ ⋅ v) + (∇ ⋅ v)T ). Furthermore, time derivatives are substituted by
upper convective derivatives:

γ̇ +Ψ2
▿
γ̇ = 1

ηv

(σ +Ψ1
▿
σ) , (2-6)

where,
▿

M = DM
Dt
−M⋅(∇v) − (∇v)T ⋅M , (2-7)

▿
M is an generic upper convective derivative, defined in Eq. (2-7). The term
DM
Dt is the total derivative defined as DM

Dt ≡ ∂M
∂t + v ⋅∇M .

Equation (2-6) can be reduced to a viscous fluid, as shown in Eq. (2-
8), which may represent the behavior of inelastic thixotropic materials. Ψ1

and Ψ2 are equal to zero for this kind of thixotropic fluids regardless their
time-dependent nature.

γ̇ = 1
ηv

σ (2-8)

2.2.1
Structure parameter approach

According to this approach, the material time dependency is associated
to the variation of the structure parameter λ with time. This approach has
the same principles of the SKMs for the λ’s evolution equation. Since this
parameter is just an auxiliary variable, the viscosity of the thixotropic material
is given as a function of λ and viscosity of reference. For example, Souza Mendes
[10, 19] considers the following expression:

ηv(λ) = (
η0

η∞
)

λ

η∞ , (2-9)
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where, η0 is the viscosity at steady-state condition when the liquid is fully
structured, while η∞ corresponds to the viscosity for the fully unstructured
thixotropic liquid . In addition, equation (2-9) is used to estimate the structure
parameter at equilibrium condition (λSS):

λSS(γ̇) = [
ln(ηSS(γ̇)) − ln(η∞)
ln(η0) − ln(η∞)

] (2-10)

There are several rheological time-independent models, which can be used
to obtained the expression ηSS(γ̇), like Herschel-Buckley (HB) model. Souza
Mendes and Dutra [51] proposed a modification of the HB model, Eq. 2-11,
where the infinite viscosity prediction (when σ < σy) is substituted by a low
shear-rate viscosity plateau (η0), followed an abrupt viscosity drop at the yield
stress value.

σ = [1 − exp(−η0γ̇

σy

)] (σy +Kγ̇n) (2-11)

Souza Mendes [10] proposed an evolution equation, Eq. 2-12, with similar
features to that employed for SKMs. However, this equation is applicable to 3D
flows. Furthermore, the breakdown term f(σ) depends on shear stress instead
of shear rate, as shown in Eq. 2-13. Likewise, this parameter is equal to zero
when σ = 0 and increases monotonically as stress increases. Actually, Souza
Mendes [10] argues that it is more adequate to consider shear stress and not
shear rate, since the former is responsible for the inter-particle bonds rupture.

Dλ

Dt
= ∂λ
∂t
+ v ⋅∇λ = 1

teq

[(1 − λ)a − f(σ)λb] , (2-12)

where, teq is the characteristic time associated to the λ change, while a and b are
positive dimensionless constants. In case of equilibrium condition is achieved,
i.e. Dλ

Dt = 0, the function f(σ) would be correlated to the liquid structure
parameter λSS at steady-state condition. Then, the f(σ) could be expressed
as:

f(σ) = [1 − λSS(γ̇)]a
(λSS(γ̇))b

( σ

ηv(λ)γ̇
)

c

(2-13)

Combining Eq. 2-12 and Eq. 2-13, we have:

Dλ

Dt
= 1
teq

{(1 − λ)a − [1 − λSS]a (
λ

λSS

)
b

( σ

ηv(λ)γ̇
)

c

} (2-14)
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2.2.2
Fluidity approach

Souza Mendes et al. [9] proposed an alternative approach to describe the
mechanical response of the liquid. The level of structuring of the material is
not characterized by the structure parameter λ but rather by fluidity (ϕv). The
latter parameter is traditionally defined as the reciprocal of the viscosity [52]:

ηv =
1
ϕv

(2-15)

The main advantage of this model, when compared to existing phe-
nomenological models for thixotropic materials, is that the evolution equation
that describes the microscopic state only involves material functions that are
directly measurable by means of standard rheological tests. In addition, the
model assumes that there is a one-to-one relation between the local fluidity ϕv

and the local microscopic state of the liquid.
Due to the advantages listed above, this model was selected as the

thixotropic rheological model used in this work. The analyses presented here
consider the flow of laponite suspension. The mechanical response of the liquid
is described by the analogue sketched in Fig. 2.2 for inelastic thixotropic
liquids.

Having in mind that ηv = ηs + η∞ and the analogue sketched in Fig. 2.2:

1
ϕv

= 1
ϕs

+ 1
ϕ∞

, (2-16)

where, ϕ∞ is the fluidity of the liquid when it is fully unstructured and ϕs

is the structural fluidity, which is directly related to the level of structuring
of the material. It reaches a minimum value ϕs0 when the material is fully
structured. According to the analogue, ϕv approaches ϕ∞ asymptotically as
the structuring level becomes low enough that ϕs >> ϕ∞ and it reaches the
minimum value ϕ0 when the material is fully structured.

Figure 2.2: Representation of the inelastic liquid respond by a Jeffreys analogue

A dimensionless fluidity, which ranges from 0 to 1, can be defined as:

ϕ∗v =
ϕv − ϕ0

ϕ∞ − ϕ0
(2-17)
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ϕ∗v = 0 corresponds to the maximum level of structuring, whereas ϕ∗v = 1
corresponds to the minimum level of structuring of the liquid. The level of
structuring, and therefore the fluidity, changes as the liquid flows through
regions of different stress values. The rate of change of the structuring level is
a function of the structuring level itself; the more structured is the material,
the faster its microstructure tends to break upon the imposition of a higher
stress. The rate of change of the material structure is also a function of the
local stress. Therefore, the rate of change of the normalized fluidity of the
material, which characterizes the level of structuring, is written as:

Dϕ∗v
Dt
= ∂ϕ

∗
v

∂t
+ v ⋅∇ϕ∗v = F(ϕ∗v , σ) , (2-18)

where, σ is the current shear stress intensity, defined as σ ≡
√
(1/2)trσ2.

In a steady state flow from the Lagrangian point of view, Dϕ∗v
Dt = 0 and

F(ϕ∗eq(σ), ϕ∗v) = 0. Therefore, ϕ∗v = ϕ∗eq(σ), where ϕ∗eq(σ) is the equilibrium
fluidity evaluated at the current stress state σ. It is obtained directly from the
flow curve of the liquid. Since ϕ∗eq is a function of the stress only, eq. 2-18 can
be written as:

Dϕ∗v
Dt
= ∂ϕ

∗
v

∂t
+ v ⋅∇ϕ∗v = F(ϕ∗v , ϕ∗eq(σ)) (2-19)

The function F(ϕ∗v , ϕ∗eq(σ)) can be obtained by imposing step changes
in the stress and measuring the transient evolution of the shear rate [9]. The
structure construction and destruction dynamics can be analyzed by imposing
downward and upward step changes.

Souza Mendes et al. [9] used a 2 wt% suspension of Laponite RD
(Rockwood Additives Ltd.) in water with 0.4 mol/L NaCl concentration. The
pH was adjusted to 10 with 0.04 mol/L of NaOH. We used this liquid as
reference here, the functional form of ϕ∗eq and F(ϕ∗v , ϕ∗eq(σ)) and their respective
rheological parameters used in the analyses presented in this thesis correspond
to those associated with the laponite suspension.

The rheological parameters presented in the work by Souza Mendes et
al. [9] were obtained by fairly standard rheological tests with a AR-G2 TA
instruments controlled-stress rheometer. They checked the inelastic behavior
of the laponite suspension employed. Then, it was determined the yield stress
(σy) and the zero-shear-rate fluidity (ϕ0) were obtained by a creep test. It
consists in imposing a shear stress (σf ) to a sample initially at rest. After
gradually increasing σf , it was found that σy ≈ 6 Pa. Regarding ϕ0, Souza
Mendes et al. [9] assummed that it is about zero since they do not observed a
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Newtonian plateau in the low stress range. However, this values is not strictly
equal to zero. Actually, Lin et al. [15] worked with laponite and bentonite
suspensions and they registered ϕ0 (i.e. η0 = 1/ϕ0) in the range of 10−5 − 10−3

(Pa.s)−1.
The equilibrium fluidity ϕ∗eq expression (Eq. 2-20), plotted in Fig. 2.3, is

obtained by curve fitting the steady-state shear viscosity measurements. In the
case of time-dependent fluids, it is necessary to allow enough time to ensure
achieving a real steady-state condition. The data is well fitted by Eq. 2-20.
The model parameters come from the curve fitting procedure:: K = 1 Pa.sn,
n = 0.32, and ϕ∞ = 64.1(Pa.s)−1 (i.e. η∞ = 1/ϕ∞). H(σ − σy) is the Heaviside
step function which is equal to 1 when σ > σy, otherwise it is equal to zero.

Figure 2.3: Normalized equilibrium fluidity as function of the ratio of shear
stress and yield stress, for a laponite suspension with σy = 6 Pa

ϕ∗eq =
1
σ
[ ∣σ−σy ∣

K
]1/nH(σ − σy)

(ϕ∞ − ϕ0) + 1
σ
[ ∣σ−σy ∣

K
]1/n

(2-20)

To obtain the functional form of F(ϕ∗v , ϕ∗eq(σ)), it is necessary to perform
two kind of experiments: microstructure construction and destruction experi-
ments. In the first experiment, the liquid is allowed to achieved an equilibrium
condition by at a fixed shear stress σi. Suddenly, the stress is decreased to σf .
Then, the transient respond of the shear rate (γ̇) is registered until achieving
a new equilibrium condition, the latter is referred as ϕ∗eq(σf) or just ϕ∗eq. The
input and output of the construction experiment are illustrated in Fig. 2.4.

As shown in Fig. 2.4, there is a sudden decrease in the output shear rate
at t=0 (when the transient respond is started to be registered). The liquid
response is due to the rheological nature of time-dependent fluids. Since the
microstructure needs time to accommodate itself to new flow conditions (in this
case a change in shear stress), the liquid viscosity does not change immediately
and it takes time to achieve the equilibrium value. In the case of σf < σy, the
final fluidity will tend to ϕ0 and ϕ∗eq = 0. As a result, the liquid would tend
to gel and stop flowing. Otherwise, ϕ∗eq > 0 and the thixotropic material will
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Figure 2.4: Input and output of the microstructure construction experiment,
adapted from [9]

remain as a liquid but the level of liquid microstructuring is higher than at the
beginning of the experiment, as reflected in Fig. 2.5.

Figure 2.5: Output data and curve fitting of the microstructure construction
experiment for a laponite suspension, adapted from [9]

The experimental data plotted in Fig. 2.5 nicely collapse in the same
fitting curve, represented by Eq. 2-21. Souza Mendes et al. [9] averaged the
construction time, according to the case: if ϕ∗eq > 0 or ϕ∗eq = 0. In the first case,
the average tc was 663 s. In the second case, tc was 29 s.

ϕ∗v − ϕ∗eq

1 − ϕ∗eq

= exp (−t/tc) (2-21)

Diferentiating Eq. 2-21, it is possible to get an expression for the build-up
rate (i.e. ϕ∗eq < ϕ∗v ≤ 1):

Dϕ∗v
Dt
= −
(ϕ∗v − ϕ∗eq)

tc
, ϕ∗eq < ϕ∗v ≤ 1 (2-22)

It is clear that the construction time tc is the time scale for the build-up
of the microstructure. It is also a characteristic time of thixotropy , because,
as tc → 0, the rate described by Eq. 2-22 becomes infinite. It means an
instantaneous change of ϕ∗v which implies no-thixotropy. On the other hand,
the larger the tc the more thixotropic the material is [9].
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The expression of F(ϕ∗v , ϕ∗eq(σ)), in the range of 0 < ϕ∗v ≤ ϕ∗eq, is obtained
from the microstructure destruction experiment. The principles are similar
to those for the construction experiment. However, in this case, σf is always
higher than σy as shown in Fig. 2.6. In the beginning, the thixotropic material
which is not flowing (σi<σy). Then, it is imposed an increase of stress (i.e.
from σi to σf ). Then, the evolution of the shear rate until achieving a steady-
steady condition is recorded. The delay time between the application of the
test and the onset of observable flow is called as avalanche time, ta. Since in
the beginning, the material is not flowing, ϕ∗eq(σi) = 0. The final equilibrium
condition achieved is denoted as ϕ∗eq(σf) or just ϕ∗eq in Fig. 2.7.

Figure 2.6: Input and output of the microstructure destruction experiment,
adapted from [9]

Figure 2.7: Output data and curve fitting of the microstructure destruction
experiment for a laponite suspension, adapted from [9]

Fig. 2.7 presents the measured value of the fluidity during the microstruc-
ture destruction experiments at different conditions. The data is well fitted by
Eq. 2-23. The parameter s is a positive exponent which depends on ϕ∗eq. Like-
wise, ta also depends on ϕ∗eq, as shown in Fig. 2.8.

ϕ∗v = (ϕ∗eq +
ϕ0

ϕ∞ − ϕ0
) ts

tsa + ts
− ϕ0

ϕ∞ − ϕ0
(2-23)

The trend of the curves, shown in Fig. 2.8, is physically meaningful. For
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Figure 2.8: a) The exponent s, b) the avalanche time; as a function of the
equilibrium fluidity (adapted from [9])

example, as the difference between the applied stress (σf ) and σy increases the
values of ta and s decreases. Eventually, if σf is large enough, the associated
ϕ∗eq would approximately equal to 1 (which represents the maximum achievable
level of destruction of the microstructure). Then, in this extreme case, the
liquid’s respond tends to be instantaneous since ta → 0. Regarding the exponent
s, it tends to be equal to 1.2 when ϕ∗eq → 1.

Diferentiating Eq. 2-23 and making some arrangements and considera-
tions, like ϕ∞ >> ϕ0, it is obtained an expression for the rate of microstructure
breakdown, shown as:

Dϕ∗v
Dt
= s

taϕ∗eq

(ϕ∗eq − ϕ∗v)
s+1

s ϕ∗v
s−1

s , 0 < ϕ∗v ≤ ϕ∗eq (2-24)

To sum up, the rate of buildup and breakdown of the liquid structure,
i.e. F(ϕ∗v , ϕ∗eq(σ)), is given by:

F(ϕ∗v , ϕ∗eq(σ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s
taϕ∗eq(σ)(ϕ

∗
eq − ϕ∗v)

s+1
s ϕ∗v

s−1
s , 0 < ϕ∗v ≤ ϕ∗eq

− (ϕ
∗
v−ϕ∗eq)

tc
, ϕ∗eq < ϕ∗v ≤ 1

(2-25)

The functional form for 0 < ϕ∗v ≤ ϕ∗eq represents the breakdown dynamics.
For the laponite suspension, the avalanche time ta and the exponent s are a
function of the equilibrium fluidity, as shown in Fig. 2.8. By curve fitting, is
obtained:
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ta = 59.2
(1 − ϕ∗eq)1.1

ϕ∗eq
0.4 , (2-26)

s = 8.0
eϕ∗eq/0.09 − 1

+ 1.2 . (2-27)

The functional form for ϕ∗eq < ϕ∗v ≤ 1 represents the structure buildup
dynamics. For the laponite suspension, the construction time (tc) is 663 s
when ϕ∗eq > 0. It is important to note that the presented funcional form of F
represents the behavior of the laponite suspension used as the base liquid in
our analysis. Other systems may present different funcitonal forms, but the
procedure to describe the transient response remains the same, no matter the
liquid system of interest.
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3
Computational solution

This chapter summarizes the set of partial differential equations (PDE)
used to describe the flow of thixotropic liquids and the numerical approach
used to compute approximate solutions.

3.1
Conservation equations

Liquid flow is described by mass and momentum conservation equations:

Dρ

Dt
+ ρ(∇ ⋅ v) = 0, (3-1)

ρ
Dv

Dt
= ρ [∂v

∂t
+ v ⋅ ∇v] = ∇ ⋅ T + ρb. (3-2)

Making some considerations for the particular cases studied in the
present work, Eqs. 3-1 and 3-2 can be simplified. For example, we consider
incompressible fluids (i.e. Dρ

Dt ≡ 0), steady-state flows (i.e. ∂v
∂t = 0), and

negligible body forces (i.e. b ≈ 0). The simplified mass and momentum
equations become:

∇ ⋅ v = 0, (3-3)

ρv ⋅ ∇v = ∇ ⋅ T , (3-4)

where v is the velocity vector, ρ is the liquid density, T is the stress tensor.
The stress tensor is split as T = −pI + σ, where p is the pressure field, I is
the identity tensor, and σ is the extra stress. In the case of inelastic fluids, as
explained in the previous chapter, the shear stress tensor (σ) and the strain-
rate tensor (γ̇) are related by the Newton’s law of viscosity, where ηv is the
local viscosity of the liquid.

σ = ηvγ̇ or γ̇ = ϕvσ, (3-5)

ϕv is called fluidity and it is just the reciprocal of viscosity (i.e. ϕv = 1/ηv).
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Since viscosity or fluidity are scalar values, most generalized Newtonian
models relate viscosity to strain-rate intensity as ηv = ηv(γ̇). The strain-rate
intensity (γ̇) is usually called deformation rate, and it is calculated as a function
of the second invariant (II) of the tensor, as follows [53]:

γ̇ =
√

1
2II =

√
1
2trγ̇

2 =
¿
ÁÁÀ1

2∑i
∑
j

γ̇ij γ̇ji , (3-6)

where γ̇ij is defined as γ̇ij = ∂ivj + ∂jvi in index notation. In 2D Cartesian
coordinates, the second invariant is calculated by the expression Eq. 3-7 and
the resulting shear rate is given by Eq. 3-8:

II = 4 [(∂vx

∂x
)

2
+ (∂vy

∂y
)

2
] + 2(∂vx

∂y
+ ∂vy

∂x
)

2
, (3-7)

γ̇ =
¿
ÁÁÀ1

2 {4 [(
∂vx

∂x
)

2
+ (∂vy

∂y
)

2
] + 2(∂vx

∂y
+ ∂vy

∂x
)

2
} . (3-8)

The stress intensity (σ) is evaluated from the extra stress tensor in the
same way.

In complex flows, even in most 2D Newtonian flows, there is no analytical
solutions for the governing PDE. As a result, it is necessary to solve the set of
coupled differential equations by numerical methods. Most of these methods
imply discretizing the domain. In the case of time-independent fluids that can
be described by steady-state models, in a domain with fix boundaries, it is
only necessary to discretize Eqs 3-3 and 3-4 coupled with chosen viscosity
function. In the case of flows of thixotropic liquids, it is necessary to include
the evolution equation of the structure parameter or fluidity. In the present
work, it was selected the model proposed by Souza Mendes et al.[9], which is
based on fluidity. The evolution of this variable is given by Eq. 3-9, where the
time-dependency is considered from the Lagrangian frame of reference.

v ⋅∇ϕ∗v − F(ϕ∗v , ϕ∗eq(σ)) = 0 , (3-9)

where, ϕ∗v is a normalized fluidity, while the functional forms of ϕ∗eq(σ) and
F(ϕ∗v , ϕ∗eq(σ)) are those that correspond to the laponite suspension used by
Souza Mendes et al.[9], and are defined as:

ϕ∗v =
ϕv − ϕ0

ϕ∞ − ϕ0
, (3-10)
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ϕ∗eq(σ) =
1
σ
[ ∣σ−σy ∣

K
]1/nH(σ − σy)

(ϕ∞ − ϕ0) + 1
σ
[ ∣σ−σy ∣

K
]1/n

, (3-11)

where H(σ − σy) is the Heaviside function,

F (ϕ∗v , ϕ∗eq(σ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s
taϕ∗eq
(ϕ∗eq − ϕ∗v)

s+1
s ϕ∗v

s−1
s , 0 < ϕ∗v ≤ ϕ∗eq

− (ϕ
∗
v−ϕ∗eq)

tc
, ϕ∗eq < ϕ∗v ≤ 1

(3-12)

For the time-independent model, it was considered the equilibrium
fluidity expression Eq. 3-11.

For the sake of simplicity, the explanation of the numerical and compu-
tational methodology starts by the time-independent model in section 3.2.1.
Then, time-independent flows with non rigid boundaries (i.e. free surfaces) are
incorporated in section 3.2.2. Finally, more complexity is added and thixotropic
fluids are incorporated in section 3.2.3.

3.2
Discretizing the system of differential equations by the Finite Element
Method

There are different methods used to numerically solve a system of non-
linear differential equations. Most of them involve discretization of the domain
and the differential equations. As a result, the system of differential equations
becomes in a set of algebraic equations. Then, the system of equations is solved
by linear algebra methods. Depending on the discretization method and the
refining of the domain grid, the numerical solution might be more or less
accurate. Higher accuracy usually implies in higher computational costs.

The oldest way of discretization is the finite difference method (FDM).
It is usually used with structured grids. The most widely applied method in
computational fluid dynamics (CFD) is the finite volume method (FVM). This
method is very versatile and can be employed in both structured and non-
structured grids. It discretizes directly the integral form of the conservation
laws [54]. However, its approximation is typically zeroth order and requires
very fine mesh to achieve accurate results.

The finite element method (FEM) is a higher order variational method. It
is a generalization of variational (i.e. the Rayleigh (1876) and the Ritz (1908)),
and weighted-residual ( i.e. the Galerkin (1915), least squares, collocation, etc)
methods [55, 56]. The domain is divided into elements. Figure 3.1 presents a
mesh used to discretize the flow domain in one example explored here, the flow
through a constricted microcapillary. Quadrilateral elements were used in the
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Figure 3.1: Finite discretization of a constricted micro-channel

analyses presented in this thesis.
The finite element method is based on the idea that the solution u

of a differential equation can be represented as a linear combination of
appropriately selected basis functions ψi in the entire domain of the problem
[55, 56]:

u =
N

∑
i=1
ciψi (3-13)

The coefficients ci are then determined such that the differential equation
is satisfied, often, in a weighted-integral sense [55]. The algebraic system of
equations that leads to the solution of the coefficients of the linear expansion
is obtained by setting N weighted residual equations to zero. The functions
used to compute the weighted residuals are called the weighting functions.

3.2.1
Weighted residual equations for the time-independent model

In this section, the weak-form of Eqs. 3-3 and 3-4 is presented. In
this way, Newtonian flow dynamics problems are solved by employing the
Finite Element Method (FEM). However, this methodology can be applied
to time-independent fluids as well considering local instead of global viscosity
(or fluidity). Carvalho and Valerio [56] provide a detailed explanation about
discretizing the mass and momentum conservation equations which is briefly
presented here. The weighted forms of these equations are written as:

Rc = ∫
Ω
[∇ ⋅ v]WcdΩ = 0 , (3-14)

Rm = ∫
Ω
[ρv ⋅ ∇v −∇ ⋅ T ] ⋅WmdΩ = 0 , (3-15)

where, Wc and Wm are weighting functions, which should be carefully selected.
Wc is a scalar function, while Wm is a vectorial function. Rc and Rm are the
weighted residues for the mass and momentum conservation laws. The domain
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area is denoted as Ω (as in Fig. 3.1) thus the integral of Eqs. 3-14 and 3-15 are
surface integrals.

Splitting up Eq. 3-15:

Rm = ∫
Ω
ρ(v ⋅ ∇v) ⋅WmdΩ − ∫

Ω
(∇ ⋅ T ) ⋅WmdΩ = 0 (3-16)

Eq. 3-16 can be expressed in a more convenient way, by using the identity
T ∶ ∇W = ∇ ⋅(T ⋅W )−(∇ ⋅T ) ⋅W , and the Gauss-Green-Ostrogradskii theorem
as:

Rm = ∫
Ω
ρ(v ⋅∇v) ⋅WmdΩ + ∫

Ω
T ∶ ∇WmdΩ − ∮

Γ
(n̂ ⋅ T ) ⋅WmdΩ = 0 (3-17)

Considering a 2D flow in Cartesian coordinates, the terms of Eq. 3-17
can be expressed as:

(v ⋅∇v) ⋅Wm =W1 (u
∂u

∂x
+ v∂u

∂y
) +W2 (u

∂v

∂x
+ v∂v

∂y
) , (3-18)

T ∶ ∇Wm =
∂W1

∂x
Txx +

∂W1

∂y
Txy +

∂W2

∂x
Tyx +

∂W2

∂y
Tyy , (3-19)

(n̂ ⋅ T ) ⋅Wm = fxW1 + fyW2 , (3-20)

where, fx and fy are components of a force in the domain border. n̂ is an
unitary normal vector. Since the time-independent model is a generalized
Newtonian model (GNM), the components of the tensor T are evaluated as:
Tij = −pIij + ηv(∂ivj + ∂jvi).

The terms expressed in Eqs. 3-18, 3-19, and 3-20 are substituted into
Eq. 3-17. In addition, the method of Galerkin is usually employed to solve this
kind of problems. The weighting functions are equal to basis functions. The
vectorial weighting function Wm belongs to a 2n-dimensional space which is
generated for the following functions:

Wm =
⎡⎢⎢⎢⎢⎣

W1

W2

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Space dim = 2n

(3-21)
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⟨
⎡⎢⎢⎢⎢⎣

ψ1

0

⎤⎥⎥⎥⎥⎦
,
⎡⎢⎢⎢⎢⎣

ψ2

0

⎤⎥⎥⎥⎥⎦
, . . . ,

⎡⎢⎢⎢⎢⎣

ψn

0

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n functions

,
⎡⎢⎢⎢⎢⎣

0
ψ1

⎤⎥⎥⎥⎥⎦
,
⎡⎢⎢⎢⎢⎣

0
ψ2

⎤⎥⎥⎥⎥⎦
, . . . ,

⎡⎢⎢⎢⎢⎣

0
ψn

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n functions

⟩

Defining the space of weighting functions in that way, the momentum com-
ponents in the conservation equation can be decoupled. Therefore, the first n
basis functions correspond to the first component of momentum conservation
equations since W2 = 0. Likewise, the last n functions correspond to the second
component of the momentum conservation equation since W1 = 0.

3.2.2
Free surface flows

Free surfaces, like those present in slot coating processes, adds much
more complexity in the discretization and solution of the resulting algebraic
equations. In fact, it is necessary to make other considerations compared to
those explained in the previous section. Actually, the position of free surfaces
and the corresponding physical domain are part of the problem to be solved.
Since they are unknown a priori, it is convenient to employ a fixed/reference
computational domain to solve the problem. Therefore, the mapping between
the computational domain and the physical domain makes the original free-
surface problem highly non-linear [57].

Previous works in our research group, like Valdez [8], Siqueira [57] , and
Romero [58], considered Newtonian and non-Newtonian flows in slot coating
applications. As a result, their computing work and expertise were used as
reference and adapted to the rheological models employed in this work. So,
it is only presented a summary of the considerations made in the works cited
above and the adaptations made.

Beyond the considerations and equations for a time-independent fluid,
explained in the previous section, it is necessary to consider the aspects
presented as follows. Firstly, it is convenient to employ a computational domain
(Ω′) to get the solution in the unknown physical domain (Ω). The borders of
both domains are Γ and Γ′ respectively. In order to transform the expressions
defined in Ω into equivalent equations defined in Ω′, a mapping is employed.
In this mapping, the position vector x = (x1, x2) from the physical domain is
linked to a vector ω = (ω1, ω2), which belongs to the computational domain
Ω′, as sketched in Fig. 3.2.

The transformation is carried out using the Jacobian matrix of the change
of coordinates:
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Figure 3.2: Mapping scheme between the physical and computational domain
in a slot coating process

∂x

∂ω
= JT =

⎛
⎝

∂x1
∂ω1

∂x2
∂ω1

∂x1
∂ω2

∂x2
∂ω2

⎞
⎠

(3-22)

The mapping, shown above, can be done by different techniques. The
most common ones are: the method of splines [59, 60], elliptic mesh generation
[61, 62], and the domain deformation method [63]. The present work makes use
of elliptic mesh generation, at which the inverse mapping ω(x) is the solution
of an elliptic differential equation:

∇ ⋅ (Dω ⋅∇ω) = 0 , (3-23)

where Dω is a symmetric tensor of diffusion-like coefficients, which controls
the spacing between the iso-lines of ω1 and ω2.

The mapping equation, i.e. Eq. 3-23, is also solved by the Finite El-
ement Method. After some arrangements and applying the Gauss-Green-
Ostrogradskii theorem, the weak form of Eq. 3-23 can be expressed as:

RE = ∫
Ω′
(∇WE ⋅Dω ⋅∇ω)∣∣JT ∣∣dΩ′+

− ∮
Γ′

n̂ ⋅ (Dω ⋅∇ω) ⋅WE
dΓ
dΓ′ dΓ

′ = 0
(3-24)

where ∣∣JT ∣∣ is the determinant of JT . The weighting functions of WE are the
same for Wm. Galerkin´s method is also used, and therefore the basis and
weight functions are the same. Regarding the position of a 2D free surface can

DBD
PUC-Rio - Certificação Digital Nº 1812735/CA



Chapter 3. Computational solution 53

be expressed as:

x =
⎡⎢⎢⎢⎢⎣

x

y

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n

∑
j=1
Xjψj

n

∑
j=1
Yjψj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3-25)

With Eq. 3-24 and the residual equations presented in the previous
section, Rc and Rm, we have the system of coupled equations to obtain a
flow solution in a free boundary problem.

3.2.3
Weighted residual equations for the thixotropic model

In the case of thixotropic liquids, the non-Newtonian model includes an
extra differential equation, which describes the evolution equation of fluidity.
The weak form of this evolution equation of fluidity is presented as follows:

Rt = ∫
Ω′
[v ⋅∇ϕ∗v − F(ϕ∗v , σ)]Wt∣∣JT ∣∣dΩ′ = 0 , (3-26)

where ϕ∗v is dimensionless fluidity which ranges from 0 to 1. Wt is the weighting
function for the fluidity evolution equation.

Gathering all weak forms of the differential equations, considering the
mapping between the physical and computational domain, and substituting the
weighting functions Wi by basis functions (Excepting in the weighted residual
equation for fluidity and the reason is explained in the next section); we have
the following set of weighting residuals:

Rci = ∫
Ω′
(∇ ⋅ v)ψci∣∣JT ∣∣dΩ′ , (3-27)

Rmi = ∫
Ω′
ρ(v ⋅∇v)ψmi∣∣JT ∣∣dΩ′ + ∫

Ω′
T ⋅∇ψmi∣∣JT ∣∣dΩ′+

− ∮
Γ′
(n̂ ⋅ T )ψmi

dΓ
dΓ′ dΓ

′ ,
(3-28)

REi = ∫
Ω′
∇ψEi ⋅ (Dω ⋅∇ω)∣∣JT ∣∣dΩ′ − ∮

Γ′
n̂ ⋅ (Dω ⋅∇ω)ψEi

dΓ
dΓ′ dΓ

′ , (3-29)

Rti = ∫
Ω′
[v ⋅∇ϕ∗v − F(ϕ∗v , σ)]ϑϕi∣∣JT ∣∣dΩ′ , (3-30)

where ψki are basis functions and ϑϕi are the weighting functions used for
fluidity, "i" is the index referred to degree of freedom.

3.2.4
Expansion of the unknown fields

According to the FEM formulation, the independent variables of the
problem are written as a linear combination of a finite number of basis
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functions:

v =
n

∑
j=1

Vjψmj , (3-31)

x =
n

∑
j=1

XjψEj , (3-32)

p =
m

∑
j=1
Pjψcj , (3-33)

ϕ∗v =
n

∑
j=1

Φjψϕj . (3-34)

Usually, the basis functions ψki are piecewise polynomials of low degree.
The basis functions used to expand the unknown fields, presented in Eqs. 3-31
- 3-34, are listed in table 3.1.

Table 3.1: Basis functions used to expand the unknown fields.

Variable Basic function
v Lagrangian biquadratic
x Lagrangian biquadratic
p Linear discontinuous
ϕ∗v Lagrangian biquadratic

Galerkin’s method (weighting functions = basis functions) is used to
solve the elliptic mesh generation, mass and momentum conservation equations
(denoted as ψki in Eqs. 3-27 - 3-29). The use of Galerkin’s method for Eq. 3-
30 generates numerical instabilities which affect the accuracy of the solution.
This phenomenon is remarkable in differential equations which are strongly
convective (i.e. with strong hyperbolic terms) [57]. The solution, of this issue,
is the implementation of the Streamline-Upwinding Petrov-Galerkin (SUPG)
formulation, where the fluidity weighting function is defined as:

ϑϕ = ψϕ + hU(v ⋅∇ψϕ) , (3-35)

where, ψϕ is the basis function and hU is the upwind coefficient, which was fixed
according to the characteristic size of the smallest element in the computational
mesh.

3.2.5
Element analysis

The computational domain is discretized with quadrilateral elements.
Accordingly, each element contains nine nodes: one at each corner, one at the
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midpoint at each side and one at the center. Figure 3.3 provides some details
of the element features.

Figure 3.3: Representation of the quadrilateral finite elements used to discretize
the flow domain

The velocity field, fluidity field and mesh coordinates are evaluated in
all nodes. Therefore, each these variables contains 9 degrees of freedom per
element. The center of each element, in particular, has also 3 degrees of freedom
related to the pressure field. The number of degrees of freedom for each variable
of the problem for a given element is summarized in the following table 3.2.

Table 3.2: Degrees of freedom of each variable per element

Variable Degree of freedom
v 9
x 9
p 3
ϕ∗v 9

It is important to note that pressure and fluidity are scalars, while
velocity and mesh coordinate are vectors. Therefore, the components of the
vector considered in the problem (i.e. 2D or 3D) should be taken into account
in estimating the total degrees of freedom in the simulation.

3.3
Solution of systems of non-linear equations by the Newton method

To get an acceptable solution of the system of equation mentioned above,
it is set a maximum tolerance (ϵ) of the L2-norm of the global residual vector
R(C,℘). C is the vector of the unknowns, while R is the residual vector
obtained from Eqs. 3-27 - 3-30. ℘ is a vector of flow parameters which also
affects the value of R. The residual vector is satisfied if:

R(C,℘) = 0 (3-36)
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The non-linear system (Eq. 3-36) is solved by Newton’s method, at which
the solution update is the solution of the system:

J∆C = −R(Ck,℘) , (3-37)
and,

Ck+1 =∆C +Ck , (3-38)

J is Jacobian matrix, defined as:

Jij =
∂Ri

∂Cj

. (3-39)

The elements of the Jacobian matrix can be obtained in an analytical or
a numerical way. Due to the complexity of the problem, in the present work,
they were obtained by a numerical method which considers central derivatives
as shown as follows:

Jij =
Ri(C1, ...,Cj + ϵ, ...) −Ri(C1, ...,Cj − ϵ, ...)

2ϵ (3-40)

The iterative process begins with a initial guess, C0, and it continues
until Eq. 3-36 is satisfied. It means that the L2 norm of the residual and
solution vectors should satisfy the following expression:

∣∣∆C ∣∣2 + ∣∣∆R∣∣2 ≤ ϵ , (3-41)

where ϵ is usually 10−6.
In each iteration, the resulting Jacobian matrix J is solved by LU

decomposition using the Frontal method proposed by Hood [64]. Likewise,
it is not necessary inversion of the matrix J and ∆C is relatively easy to get
from Eq. 3-37.
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4
Flow through a constricted capillary

This chapter reports the results related to the first situation analyzed in
this work: flow through a constricted microcapillary. Despite being simple, a
fluid particle flows through a region at which the microstructure is in equi-
librium (before the constriction), through a region at which the structure is
destroyed (converging section) and through a region at which the microstruc-
ture is recovered (diverging section) until reaching equilibrium in the outlet
tube. Two rheological models are used. One is able to model thixotropy while
the other is a time-independent model that does not takes into account the
time dependent effects. The goal of this analysis is to compare the flow behavior
predicted by both models employed. This comparison will allow to determine
the condition at which a simple time-independent model is able to accurately
describe the flow.

In the analysis reported here, we used the laponite suspension used by
Souza Mendes et al. [9] as the flowing liquid. Most results and the methodology
shown here were published in Sanchez-Perez et al.[65].

4.1
Mathematical model

We consider a small-scale, steady-state flow of a non-Newtonian liquid
that exhibits shear-thinning and thixotropy. Gravitational forces are neglected.
The flow is described by incompressible mass and momentum conservation
equations:

∇ ⋅u = 0 , (4-1)
and,

ρu ⋅∇u = ∇ ⋅ T , (4-2)

where u is the velocity vector, ρ is the liquid density, T is the stress tensor.
The stress tensor is split as T = −pI + σ, where p is the pressure field, I is
the identity tensor, and σ is the extra stress. The latter obeys Newton’s law
of viscosity, σ = ηv(∇u +∇uT ), where ηv is the local viscosity of the liquid.
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4.1.1
Rheological models

Two different rheological models are considered in the analysis. The first
model neglects fluid time-dependent effects and assumes that the viscosity at
each point is a function of the local deformation rate γ̇. From now on, this
model is referred here as the time-independent model (TIM).

ηv = ηv(γ̇) (4-3)

The function ηv(γ̇) is obtained experimentally and it is generally referred
to as the liquid flow curve. As liquid of reference was used a laponite suspension,
described in section 2.2.2. The yield stress of the laponite suspension was low
and we set its value to zero to ease the numerical convergence. In addition,
this value was low for the suspension studied. Furthermore, ϕ0 was fixed at
10−3 (Pa.s)−1. The latter parameter is not strictly equal to zero and the
literature reports it in the range of 10−5 − 10−3 (Pa.s)−1. The flow curve and
the corresponding variation of ϕ∗eq with the local stress is presented in Fig. 4.1.

Figure 4.1: a) Steady state viscosity as function of the shear rate; b) Normalized
equilibrium fluidity as function of shear stress for a hypothetical suspension
with σy = 0 Pa and ϕ0 = 10−3(Pa.s)−1

The fluidity equation, ϕ∗eq, shown in Fig. 4.1, is given by:

ϕ∗eq(σ) =
1
σ
[ σ

K
]1/n

(ϕ∞ − ϕ0) + 1
σ
[ σ

K
]1/n

, (4-4)

where for the laponite suspension used as example by Souza Mendes et al. [9],
K = 1 Pa.sn, n = 0.32, ϕ∞ = 64.1(Pa.s)−1, and ϕ0 = 10−3(Pa.s)−1.

Having in mind the concept of fluidity (i.e. reciprocal of viscosity) and
the definition of normalized fluidity, the steady-state viscosity as a function of
the local stress is written as:

ηv(σ) = 1/ϕv = [ϕ∗eq(σ)(ϕ∞ − ϕ0) + ϕ0]−1 (4-5)
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The second model takes into account the fluid time-dependent response,
and is referred here as the thixotropic model. The mechanical response of the
liquid is described by the model proposed by de Souza Mendes et al.[9]. The
main advantage of this model, when compared to existing phenomenological
models for thixotropic materials, is that the evolution equation that describes
the microscopic state only involves material functions that are directly measur-
able by means of standard rheological tests. This model is described in detail
in section 2.2.2. The evolution equation for fluidity is written as Eq. 4-6. The
function that describes the rate of change of fluidity F (ϕ∗v , ϕ∗eq(σ)) is written
using two different functional forms, depending whether the structure is being
broken or recovered, as shown in Eq. 4-7.

v ⋅∇ϕ∗v = F(ϕ∗v , ϕ∗eq(σ)) , (4-6)

F (ϕ∗v , ϕ∗eq(σ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fb = s
taϕ∗eq(σ)(ϕ

∗
eq − ϕ∗v)

s+1
s ϕ∗v

s−1
s , 0 < ϕ∗v ≤ ϕ∗eq

fc = −
(ϕ∗v−ϕ∗eq)

tc
, ϕ∗eq < ϕ∗v ≤ 1

(4-7)

where, the avalanche time ta and the exponent s are a function of the
equilibrium fluidity, as shown in the previous chapter.

ta(ϕ∗eq) = 59.2
(1 − ϕ∗eq)1.1

ϕ∗eq
0.4 , (4-8)

s = 8
exp(ϕ∗eq/0.09) − 1 + 1.2. (4-9)

The functional form for ϕ∗eq < ϕ∗v ≤ 1 represents the structure buildup
dynamics. For the laponite suspension, the construction time is tc = 663 s.

For simplicity F (ϕ∗v , ϕ∗eq(σ)), from Eq. 4-7, is written as a single function
(not as function by parts) as follows:

F (ϕ∗v , ϕ∗eq(σ)) =H(ϕ∗v − ϕ∗eq)fc + [1 −H(ϕ∗v − ϕ∗eq)]fb , (4-10)

where, H(ϕ∗v −ϕ∗eq) is a smooth Heaviside function, which is given by Eq. 4-11,
and it is compared to the traditional Heaviside function in Fig. 4.2.

H(ϕ∗v − ϕ∗eq) =
1
2
{1 + tanh[m(ϕ∗v − ϕ∗eq)]} (4-11)

where, m is a scalar factor which is the steepness intensity of the smoothed
Heaviside function. In other words, if m is large the curve will be steep.

It is important to mention that the functional forms presented in Eq. 4-7
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Figure 4.2: Normal and smooth Heaviside functions vs fluidity for ϕ∗eq= 0.5
and m = 500

were proposed based on the rheological response of a laponite suspension. The
functional form F (ϕ∗v , ϕ∗eq(σ)) will change with the fluid rheological response.

4.1.2
Flow geometry and boundary conditions

We investigate the flow through a constricted capillary tube. Although
simple, the flow kinematics show regions of fully developed flow, at which
the fluidity is in equilibrium along every streamline, regions of structure
breakdown, in the converging section of the throat, and regions of structure
buildup, in the diverging part of the constriction.

Figure 4.3: Sketch of the flow domain (not to scale).

A sketch of the geometry of the problem is shown in Fig.4.3, where D
is the capillary tube diameter and d is the throat diameter, L is the capillary
length and l is the length of the constricted portion of the tube.

The boundary conditions for the flow through the constricted capillary
are the following. At the synthetic inflow plane, fully developed flow is assumed.
The velocity u(r) profile at a set flow rate Q, which corresponds to a
equilibrium fluidity ϕ∗eq(σ(r)), is imposed. Along the capillary wall, the no-slip
and no-penetration conditions are imposed, i.e. u = 0. Vanishing radial velocity
and zero shear stress are considered along the symmetry axis. A pressure value
pout = 0 is imposed along the synthetic outflow plane. Because the fluidity
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transport equation, Eq. 4-6, is hyperbolic, we only need to impose a fluidity
profile along the inlet plane. Because we assume a fully developed flow, the
value of the fluidity corresponds to the equilibrium fluidity at the local stress
level, i.e. ϕ∗v(r) = ϕ∗eq(σ(r)).

4.1.3
Velocity profile as boundary condition

Looking back the boundary conditions shown in Fig. 4.3, it is possible to
appreciate the necessity of imposing a coherent velocity profile at the capillary
inlet. In fact, this velocity profile corresponds to a fully developed flow at
equilibrium condition. An illustration of this flow is presented in Fig. 4.4.

Figure 4.4: Sketch of the microcapillary before the constriction: a) fully
developed flow, b) differential area of a portion of liquid

The fully developed velocity profile is obtained from Eq. 4.1. Combining
Eqs. 2-8, 2-15, 2-17, and 4-4 and considering ϕ∞ >> ϕ0, the local shear rate is
written as a function of local stress:

γ̇ = −du
dr
= σ

η∞ + σ
(σ/K)1/n

, (4-12)

η∞ is just the reciprocal of ϕ∞. The velocity profile is obtained by integrating
Eq. 4-12 and considering no slip at the capillary wall, i.e. u(R) = 0.

u(r) = ∫
R

r

σ

η∞ + σ
(σ/K)1/n

dr (4-13)

Making some arrangements and considering the dimensionless radial
distance ξ = r/R , we have:

u(ξ) = R∫
1

ξ

1
(σwξ)−1η∞ +K1/n[σwξ]−1/ndξ , (4-14)

where, σw is the wall stress.
The analytical expression for the integral of Eq. 4-14 is obtained by

applying the Newton’s binomial theorem. Two possible solutions exist:
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u(ξ) = R

1/n + 1 (
σw

K
)

1/n
[2F1(a, b; c;d∣ξ=1) − (ξ)1/n+1

2F1(a, b; c;d∣ξ)] , (4-15)

u(ξ) = Rσw

2η∞
[2F1(a∗, b∗; c∗;d∗∣ξ=1) − (ξ)22F1(a∗, b∗; c∗;d∗∣ξ)] , (4-16)

2F1(a, b; c;d∣ξ) and 2F1(a∗, b∗; c∗;d∗∣ξ) are Gaussian hypergeometric functions,
where:

a = 1, b = n + 1
1 − n, c = −

2
n − 1 , d = −

η∞( K
σwξ)

n−1
n

K
, (4-17)

and,

a∗ = 1, b∗ = 2n
n − 1 , c

∗ = 3n − 1
n − 1 , d

∗ = − K

η∞( K
σwξ)

n−1
n

. (4-18)

Gaussian hypergeometric functions 2F1(a, b; c;d) for ∣d∣<1 are defined by
power series [66]:

2F1(a, b; c;d) = 1 + ab
c

d

1! +
a(a + 1)b(b + 1)

c(c + 1)
d2

2! + ... =
∞
∑
i=0

(a)i(b)i
(c)i

di

i! , (4-19)

where (a)i, (b)i, and (c)i are Pochhammer symbols, which are rising factorial
numbers defined as:

(a)i = a(a + 1)(a + 2)(a + 3)...(a + i − 1) , (4-20)

(a)0, (b)0, and (c)0 are equal to 1 by definition.
The validity of Eq. 4-15 is restricted to the convergence of the hyperge-

ometric function 2F1(a, b; c;d), where ∣d∣ should be lower than 1 in the whole
domain. In other words, the critical point ξc (defined considering ∣d∣ = 1) should
satisfy the condition: ξc>1. At ξc=1, it is defined the critical wall stress σw,c;
which is given by Eq. 4-21. When σw < σw,c, the velocity profile is defined by
Eq. 4-15.

σw,c =K(Kϕ∞)
n

1−n (4-21)

For the rheological data by Souza Mendes et al.[9], n=0.32, K=1 Pa.sn,
and ϕ∞=64.1 (Pa.s)−1, σw,c is about 7.1 Pa. Therefore, the velocity profile for
σw<7.1 Pa is defined by Eq. 4-15. Otherwise, the velocity profile is given by
Eq. 4-22.
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u(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

uc + uI(ξ), 0 ≤ ξ ≤ ξc

uII(ξ), ξc < ξ ≤ 1

(4-22)

where,

uI(ξ) =
R

1/n + 1 (
σw

K
)

1/n
[(ξc)22F1(a, b; c;d∣ξc) − (ξ)1/n+1

2F1(a, b; c;d∣ξ)],

uII(ξ) =
Rσw

2η∞
[2F1(a∗, b∗; c∗;d∗∣ξ=1) − (ξ)22F1(a∗, b∗; c∗;d∗∣ξ)],

uc =
Rσw

2η∞
[2F1(a∗, b∗; c∗;d∗∣ξ=1) − (ξc)22F1(a∗, b∗; c∗;d∗∣ξc)],

and,

ξc =
K

σw

(Kϕ∞)
n

1−n .

uI(ξ) and uII(ξ) from Eq. 4-22 were obtained by arranging Eqs. 4-15 and 4-16
respectively and taking ξc into account. Since ∣d∗∣ = 1/∣d∣, it was considered the
velocity profile with 2F1(a∗, b∗; c∗;d∗∣ξ) when d>1 (i.e. ξc < ξ ≤ 1).

To estimate σw for a given volumetric flow rate Q, it is necessary to use
an iterative numerical methodology. As initial guess, it is estimated by the
analytical expression (Eq. 4-23) obtained from Power-law model.

σw =K [
(1/n + 3)Q

πR3 ]
n

(4-23)

σw obtained in Eq. 4-23 can be used to determine the wall stress coherent
to Eq. 4-4. The velocity profile is selected according to the value of σw

calculated. In the case of σw<7.1 Pa, it is selected the velocity profile given by
Eq. 4-15. Otherwise, it is selected the velocity profile given by Eq. 4-22. Then,
the assumed velocity profile is integrated according to Eq 4-24. After that, the
computed flow rate value Q (from Eq 4-24) is compared to the set value of the
volumetric flow rate. Since Power-law model tends to underestimate correct
values of Q, the value of σw is gradually increased until approaching the set
value of the volumetric flow rate.

Q = ∫
2π

0
∫

R

0
urdrdθ (4-24)

Following the procedure described above, it was estimated the value of
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Q at σw=7.1 Pa. The corresponding value of Q is 0.135 mm3/s. Therefore,
the velocity profile for Q<0.135 mm3/s is defined by Eq. 4-15. Otherwise, the
velocity profile is defined by Eq. 4-22.

Three velocity profiles are presented in Fig. 4.5. The profiles correspond
to Q=3.5, 0.05, and 0.0038 mm3/s respectively.

Figure 4.5: Dimensionless velocity profiles at the capillary inlet (n=0.32)

In Fig. 4.5, the velocity profiles are presented as the dimensionless ratio
u/ < u >, where < u > is the average velocity at the inlet (calculated as Q/πR2).
According to this graph, it is possible to appreciate the similarity between the
velocity profiles at Q=0.0038 and 0.05 mm3/s. On the other hand, the velocity
profile for Q=3.5 mm3/s is completely different compared to the other two
shown in the graph.

For very small flow rates Q, the corresponding values of σw and d are very
small as well. In the case of d → 0: 2F1(a, b; c;d∣ξ) → 1 and the dimensionless
form of the velocity profile given by Eq. 4-15 is very similar to that obtained
from Power-law model, which is presented in Eq. 4-25. This velocity profile
only depends on the parameter n for a fixed value of ξ.

u

< u > =
1/n + 3
1/n + 1[1 − (ξ)

1/n+1] (4-25)

As Q increases, d does not tend to zero anymore and the influence of
other parameters becomes important. Therefore, it is necessary to use more
complex velocity profiles like those presented in Eqs. 4-15 and 4-22.

4.1.4
Dimensionless numbers

A dimensional analysis of the problem suggests the definition of the
following dimensionless groups:
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1. Constriction ratio, defined as the ratio of throat to capillary diameter:

D ≡ d
D
.

2. Dimensionless constriction length, defined as:

l ≡ l

D
.

3. Reynolds number, which represents the ratio of inertial and viscous
forces, defined as:

Re ≡ 4ρϕ0

πD
Q.

Because of the small dimension and flow rate range, the maximum
Reynolds number of the cases explored here was ≈ 10−5. Therefore,
inertial effects are not important to the dynamics of the flow.

4. Dimensionless wall stress, which quantifies the flow strength in the
straight portion of the capillary, defined as:

τ ≡ K
σ∗
[ Q
πD3 (1/n + 3)]

n l

D
,

where σ∗ is the stress value at which the liquid is almost fully unstruc-
tured and the dimensionless equilibrium fluidity is equal to ϕ∗eq = 0.95.
For the fluidity model used here, Eq. 4-4, it is given by

σ∗ = [0.95
0.05K

1/n(ϕ∞ − ϕ0)]
n

1−n

.

For the rheological parameters of the laponite suspension [9], σ∗ = 28.3
Pa. High values of τ indicate that the liquid microstructure in the inlet
channel is almost fully broken; the flow through the high deformation rate
region near the constriction does not change the liquid microstructure
state.

5. Structure number, defined as the ratio of the liquid fluidity at the fully
unstructured and fully structured states:

Str ≡ ϕ∞
ϕ0
.

6. Power-law index n.

DBD
PUC-Rio - Certificação Digital Nº 1812735/CA



Chapter 4. Flow through a constricted capillary 66

7. Thixotropy number, defined as the ratio of the construction time to the
liquid residence time in the constriction region:

Λ ≡ 4Qtc
πD2l

.

This is the inverse of the Mutation number Mu, defined by Mours and
Winter [67] and discussed in detail by Jamali and McKinley [68].

All results reported here were obtained considering Str = 6.41 × 104,
D = 0.5 and l = 20.

4.2
Solution method

Numerical solutions were obtained via finite element approximations of
Eqs.4-1, 4-2, and 4-6 (when using the thixotropic model) with the appropriate
boundary conditions.

The independent variables of the problem, i.e. velocity, pressure and flu-
idity (for the thixotropic model) fields, are written as a linear combination of a
finite number of basis functions. Lagrangian biquadratic functions are used to
represent velocity field, linear discontinuous functions are used for the pressure
field, and Lagrangian biquadratic functions are used for fluidity. Galerkin’s
weighting functions are used in the residual equations of mass and momen-
tum conservation, whereas the stabilized Streamline-Upwind Petrov-Galerkin
formulation is applied to the fluidity transport equation. The upwinding pa-
rameter was defined as the characteristic size of the smallest element in the
computational mesh. These methods are explained in more detail in chapter
3.

The flow domain was divided into quadrangular finite elements using
a computational mesh with 7,900 elements and 32,431 nodes. Stretching
functions were used to concentrate elements near the contraction and channel
walls. The solutions were mesh-independent with this level of discretization.
The G/SUPG FEM formulation reduces the fully coupled, non-linear set of
differential equations to a large, sparse set of coupled, non-linear algebraic
equations with 120,993 degrees of freedom for the thixotropic model and
88,562 degrees of freedom for the generalized Newtonian model. The difference
corresponds to the fluidity degrees of freedom. The resulting set of non-linear
equations was solved by Newton’s Method with a numerical Jacobian matrix
calculated using a second-order central difference scheme. The tolerance on the
L2-norm of the Newton update and of the global residual vector were both set
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to 10−6. At each iteration of Newton’s Method, the linear system was solved
with a frontal solver based on the LU factorization scheme. Solutions were
obtained using a computer with an Intel Core i7-7700, 3601 MHz processor,
8.00 GB (RAM), 4 Cores. Each Newton iteration took approximately 39
seconds for the thixotropic model and 7 seconds for the time-independent
model.

4.3
Results and discussion

The main goal of the analysis is to compare the flow behavior obtained
by the time-independent model, which neglects time-dependent effects, and
the thixotropic model. The results reveal at which conditions a simple time-
independent model suffices to accurately describe the flow.

4.3.1
Parametric analysis, where ta = tc

Although the model was presented in the previous section with the
rheological parameters of the laponite suspension used by de Souza Mendes et
al.[9], we first present results of a parametric analysis to study the effect of the
characteristic time of the liquid, represented by the thixotropy number Λ, on
the flow dynamics, with all the other dimensionless parameters fixed. Therefore
the results discussed next do not represent the behavior of a particular fluid.
To simplify the analysis, the equilibrium fluidity ϕ∗eq as a function of the local
stress used in the parametric study is that of the laponite suspension [9],
described in Eq. 4-4. The avalanche time is set to be equal to the construction
time, i.e. ta = tc, and both are considered as the independent parameters in the
analysis. The Structure number is fixed at S = 6.41 × 104 .

Figure 4.6: Viscosity field near the capillary constriction at τ = 0.8: (a)
thixotropic model, Λ = 3.3, (b) thixotropic model, Λ = 776, (c) time-
independent model.

Figure 4.6 shows the viscosity field predicted by both models at τ = 0.8.
The thixotropic predictions shown are at Λ = 3.3 (a) and Λ = 776 (b). The
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Figure 4.7: Viscosity along the capillary wall for the time-independent model
and thixotropic model at different values Λ. τ = 0.8.

viscosity field in the time-independent model predictions is symmetric with
respect to z = 0; the viscosity is a function of the local deformation rate, which
is symmetric in low Reynolds number flow. For the thixotropic model, the
viscosity is a function of the liquid structure evolution along a streamline. The
viscosity field is not symmetric. At high thixotropy number, the liquid does not
have enough time to fully break its structure as it flows through the converging
section of the constriction. Clearly the viscosity predicted by the thixotropic
model near the throat is higher than that predicted by the time-independent
model. The viscosity along the capillary wall for the time-independent model
and for the thixotropic model at different values of Λ is shown in Fig. 4.7.
Upstream of the constriction, the viscosity is independent of Λ; the flow is
fully developed, and the fluidity is only a function of the local stress.

For the time-independent model, the viscosity is lower near the constric-
tion because of the higher shear rate in that region, reaching a minimum value
of η = 0.053 Pa.s. At Λ = 776, the construction time is so large that the rate
of change of the structure level almost vanishes. The viscosity is almost con-
stant along the capillary wall. The higher viscosity in the constriction region
leads to larger pressure difference. As the thixotropy number falls, i.e. as the
liquid response time decreases, the viscosity in the constriction region falls,
approaching the time-independent model profile as Λ→ 0.

At each set of parameters, the pressure drop ∆p∗ in the constriction
region, from z = −10 mm to z = +10 mm, was evaluated for both the thixotropic
model and time-independent model. The ratio between both pressure drops,
defined in Eq. 4-26, was computed as a function of the thixotropy number to
evaluate the effect of the time-dependent response of the liquid on the flow
characteristics.
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∆P ≡ ∆p∗thix

∆p∗GNM

(4-26)

The results are presented in Fig. 4.8 at dimensionless wall stress τ = 0.8.
The pressure drop ratio approaches ∆P → 1 as Λ → 0, the time-independent
model result is recovered as the construction time approaches zero. The
equilibrium fluidity and therefore the steady-state liquid viscosity is reached
almost immediately. At very high values of the thixotropy number, the pressure
difference ratio is close to ∆P ≈ 1.55. The pressure difference obtained using the
thixotropic model is 55% higher than that predicted by the time-independent
model. At these conditions, neglecting the time-dependent behavior of the
liquid leads to very inaccurate results.

Figure 4.8: Ratio between pressure drop predicted by the thixotropic model
and that predicted by the time-independent model as a function of Λ. τ = 0.8.

At higher dimensionless wall stress, e.g. τ = 3.82, the level of structuring
of the liquid is smaller and the viscosity along the capillary wall is lower; the
shear rate at the straight portion of the capillary is already high enough leading
to lower values of viscosity, as indicated in Fig. 4.9. The figure presents the
predicted viscosity field for the time-independent model and for the thixotropic
model at Λ = 6380. The liquid structure does not have enough time to be fully
destroyed as it flows through the constriction and it takes longer to built the
structure back downstream of the capillary throat.

Figure 4.10 presents the viscosity along the capillary wall as a function of
the thixotropy number Λ. The viscosity profiles approach the time-independent
results as Λ → 0. As in the case at lower dimensionless wall stress, the results
for the time-independent model show a lower viscosity in the throat. However,
the viscosity variation is much smaller. At Λ = 6380, the rate of change of the
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Figure 4.9: Viscosity field near the capillary constriction at τ = 3.82: (a)
thixotropic model, Λ = 6380, (b) time-independent model.

Figure 4.10: Viscosity along the capillary wall for the time-independent model
and thixotropic model at different values Λ. τ = 3.82

fluidity almost vanishes, the fluidity is constant along a streamline, leading to
an almost constant viscosity along the capillary wall.

Because of the lower viscosity range in the flow, the effect of liquid time-
dependency is weaker than in the case at lower dimensionless wall stress,
as indicated in Fig. 4.11. As in the previous case, the pressure drop ratio
approaches 1 as Λ → 0, the time-independent model result is recovered as the
construction time approaches zero. However, at very high values of thixotropy
number, the pressure difference ratio is only equal to ∆P ≈ 1.1. The pressure
difference obtained using the thixotropic model is only 10% higher than that
predicted by the time-independent model.

The results clearly show that the need to consider time-dependent effects
on an accurate flow model depends not only on the ratio of the characteristic
time of the liquid to the residence time of the flow, characterized here by the
thixotropy number Λ, but also to the strength of the flow, represented here by
the dimensionless wall stress. The dependence of the thixotropic behavior both
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Figure 4.11: Ratio between pressure drop predicted by the thixotropic model
and that predicted by the time-independent model as a function of Λ. τ = 3.82.

on the strength and the duration of the shearing history was discussed in detail
by Jamali and McKinley [68]. They constructed a general two-dimensional map
of thixotropic behavior.

4.3.2
Analysis according to the characteristic times (ta, tc) estimated for a
laponite suspension

For a given liquid, i.e. fixed rheological parameters, both the thixotropy
number and dimensionless wall stress vary with flow rate. The second set of
results, discussed next, analyzes the evolution of the flow behavior of a laponite
suspension [9] as the imposed flow rate Q varies. The equilibrium fluidity varies
with local stress as described in Eq. 4-4. The construction time is fixed at
tc = 663 s and the avalanche time ta varies with the equilibrium fluidity, as
given by Eq. 4-8.

The pressure difference predicted by the thixotropic model is compared
to that obtained with the time-independent model at different flow rates,
which implies different thixotropy number and dimensionless wall stress.
Low flow rates correspond to low thixotropy number and dimensionless wall
stress, whereas high flow rates correspond to high thixotropy number and
dimensionless wall stress. The results are presented in Fig. 4.12. The ratio of
the pressure difference predicted by both models is ∆P ≈ 1 at the highest flow
rate explored, i.e. highest thixotropy number and dimensionless wall stress. At
high enough flow rates, the pressure difference predicted by both models are
close; the flow behavior is well described by a simple time-independent model
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Figure 4.12: Ratio between pressure drop predicted by the thixotropic model
and by the time-independent model for the laponite suspension characterized
by [9] as a function of imposed flow rate, represented by Λ and τ .

and time-dependent effects can be neglected. Even though the thixotropy
number is high, which would lead to very slow rate of change of the liquid
structure level and therefore different flow behavior from a liquid that responds
instantaneously to the imposed local stress, the very high dimensionless wall
stress implies that the viscosity along the capillary wall is almost constant, in
the high shear rate plateau. As the flow rate falls, ∆P increases, reaching a
maximum value of ∆P ≈ 1.45 at Λ ≈ 102 (τ = 1.26). The pressure difference
predicted by the thixotropic model is 45% higher than that obtained using the
time-independent model. At lower flow rates, i.e. lower thixotropy number and
dimensionless wall stress, the pressure difference ratio ∆P decreases. Although
solutions could not be computed below Λ < 101, Newton´s method does not
converge, it is well known that the time-independent model predictions are
recovered at vanishing flow rates; ∆P → 1 as Λ → 0 and τ → 0. When
the residence time is much larger than the liquid characteristic time, the
material has enough time to recover its equilibrium state at every point and
the viscosity is only a function of the local deformation rate. This is the same
behavior discussed by Jamali and McKinley [68], which show that pronounced
thixotropic and hysteretic effects occur at intermediate values of the mutation
number (reciprocal of the thixotropy number used here).

The viscosity fields for both time-independent model and thixotropic
model at the conditions marked as A, B and C in Fig. 4.12 are presented in
Fig. 4.13. At the highest flow rate explored, marked as A, Λ ≈ 2×104 and τ ≈ 6,
the viscosity near the capillary wall is almost constant. The imposed stress
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Figure 4.13: Viscosity field near the capillary constriction predicted by both
the time-independent model (top row) and thixotropic model (bottom row) at
different imposed flow rates: Q = 3.5 mm3/s, τ = 6.12, Λ = 18,500 (left column);
Q = 5×10−2 mm3/s, τ = 1.57, Λ = 264 (center column); Q = 3.75×10−3 mm3/s,
τ = 0.69, Λ = 19.8 (right column);

along the wall, both in the straight section and in the throat, is high enough
that the liquid is fully unstructured. At an intermediate value of flow rate,
marked as B, Λ ≈ 102 and τ ≈ 1, the viscosity near the throat predicted by the
thixotropic model is much higher than that of the time-independent model. The
level of structuring is high, even though the stress level is high in that region.
In the limit of very low flow rate and consequently very high residence time,
the liquid has enough time to reach equilibrium and the predictions obtained
by both the time-independent model and the thixotropic model are similar. In
that case, ∆P ≈ 1. There is a range of thixotropy number and dimensionless
wall stress at which the liquid time-dependency cannot be neglected. Modeling
the flow taking into account only the shear dependency of the viscosity leads
to inaccurate predictions.
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5
Slot coating modeling

The second problem analyzed in this thesis is the flow of thixotropic liq-
uids in a slot coating process. Slot coating is largely used in the manufactur-
ing of functional films with particle suspensions, including battery electrodes.
These slurries show thixotropic behavior, which may affect the operability lim-
its of the process. Most analyses presented in the literature on slot coating of
particle suspensions do not include time-dependent effects of the coating liquid.
As in the previous chapter, two rheological models are used. One considers the
thixotropic behavior of the liquid and the other is a time-independent model
that neglects the time-dependent effects. Therefore, the goal of this analysis is
to compare the flow behavior predicted by both models employed.

This chapter also provides the mathematical methodology, including
description of the geometry and boundary conditions used.

5.1
Mathematical formulation

It was considered a small-scale, steady-state flow of a non-Newtonian
liquid that exhibits shear-thinning, viscoplasticity and thixotropy.

Gravitational forces are neglected. The flow is described by incompress-
ible mass and momentum conservation equations:

∇ ⋅ v = 0 (5-1)
and

ρv ⋅∇v = ∇ ⋅ T , (5-2)

where v is the velocity vector, ρ is the liquid density, T is the stress tensor.
The stress tensor is split as T = −pI + σ, where p is the pressure field, I is
the identity tensor, and σ is the extra stress. The latter obeys Newton’s law
of viscosity, σ = ηv(∇v +∇vT ), where ηv is the local viscosity of the liquid.
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5.1.1
Rheological models

Two different rheological models considered in the analysis. The first
model neglects fluid time-dependent effects and assumes that the viscosity at
each point is a function of the local deformation rate γ̇ and yield stress σy.
From now on, this model is referred here as the time-independent model.

ηv = ηv(γ̇, σy) (5-3)

The function ηv(γ̇, σy) is obtained experimentally and it is generally
referred to as the liquid flow curve. This model is obtained by the expression
of ϕ∗eq in section 2.2.2. ϕ0 was fixed in 10−3 (Pa.s)−1 to ease the convergence
and this value is not strictly equal to zero. In addition, the latter parameter
is registered in the range reported in the literature (10−5 - 10−3 (Pa.s)−1).
The plot of ϕ∗eq as a function of stress is presented in Fig. 5.1 for both yield
stress values: 0 and 6 Pa, respectively. The latter corresponds to a laponite
suspension obtained by Souza Mendes et al. [9].

Figure 5.1: Equilibrium fluidity as function of shear stress for σy = 0 and 6 Pa

The fluidity equation, ϕ∗eq(σ,σy), shown in Fig. 5.1, is given by:

ϕ∗eq(σ,σy) =
1
σ
[ ∣σ−σy ∣

K
]1/nH(σ − σy)

(ϕ∞ − ϕ0) + 1
σ
[ ∣σ−σy ∣

K
]1/n

(5-4)

where for the laponite suspension used as example by Souza Mendes et al.
[9], n = 0.32, ϕ∞ = 64.1(Pa.s)−1, and ϕ0 = 10−3(Pa.s)−1 . H(σ − σy) is a
Heaviside function. In this case, it was employed a smooth Heaviside function
as explained in section 4.1.1. Likewise, if σ > σy this function is equal to 1,
otherwise it is equal to zero. However, there is a smooth transition, between
values of σ just before and after the yield stress, by using the following
expression:

H(σ − σy) =
1
2 {1 + tanh[my(σ − σy)]} (5-5)
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where my is the steepness intensity of the smoothed Heaviside function.
Having in mind the concept of fluidity (i.e. reciprocal of viscosity) and

the definition of normalized fluidity, the steady-state viscosity as a function of
the local stress and yield stress is written as:

ηv(σ,σy) = 1/ϕv = [ϕ∗eq(σ,σy)(ϕ∞ − ϕ0) + ϕ0]−1 (5-6)

The second model takes into account the fluid time-dependent response,
and is referred here as the thixotropic model. The mechanical response of the
liquid is described by the model proposed by de Souza Mendes et al.[9]. The
main advantage of this model, when compared to existing phenomenological
models for thixotropic materials, is that the evolution equation that describes
the microscopic state only involves material functions that are directly measur-
able by means of standard rheological tests. This model is described in detail
in section 2.2.2. Considering a Lagrangian frame of reference, the evolution
equation for fluidity is written as Eq. 5-7. The function that describes the rate
of change of fluidity F (ϕ∗v , ϕ∗eq(σ,σy)) is written using two different functional
forms, depending whether the structure is being broken or recovered, as shown
in Eq. 5-8.

v ⋅∇ϕ∗v = F(ϕ∗v , ϕ∗eq(σ,σy)) (5-7)

where, F(ϕ∗v , ϕ∗eq(σ,σy)) is given by:

F (ϕ∗v , ϕ∗eq(σ, σy)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fb = s
taϕ∗eq
(ϕ∗eq − ϕ∗v)

s+1
s ϕ∗v

s−1
s , 0 < ϕ∗v ≤ ϕ∗eq

fc = −
(ϕ∗v−ϕ∗eq)

tc
, ϕ∗eq < ϕ∗v ≤ 1

(5-8)

where, the avalanche time ta and the exponent s are a function of the
equilibrium fluidity as shown in the previous chapter.

ta(ϕ∗eq) = 59.2
(1 − ϕ∗eq)1.1

ϕ∗eq
0.4 , (5-9)

s = 8
exp(ϕ∗eq/0.09) − 1 + 1.2. (5-10)

The functional form for ϕ∗eq < ϕ∗v ≤ 1 represents the structure buildup
dynamics. For the laponite suspension, the construction time is tc = 663 s.

For simplicity F (ϕ∗v , ϕ∗eq(σ,σy)), from Eq. 5-8, is written as a single

DBD
PUC-Rio - Certificação Digital Nº 1812735/CA



Chapter 5. Slot coating modeling 77

function (not as function by parts), as follows:

F (ϕ∗v , ϕ∗eq(σ,σy)) =H(ϕ∗v − ϕ∗eq)fc + [1 −H(ϕ∗v − ϕ∗eq)]fb (5-11)

where, H(ϕ∗v − ϕ∗eq) is a smooth Heaviside function. It was used the same
Heaviside function (with the same value of m) of that shown in section 4.1.1.

It is important to mention that the functional forms presented in Eq. 5-
8 were proposed based on the rheological response of a laponite suspension.
The functional form F (ϕ∗v , ϕ∗eq(σ,σy)) will change with the fluid rheological
response.

5.1.2
Flow geometry and boundary conditions

We investigate the flow in slot coating process. At the feed slot, the
flow kinematics show regions of fully developed flow, at which the fluidity
is in equilibrium along every streamline. However, as the liquid enters into
the coating bead, the initial equilibrium is perturbed. A liquid particle goes
through different regions of the flow, at which the Lagrangian variation of
the stress is complex. Since the thixotropic model takes into account the time
response to stress changes, modeling the liquid behavior as a thixotropic fluid
may lead to very different flow fields from those computed with a TIM.

A sketch of the geometry of the problem is shown in Fig. 5.2. It is possible
to visualize how the domain was discretized and what boundary conditions
were used. The boundary conditions are the same ones used by Rebouças et
al. [35], and Siqueira and Carvalho [7].

Figure 5.2: Sketch of the slot coater device simulated, including dimensions
and boundary conditions

The boundary conditions that were adopted are the following:

1. Moving substrate: No-slip and no-penetration conditions are used.
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u = Vw ; v = 0. (5-12)

Vw is the substrate velocity.

2. Outflow: Fully developed flow.

n̂ ⋅ ∇u = 0. (5-13)

and p = pamb, where pamb is the ambient pressure and its manometric
value is taken as a 0.

3. Free surfaces: The shear stress vanishes. Furthermore, there is a force
balance due to the external pressure and the capillary pressure originated
by the curvature of the free surface.

n̂ ⋅ u = 0 ; n̂ ⋅T = 1
Ca

dt
dsc

− n̂pg. (5-14)

t and n are the unit tangent and unit normal vector along the free surface,
while s is the arc length of the free surface and Ca is the capillary number.
In addition, Pg is the external gas pressure.

It is important to notice that Pg = Pamb at the downstream free surface,
while Pg = Pvac at the upstream free surface. Pvac is the pressure imposed
at the vacuum chamber, which is usually lower than Pamb. For given
values of Vw and h (film thickness), the value of Pvac defines the position
of the dynamic free surface (Xdcl).

4. Static contact line: Pinned at the corner of the die lip.

Xscl =Xcorner. (5-15)

5. At the solid walls: No-slip and no-penetration conditions are employed.

u = 0; v = 0 (5-16)

6. Inflow: Fully developed flow.

Figure 5.3 presents a sketch of the fully-developed flow in the feed slot.
q is the volumetric flow rate per unit width, an input parameter, b is the
width of the feed slot, and x is considered from the center of the feed
slot. As slot coating is a pre-metered method, deposited film thickness h
is only a function of the imposed flowrate and web speed, h = q/Vw.

The region bounded between −xc and xc in Fig. 5.3 is called unyielded
region, where the liquid behaves as a rigid solid and moves at constant
velocity. xc is defined as σyb

2σw
, where σw is the wall stress.
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Figure 5.3: Sketch (not-to-scale) of the suspension inflow into the feed slot

It is necessary to impose a coherent velocity profile at the feed slot inlet.
In fact, this velocity profile should correspond to a fully developed flow
and rheologically coherent to Eq. 5-6. Nevertheless, in the case of low
values of Vw and when σy is not considered, it is possible to use a velocity
profile obtained by the Power-law model (as an approximation):

v = 2 + 1/n
1 + 1/n (

q

b
)[(2x

b
)

1+1/n
− 1] ; u = 0. (5-17)

In the case of high values Vw or when σy is considered, the velocity profile
is obtained by numerically integrating the shear rate equation shown as
follows:

γ̇ = −dv
dx
= H(σ − σy)σ
η∞ + σ

(σ/K)1/n
(5-18)

v = −∫
b/2

x

σH(σ − σy)
η∞ + σ

[(σ−σy)/K]1/n
dx (5-19)

The Eq. 5-19 is obtained by integrating Eq. 5-18, considering the feed slot
inlet and Cartesian coordinates. As fully developed flow is assumed, it is
possible to relate the local shear stress to the wall stress as σ = 2xσw/b
(As shown in Fig. 5.3). Substituting this expression into Eq. 5-19 is
obtained the velocity profile required. Considering the dimensionless
length, ξ = 2x/b, and the Heaviside function, H(σ − σy), the velocity
profile needed is shows as:
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v =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−vmax, 0 ≤ ξ < ξc

− b
2 ∫

1
ξ

1
(σwξ)−1η∞+K1/n(σwξ−σy)−1/ndξ, ξc ≤ ξ ≤ 1

(5-20)

where, ξc is the dimensionless form of xc and equal to σy/σw. vmax is
estimated as follows:

vmax =
b

2 ∫
1

ξc

1
(σwξ)−1η∞ +K1/n(σwξ − σy)−1/ndξ (5-21)

For a given σw, the velocity profile is obtained by integration as shown
Eq. 5-20. The resulting velocity profile can be also integrated to get an
expression which relates q and σw:

q = b∫
1

0
∣v∣dξ (5-22)

As initial guess to estimate σw, the velocity profile obtained from the
Herschel-Bulkley (HB) model is used:

vHB =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−vmaxHB
, 0 ≤ ξ < ξc

−vmaxHB
[1 − (ξ−ξc)1/n+1

(1−ξc)1/n+1 ] , ξc ≤ ξ ≤ 1
(5-23)

where vmaxHB
is defined as:

vmaxHB
= b2 (

σw

K
)

1
n 1

1/n + 1
[(1 − ξc)1/n+1] (5-24)

Integrating Eq. 5-23 is possible to estimate the following expression,
which can be used to have an initial value of σw:

q = bvmaxHB
[1 − 1

1/n + 2(1 − ξc)] (5-25)

The initial estimation of σw can be numerically obtained from Eq. 5-
25. Then, the assumed value of σw is introduced in Eq. 5-20 to get an
assummed velocity profile. This velocity profile is integrated by using
Eq. 5-22 to get a qassumed. Then, qassumed is compared to the given value
of q. Since Herschel-Bulkley model tends to underestimate correct values
of q, the value of σw is gradually increased until qassumed ≈ q.
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5.1.3
Dimensionless numbers

The velocity of the moving plate (Vw) and the coating gap (H) are used
as characteristic velocity and length. The flow is governed by the following
dimensionless parameters:

1. Reynolds number, which represents the ratio of inertial and viscous
forces, defined as:

Re ≡ ρVwH/ηref ,

where, ηref is a reference viscosity. Re ranges from about 0.127 to 1.27.

2. Capillary number, which represents the ratio of viscous and interfacial
forces, defined as:

Ca ≡ ηrefVw/Γs,

where, Γs is the surface tension of the liquid.

3. Gap-over-thickness ratio, defined as:

G =H/h,

where, h is the film thickness.

4. Dimensionless vacuum pressure, defined as:

Pv = ∣Pvac,g ∣H/Γ.

where, Pvac,g is the gauge pressure of the gas at the vacuum chamber,
which is defined as: Pvac,g ≡ Pvac − Patm. Pvac and Patm are the absolute
vacuum and atmospheric pressures, respectively.

5. Dimensionless feed slot height, defined as the ratio of feed slot width to
coating gap:

S = b/H.

6. Power-law index n.

7. Structure number, which is defined as the ratio of the fluidity for a fully
unstructured liquid to the fluidity for a fully structured material:

Str = ϕ∞/ϕ0.
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8. Thixotropy number, which represents the ratio of the construction time
to the liquid residence time in the coating bead (or part of it), defined
as:

Λ = Vwtc/l.

This is the inverse of the Mutation number Mu, defined by Moors and
Winter [67], and discussed in detail by Jamali and McKinley [68].

In the calculations, it was used l = 1 mm. This parameter is the reference
length of the coating bead from the beginning of the feed slot, as shown
in Fig. 5.2.

All results reported here were obtained considering S=0.8 and Str=6.41×104.

5.2
Numerical formulation

Numerical solutions were obtained via finite element approximations of
Eqs. 5-1, 5-2, 3-23 and 5-7 (when using the thixotropic model) with the
appropriate boundary conditions. For slot coating results, it is necessary to
determine the position of the free surfaces. This is done by a mapping between
the unknown physical domain and a known computational/reference domain
according to the elliptic mesh generation method.

The independent variables of the problem, i.e. velocity, pressure, fluidity
(for the thixotropic model) fields, and mesh position are written as a lin-
ear combination of a finite number of basis functions. Lagrangian biquadratic
functions were used to represent the velocity field and mesh position, linear
discontinuous functions were used for the pressure field and Lagrangian bi-
quadratic for the fluidity field. Galerkin’s weighting functions are used in the
residual equations of mass and momentum conservation, and mesh equation,
whereas the stabilized Streamline-Upwind Petrov-Galerkin formulation is ap-
plied in fluidity transport equation. The upwinding parameter was defined as
the characteristic size of the smallest element in the computational mesh.

The flow domain was divided into quadrangular finite elements using
a computational mesh with 760 elements and 3225 nodes. In addition, the
domain was divided into 6 regions. The G/SUPG FEM formulation reduces
the fully coupled, non-linear model to a large, sparse set of coupled, non-linear
algebraic equations with 18,405 degrees of freedom for the thixotropic model
and 15,180 degrees of freedom for the time-independent model. The resulting
global set of non-linear equations was solved by Newton’s Method with a
numerical Jacobian matrix calculated using a second-order central difference
scheme. The tolerance on the L2-norm of the Newton update and of the global
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residual vector were both set to 10−6. At each iteration of Newton’s Method,
the linear system was solved with a frontal solver based on the LU factorization
scheme. Solutions were obtained using a computer with an Intel Core i7-7700,
3601 MHz processor, 8.00 GB (RAM), 4 Cores. Each Newton iteration took
approximately 47 seconds for the thixotropic model and 4 seconds for the
time-independent model.

5.3
Results and discussion

The main goal of this analysis was to evaluate the effects of thixotropy
on flow pattern and process limits. The solutions obtained with the TIM were
used as a base case to evaluate the time-dependent effect. All results where
obtained using the rheological data of a laponite suspension obtained by Souza
Mendes et al. [9]. Most results were obtained neglecting the yield stress to ease
the convergence in the simulations. However, solutions considering yield stress,
σy = 6Pa, were also obtained and presented here. The results are subdivided
according to the web speed, at low capillary number, at which Vw = 25 mm/s,
and high capillary number, at which Vw = 250 mm/s.

Since, the viscosity changes along the domain; it is necessary to consider
a reference viscosity (ηref ) for a particular value of Vw to determine the
dimensionless parameter of the flow. This viscosity is estimated by assuming
a shear rate equal to Vw/H. The corresponding capillary numbers at Vw =
25 and 250 mm/s are Ca = 0.021 and Ca = 0.074, respectively. The surface
tension was set to Γ = 60 mN/m.

Other important variable computed in the numerical solutions is the
position of the upstream moving free surface (Xdcl). Two limiting values of
this variable characterize important process limits: Xdcl = 0 marks invasion of
the upstream meniscus into the coating bead and characterizes the lower Pvac

values that leads to stable process, i.e. sets the low vacuum limit. By working
above this limit, the invasion of the upstream meniscus into the feed slot is
avoided. On the other hand, Xdcl= -1.5 mm marks the invasion of the upstream
meniscus into the vacuum box and corresponds to the maximum recommended
Pvac value. Likewise, working below this limit, invasion of the liquid into the
vacuum chamber is avoided.

The other important process limits is defined by the minimum film
thickness (hmin) or the maximum G ratio. It defines the thinnest film that can
be coated and it is characterized by the invasion of the downstream meniscus
into the coating bead. Some slot coating operations do not make use of a
vacuum box. In these cases, Patm−Pvac = ∣Pvac,g ∣ = 0 and the minimum possible
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film thickness when there is no vacuum pressure is represented by h0. These
process limits are represented in Fig. 5.4.

Figure 5.4: Sketch of a typical coating window for Newtonian fluids (Adapted
from [8])

5.3.1
Effect of thixotropy

The flow predicted using the TIM and the thixotropic model are com-
pared here. As discussed before, the viscosity curve considered in both models
are the same. In the comparison discussed in this section, the yield stress value
is set to zero.

We first focus on flow at G =2, i.e. the film thickness is equal half of the
gap. At G <2, the pressure gradient is negative, the pressure in the coating
bead is larger than atmospheric pressure and drives flow in the direction of the
web motion. At G=2, Newtonian or time-independent liquids, and negligible

Figure 5.5: Non-dimensional velocity profiles at X=1 mm for Vw=0.25, 2.50,
25.0 and 250 mm/s.
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inertial forces, the flow under the downstream die lip is a pure Couette flow.
The shear rate is constant, and the velocity profile is linear, as shown in Fig. 5.5.

Figure 5.5 shows the velocity profile under the downstream die lip
obtained with the time-independent model and the thixotropic model at
different web speeds. The velocity profiles for the flow of the thixotropic liquid
departs from linear and varies with web speed, except at the highest speed
explored, e.g. Vw = 250 mm/s. This flow behavior can be better understood
by analyzing the results presented in Fig. 5.6. The figure shows the viscosity
field predicted by the time-independent model and the thixotropic model
at Vw = 25 mm/s. In the feed slot, the viscosity fields predicted by both
models are equal. The flow is fully developed, and the microstructure is in
equilibrium; the viscosity is lower near the walls, where the shear rate is high,
and high in the mid-plane of the feed slot, where the shear rate is zero. For
the time-independent model, the viscosity is only a function of the local shear
rate. Therefore, as a liquid particle leaves the feed slot and flows under that
downstream die lip, its viscosity instantaneously reaches the viscosity defined
by the viscosity function. Since, at G = 2, the shear rate is constant under
the die lip, the viscosity is also constant. As a liquid particles flow from under
the die lip towards the film formation region, the shear rate drops and the
viscosity rises, reaching a high value as the plug flow state in the coated film
is approached. For the thixotropic model, the local viscosity is not only a
function of the local shear rate, but also from the stress history suffered by
the liquid particle. At Vw = 25 mm/s, the value of the thixotropy number is Λ
= 1.66×104, indicating that the characteristic flow time is much shorter than
the liquid characteristic time; a liquid particle does not have enough time to
accommodate to a new stress level. This time-dependency is clearly illustrated
in the viscosity fields of the thixotropic liquid shown in Fig. 5.6. The high
value of the viscosity in the middle of the feed slot is convected through the
flow. Under the downstream die lip, there is a layer of high viscosity liquid that
belongs to a streamline that passes through the mid plane of the feed slot. This
high viscosity layer continues to be convected in the film formation region and
in the coated layer. Far downstream the coated layer, a liquid particle will have
enough time to reach an equilibrium microstructure state and reach the high
viscosity associated with a low shear rate (shear stress). The results clearly
show that the liquid time-dependent behavior can drastically change the flow
characteristics.

At higher velocity, e.g. Vw = 250 mm/s, the velocity profile is very close
to linear, as shown in Fig. 5.5. The viscosity fields predicted by the time-
independent and thixotropic models are presented in Fig. 5.7. The pattern is
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Figure 5.6: Viscosity fields predicted by both the time-independent model
(top row) and thixotropic model (bottom row), near the upstream (left) and
downstream (right) free surfaces, considering: Vw=25 mm/s, G=2 and Xdcl =
0 mm.

Figure 5.7: Viscosity fields predicted by both the time-independent model
(top row) and thixotropic model (bottom row), near the upstream (left) and
downstream (right) free surfaces, considering: Vw=250 mm/s, G=2 and Xdcl

= 0 mm.

like the one presented in Fig. 5.6 and discussed before. However, the higher
web speed requires a much higher flow rate and consequently the range of
deformation rate (stress) observed in the flow is shifted to higher values, leading
to a lower range of viscosity values. Therefore, despite the high value of the
thixotropy number, e.g. Λ = 1.66 ×105, the variation of the viscosity within
the flow is weak and so is the thixotropy effect. As presented in the previous
chapter, for shear thinning liquids, thixotropic effects become negligible both
as Λ → 0 or Λ →∞., as discussed by Jamali and McKinley [68] and Sanchez-
Perez et al. [65].
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5.3.1.1
Operability limits at lower web speed

The results presented in this section compares the operability limits in
the plane of vacuum pressure and gap-over-thickness ratio predicted by both
rheological models at low web velocity, e.g. Vw = 25 mm/s. The corresponding
capillary and thixotropy number are Ca = 0.021 and Λ = 1.66×104 . The
operability limits predicted by the time-independent model are presented in
Fig. 5.8. The high vacuum limit (red squares) is characterized by the conditions
at which the dynamic contact line position is equal the length of the upstream
die lip, i.e. Xdcl = -1.5 mm, whereas the low vacuum limit (blue triangles)
is characterized by the conditions at which the dynamic contact line reaches
the feed slot, i.e. Xdcl = 0. The low flow limit (black circles) is marked by
the invasion of the downstream meniscus, characterized by a low contact
angle between the downstream meniscus and the downstream die lip. ∣Pvac,g ∣
is referred to the gauge vacuum pressure.

Figure 5.8: Slot coating operating window obtained from the TIM at Vw=25
mm/s.

Figure 5.9: Sketch of the procedure carried out to obtain the slot coating
operating windows.

The high and low vacuum limit curves were obtained from the numerical
solution in the following way, as sketched in Fig. 5.9: First a stable solution
at a G=2 was obtained with a value of vacuum pressure such that the
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dynamic contact line position was in the middle of the upstream die lip, i.e.
−1.5 mm < Xdcl < 0 mm. This flow state is labeled A in Fig. 5.9. The value
of vacuum pressure was slowly decreased, with all the other parameters fixed,
until Xdcl = 0 mm. This is the first point of the low vacuum limit curve. From
flow state A, the value of the vacuum pressure was also slowly increased until
Xdcl = -1.5 mm, which defines the first point of the high vacuum limit curve.
From the high vacuum limit state, the film thickness was slightly decreased,
which corresponds to a small increase in the value of gap-over-thickness ratio
G. As the flow rate is reduced, the dynamic contact line moves downstream,
and Xdcl > -1.5 mm. This flow state is labeled B in Fig. 5.9. From flow state B,
with a higher value of G, the vacuum pressure is again decreased and increased
until Xdcl = 0 mm and Xdcl = -1.5 mm, respectively. The procedure is repeated
until numerical solutions of the differential equations could not be obtained.
Figure 5.10 presents the flow at the onset of low and high vacuum limit at G
= 10. The low and high vacuum pressures were ∣Pvac,g ∣ = 273.2 Pa and ∣Pvac,g ∣
= 381.2 Pa, respectively.

Figure 5.10: Viscosity fields according to the time-independent model for
Vw=25 mm/s and G=10, at a) Xdcl=0 mm and b) Xdcl=-1.5 mm.

There is a value of gap-over-thickness ratio above which the downstream
meniscus invades the coating bead, which marks the onset of the low flow limit
(black circles in Fig. 5.8). At the conditions considered in this example, the
low flow limit occurs at G ≈ 43. The minimum thickness that can be coated is
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close to h ≈ H / 43. Figure 5.11 illustrates the flow configuration at the onset
of low flow limit.

Figure 5.11: Viscosity field according to the time-independent model for Vw=25
mm/s and G=43.3 at Xdcl=0 mm.

From flow state A, the procedure was repeated by now lowering the gap-
over-thicknessG to extend the high and low vacuum limit curves to lower values
of G until the later crosses the horizontal axis, which marks the maximum
value of G (or minimum value of the film thickness) possible when there is no
vacuum pressure. For the time-independent model used, this value was G0 =
1.23, considering a coating gap of 100 µm, the minimum thickness that can
be coated without a vacuum box is h ≈ 81 µm. At each value of G, there is
a small range of vacuum pressure at which the contact line is located on the
upstream die lip and the flow is stable. The level of vacuum pressure needed
rises as the film thickness becomes smaller.

The operability limits predicted when using the thixotropic model is
presented in Fig. 5.12. First, the high and low vacuum limit curves predicted
when using the thixotropic model were obtained following the same procedure
described before and sketched in Fig. 5.9. The predicted maximum gap-over-
thickness without vacuum was G0 = 1.18. Considering a coating gap of 100
µm, if a vacuum box is not used in the process, the minimum thickness that
can be coated is h ≈ 84.7 µm.

However, at approximately G ≈ 5.5, the procedure fails, and a solution
cannot be obtained. The sequence of flow states that leads to the computation
of the onset of process limits was changed and it was possible to construct the
low vacuum limit curve continuously up to G ≈ 10. From each flow state at the
low vacuum limit and different values of gap-over-thickness ratio above G ≈
5.5, vacuum pressure was increased until Xdcl = -1.5 mm. Figure 5.13 presents
a flow state at the high vacuum limit and G = 10. The results presented
in Fig. 5.12 show an interesting phenomenon: The computed high vacuum
limit curve is not continuous. The two branches of the curve were obtained
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Figure 5.12: Slot coating operating window obtained from the thixotropic
model at Vw = 25 mm/s.

Figure 5.13: Viscosity field according to the thixotropic model for Vw=25 mm/s
and G=10, at Xdcl=-1.5 mm.

using different continuation strategies of flow states until reaching the desired
condition. Two different flow states were obtained at the same flow conditions,
which indicates a hysteresis in the dynamics of the system. In practice, this
hysteretic behavior may lead to oscillation between the different stable flow
states. Figure 5.14 presents the two flow states computed at G = 5.45 and Vw

= 25 mm/s, with Xdcl = -1.5 mm. The first one, Fig. 5.14a, belongs to the low
G branch of the high vacuum limit curve and ∣Pvac,g ∣ = 778 Pa; and the second
one, Fig. 5.14b, to the high G branch of the curve with ∣Pvac,g ∣ = 618 Pa. The
figure presents the viscosity field and the streamlines near the exit of the feed
slot. The main difference between the solutions is the flow pattern near the
feed slot and under the upstream die lip. The higher vacuum pressure solution
presented in Fig. 5.14a shows a complex recirculation pattern, with two saddle
points and three recirculation centers. Part of the liquid coming out of the feed
slot flows upstream, filling the upstream part of the coating bead, and part of
the pumped volume flows directly downstream under the downstream die lip.
The lower vacuum pressure solution presented in Fig. 5.14b presents a much
simpler flow pattern. The recirculation under the upstream and downstream
die lips are merged and all the liquid coming out of the feed slot flows upstream
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around the vortex before flowing downstream.

Figure 5.14: Hysteresis phenomenon for Vw=25 mm/s, G=5.45 and Xdcl=-1.5
mm: a) ∣Pvac,g ∣ = 778 Pa and b) ∣Pvac,g ∣ = 618 Pa

A simple comparison between the operability limits presented in Fig.5.8
and 5.12 shows that the range of operating parameters, e.g. gap-over-thickness
ratio G and vacuum pressure Pvac, that leads to stable flow in the coating bead
is remarkably different. The range of vacuum pressure required to stabilize
the upstream meniscus predicted by the thixotropic model is much higher
than that predicted by the time-independent model. Figure 5.15 presents the
flow states computed using both rheological models at the onset of the low
vacuum pressure limit, i.e. Xdcl = 0, Vw = 25mm/s and G = 10. The necessary
vacuum pressure when using the time-independent model is ∣Pvac,g ∣ = 273.2
Pa, whereas it is ∣Pvac,g ∣ = 795 Pa for the thixotropic model. The figure shows
the computed viscosity field and the streamline pattern near the downstream
meniscus and the exit of the feed slot. The viscosity near the upstream meniscus
predicted by the thixotropic model is much higher than that predicted by the
time-independent model. In the later, the viscosity is only a function of the
local shear rate. Since the deformation rate under the die lip and close to the
dynamic contact line are very high, the liquid viscosity is low in that region.
With the thixotropic model, the liquid does not have enough time to change
its microstructure and lower its viscosity in response to a high stress region,
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leading to a higher viscosity fluid near the upstream meniscus. Therefore, a
higher vacuum pressure is required to push the upstream free surface upstream.

Another important difference between the two flow states is the con-
figuration of the downstream free surface. The meniscus curvature in the
time-independent model prediction is much smaller than that predicted by
the thixotropic model. This can be explained also by comparing the viscosity
field of both flows. It is important to remember that the downstream meniscus
curvature creates the necessary adverse pressure gradient when the flow rate
is low (thin coated film and high G). The more curved is the meniscus, the
stronger adverse pressure gradient is formed. The deformation rate in the film
formation region, e.g. 1.5 mm < X < 2 mm, is high due to the strong liquid
acceleration. This leads to a low viscosity region in the time-independent flow.
In the thixotropic flow, the viscosity is high in this region; the liquid does not
have enough time to respond to the high stress in that region. Therefore, the
necessary adverse pressure gradient in the thixotropic flow is higher than that
required in the time-independent flow, which explains the higher curvature of
the downstream free surface. This is also clear by comparing the velocity pro-
files under the downstream die lip at X = 1 mm predicted by both models and
shown in Fig. 5.16. Because of the high viscosity region near the web in the
thixotropic solution, a higher adverse pressure gradient is necessary to meter
the flow.

As discussed before, the configuration of the downstream meniscus has
a strong effect on the onset of the low flow limit. The higher curvature of
the downstream free surface observed in the thixotropic solution implies that
the low flow limit occurs at lower values of the gap-over-thickness ratio, with
implies that the minimum thickness that can be coated predicted with the
thixotropic model is much larger than that predicted when time-dependent
effects are neglected. The onset of the low flow limit predicted by the time-
independent model is approximately G = 43.3, whereas the value predicted
by the thixotropic model is close to G = 10.3. Considering a coating gap of
100 µm, a model that does not take into account the liquid time-dependent
response predicts that the minimum thickness that can be coated at the
conditions explored here is h ≈ 2.3 µm and would require a vacuum pressure
of ∣Pvac,g ∣ ≈ 650 Pa. When time-dependent effects are considered in the model,
the predicted minimum thickness that can be coated is h ≈ 9.3 µm and would
require a vacuum pressure of ∣Pvac,g ∣ ≈ 950 Pa.

The results discussed in this section clearly show that at low capillary
number, modeling coating flow of inelastic liquids that exhibit time-dependent
behavior, as particle suspensions, with a time-independent model can lead to
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Figure 5.15: Viscosity fields according for Vw=25 mm/s, G=10 at Xdcl= 0 mm,
according to: a) time-independent model and b) thixotropic model.

Figure 5.16: Non-dimensional velocity profile at X=1 mm, Vw=25 mm/s
and G=10 obtained from the thixotropic model (Thix) and time-independent
model (TIM).

very inaccurate predictions of operability window of the process. Moreover, the
solutions obtained with a thixotropic model show hysteretic behavior, at which
two different solutions were computed at the same set of flow parameters. This
may lead to strong oscillation of the flow.
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5.3.1.2
Operability limits at higher web speed

The results presented in this section compares the operability limits
in the plane of vacuum pressure and gap-over-thickness ratio predicted by
both rheological models at high web velocity, e.g. Vw = 250 mm/s. The
corresponding capillary and thixotropy number are Ca = 0.074 and Λ =
1.66×105. The operability limits predicted by the time-independent model are
presented in Fig. 5.17. The high vacuum limit (red squares) is characterized by
the conditions at which the dynamic contact line position is equal the length of
the upstream die lip, i.e. Xdcl = -1.5 mm, whereas the low vacuum limit (blue
triangles) is characterized by the conditions at which the dynamic contact line
reaches the feed slot, i.e. Xdcl = 0. The low flow limit (black circles) is marked
by the invasion of the downstream meniscus, characterized by a low contact
angle between the downstream meniscus and the downstream die lip.

Figure 5.17: Slot coating operating window obtained from the TIM at Vw=250
mm/s.

The high and low vacuum limit curves were obtained following the same
numerical solution path explained in the previous section 5.3.1.1 and sketched
in Fig. 5.9. Figure 5.18 presents the flow at the onset of low and high vacuum
limit at G = 7.6. The low and high vacuum pressures were ∣Pvac,g ∣ = 854 Pa
and ∣Pvac,g ∣ = 1439 Pa, respectively.

There is a value of gap-over-thickness ratio above which the downstream
meniscus invades the coating bead, which marks the onset of the low flow
limit (black circles in Fig. 5.8). At these conditions, the low flow limit occurs
at G=11.6. The minimum thickness that can be coated is close to h ≈ H / 11.
Figure 5.19 illustrates the flow configuration at the onset of low flow limit.

According to the results presented here and the previous section, there
is a much thicker hmin at Vw=250 mm/s compared to that at Vw=25 mm/s.
In fact, the corresponding values are h ≈ H / 11 and h ≈ H / 43 respectively.
The higher web speed requires much higher flow rate, which restricts the value
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Figure 5.18: Viscosity fields according to the time-independent model for
Vw=250 mm/s and G=7.6, at a) Xdcl=0 mm and b) Xdcl=-1.5 mm.

Figure 5.19: Viscosity field according to the time-independent model for
Vw=250 mm/s and G=11.6 at Xdcl=0 mm.

of the low flow limit reported as hmin or the maximum value of G. As the flow
rate increases at Vw= 250 mm/s and consequently the range of deformation
rate (stress) observed in shifted to higher values, leading in a higher range of
∣Pvac,g ∣ in the vacuum box as reflected in Fig. 5.17.

It was also obtained the maximum value of G (or minimum value of
the film thickness) possible when there is no vacuum pressure. The procedure
was same followed in section 5.3.1.1. For the time-independent model used,
this value was G0 = 1.62, considering a coating gap of 100 µm, the minimum
thickness that can be coated without a vacuum box is h ≈ 62 µm.
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The operability limits predicted when using the thixotropic model are
presented in Fig. 5.20. First, the high and low vacuum limit curves predicted
when using the thixotropic model were obtained following the same procedure
described before and sketched in Fig. 5.9. The predicted maximum gap-over-
thickness without vacuum was G0 = 1.63. Considering a coating gap of 100
µm, if a vacuum box is not used in the process, the minimum thickness that
can be coated is h ≈ 61 µm. This value very similar to that obtained from the
TIM.

Figure 5.20: Slot coating operating window obtained from the thixotropic
model at Vw=250 mm/s.

Figure 5.21: Viscosity field according to the thixotropic model for Vw=250
mm/s and G=7.6, at Xdcl=-1.5 mm.

However, at approximately G ≈ 5.2, the procedure fails, and a solution
cannot be obtained. The sequence of flow states that leads to the computation
of the onset of process limits was changed and it was possible to construct the
low vacuum limit curve continuously up to G = 7.6. From each flow state at the
low vacuum limit and different values of gap-over-thickness ratio above G ≈ 5.2,
vacuum pressure was increased until Xdcl = -1.5mm. Figure 5.21 presents a flow
state at the high vacuum limit and G = 7.6. The results presented in Fig. 5.20
show the same phenomenon presented at Vw= 25 mm/s: The computed high
vacuum limit curve is not continuous. The two branches of the curve were

DBD
PUC-Rio - Certificação Digital Nº 1812735/CA



Chapter 5. Slot coating modeling 97

obtained using different continuation strategies of flow states until reaching
the desired condition. Two different flow states were obtained at the same
flow conditions, which indicates a hysteresis in the dynamics of the system. In
practice, this hysteretic behavior may lead to oscillation between the different
stable flow states. Figure 5.22 presents the two flow states computed at G = 5.2
and Vw = 250 mm/s, with Xdcl = -1.5 mm. The first one, Fig. 5.22a, belongs to
the low G branch of the high vacuum limit curve and ∣Pvac,g ∣ = 1914 Pa; and the
second one, Fig. 5.22b, to the high G branch of the curve with Pvac = 1744 Pa.
The figure presents the viscosity field and the streamlines near the exit of the
feed slot. The main difference between the solutions is the flow pattern near the
feed slot and under the upstream die lip. The higher vacuum pressure solution
presented in Fig. 5.22a shows a complex recirculation pattern, with two saddle
points and two recirculation centers. Part of the liquid coming out of the feed
slot flows upstream, filling the upstream part of the coating bead, and part of
the pumped volume flows directly downstream under the downstream die lip.
Nevertheless, the upstream recirculation pattern shown in Fig. 5.14a at Vw =
25 mm/s at is more complex than that shown in Fig. 5.22a. The lower vacuum
pressure solution presented in Fig. 5.22b presents a simpler flow pattern. The
recirculation under the upstream and downstream die lips are merged and all
the liquid coming out of the feed slot flows upstream around the vortex before
flowing downstream.

A simple comparison between the operability limits presented in Fig.5.17
and 5.20 shows that the range of operating parameters, e.g. gap-over-thickness
ratio G and vacuum pressure ∣Pvac,g ∣, that leads to stable flow in the coating
bead is very different. The range of vacuum pressure required to stabilize
the upstream meniscus predicted by the thixotropic model is higher than
that predicted by the time-independent model. Figure 5.23 presents the flow
states computed using both rheological models at the onset of the low vacuum
pressure limit, i.e. Xdcl = 0, Vw = 250 mm/s and G = 7.6. The necessary
vacuum pressure when using the time-independent model is ∣Pvac,g ∣ ≈ 855 Pa,
whereas it is ∣Pvac,g ∣ = 1146 Pa for the thixotropic model. The figure shows
the computed viscosity field and the streamline pattern near the downstream
meniscus and the exit of the feed slot. The viscosity near the upstream meniscus
predicted by the thixotropic model is higher than that predicted by the time-
independent model. In the later, the viscosity is only a function of the local
shear rate. Since the deformation rate under the die lip and close to the
dynamic contact line are very high, the liquid viscosity is low in that region.
With the thixotropic model, the liquid does not have enough time to change
its microstructure and lower its viscosity in response to a high stress region,
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Figure 5.22: Hysteresis phenomenon for Vw=250 mm/s, G=5.16 and Xdcl=-1.5
mm: a) ∣Pvac,g ∣=1914 Pa and b) ∣Pvac,g ∣=1744 Pa

leading to a higher viscosity fluid near the upstream meniscus. Therefore, a
higher vacuum pressure is required to push the upstream free surface upstream.

Another important difference between the two flow states is the config-
uration of the downstream free surface. The meniscus curvature in the time-
independent model prediction is smaller than that predicted by the thixotropic
model. This can be explained also by comparing the viscosity field of both flows.
It is important to remember that the downstream meniscus curvature creates
the necessary adverse pressure gradient when the flow rate is low (thin coated
film and high G). The more curved is the meniscus, the stronger adverse pres-
sure gradient is formed. The deformation rate in the film formation region,
e.g. 1.5 mm < X < 2 mm, is high due to the strong liquid acceleration. This
leads to a low viscosity region in the time-independent flow. In the thixotropic
flow, the viscosity is high in this region; the liquid does not have enough time
to respond to the high stress in that region. Therefore, the necessary adverse
pressure gradient in the thixotropic flow is higher than that required in the
time-independent flow, which explains the higher curvature of the downstream
free surface. This is also clear by comparing the velocity profiles under the
downstream die lip at X = 1 mm predicted by both models and shown in
Fig. 5.24. Because of the high viscosity region near the web in the thixotropic
solution, a higher adverse pressure gradient is necessary to meter the flow.

DBD
PUC-Rio - Certificação Digital Nº 1812735/CA



Chapter 5. Slot coating modeling 99

Figure 5.23: Viscosity fields according for Vw=250 mm/s, G=7.6 at Xdcl=-1.5
mm, according to: a) time-independent model and b) thixotropic model.

Figure 5.24: Non-dimensional velocity profile at X=1 mm, Vw=250 mm/s
and G=7.6 obtained from the thixotropic model (Thix) and time-independent
model (TIM).

As discussed before, the configuration of the downstream meniscus has
a strong effect on the onset of the low flow limit. The higher curvature
of the downstream free surface observed in the thixotropic solution implies
that the low flow limit occurs at lower values of the gap-over-thickness ratio,
with implies that the minimum thickness that can be coated predicted with
the thixotropic model is larger than that predicted when time-dependent
effects are neglected. The onset of the low flow limit predicted by the time-
independent model is approximately G = 11.6, whereas the value predicted
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by the thixotropic model is close to G = 7.6. Considering a coating gap of
100 µm, a model that does not take into account the liquid time-dependent
response predicts that the minimum thickness that can be coated at the
conditions explored here is h ≈ 8.6 µm and would require a vacuum pressure of
∣Pvac,g ∣ ≈ 1088 Pa. When time-dependent effects are considered in the model,
the predicted minimum thickness that can be coated is h ≈ 13.2 µm and would
require a vacuum pressure of ∣Pvac,g ∣ ≈ 1146 Pa.

The results discussed in this section clearly show that at high capillary
number, modeling coating flow of inelastic liquids that exhibit time-dependent
behavior, as particle suspensions, with a time-independent model can lead
to inaccurate predictions of operability window of the process. Moreover, the
solutions obtained with a thixotropic model show hysteretic behavior, at which
two different solutions were computed at the same set of flow parameters. This
may lead to oscillation of the flow. Nevertheless, comparing the results at high
capillary number with those at low capillary number, the results at Vw = 250
mm/s show a lower impact of the time dependency. For example, there is
lower a difference between the low flow limit values predicted by both models.
In addition, the hysteretic effect seems weaker at high capillary number.

5.3.2
Effect of yield stress

All the solutions and discussions up to this point have considered
a vanishing yield stress. Particle suspension that exhibits time-dependent
inelastic behavior usually also have a non-zero yield stress value. Therefore,
it is important to analyze how the yield stress affects the flow pattern and
process limits. Including a non-zero yield stress makes the non-linearities of
the system of partial differential equations much stronger, which makes the
convergence process more challenging. For that reason, we limit the analysis
of the effect of yield stress to a limited number of cases.

A non-zero yield stress was included both in the time-independent and
thixotropic models. We considered the value of yield stress equal to that
measured for the laponite suspension analyzed by de Souza Mendes et al.
[9], e.g. σy = 6 Pa.

First, we consider the flow at G = 2, at which the film thickness is half of
the gap and, for time-independent model, the flow under the downstream die
lip is a pure Couette flow with a linear velocity profile. Figure 5.25 presents
the viscosity field and streamline patterns computed with the time-independent
model at (a) σy = 0 and (b) σy = 6 Pa at the onset of the low vacuum limit, i.e.
Xdcl = 0, at Vw = 250 mm/s. The vacuum pressure required, which represents
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Figure 5.25: Viscosity field according to the time-independent model at Vw=250
mm/s, G=2, and Xdcl=0 mm; for: a) σy=0 Pa (top) and b) σy=6 Pa (bottom).

the low vacuum limit, was ∣Pvac,g ∣ = 142 Pa at σy = 0 and ∣Pvac,g ∣ = 157.1
Pa at σy = 6 Pa. The vacuum pressure is 10.6% higher when yield stress is
considered. When considering a non-vanishing yield stress model, there are
unyielded regions within the flow, at which σ< σy. The differences in the
viscosity fields of both cases are small, mainly in the feed slot and in the film
formation region.

The predictions obtained with the thixotropic model at the onset of low
vacuum limit are presented in Fig. 5.26. When considering yield stress, the
viscosity in the coating bead is higher, which requires a higher vacuum pressure.
The onset of the low vacuum limit was ∣Pvac,g ∣ = 166 Pa at σy = 0 and ∣Pvac,g ∣
= 206.5 Pa at σy = 6 Pa; the required vacuum pressure with a non-vanishing
yield stress was 24.4% higher.

The flow at Vw = 250 mm/s, G = 2.8 and high vacuum limit (Xdcl = -1.5
mm) predicted by the thixotropic model with (a) σy= 0 and (b) σy = 6 Pa are
presented in Fig. 5.27. The onset of the high vacuum limit was ∣Pvac,g ∣ = 1050
Pa at σy= 0 and ∣Pvac,g ∣ = 1239 Pa at σy = 6 Pa; the required vacuum pressure
with a non-vanishing yield stress was 18 % higher. There are regions of higher
viscosity when yield stress is considered. This leads to a larger recirculation
under both the upstream and downstream die lips.
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Figure 5.26: Viscosity field according to the thixotropic model at Vw=250
mm/s, G=2, and Xdcl=0 mm; for: a) σy=0 Pa (top) and b) σy=6 Pa (bottom).

Figure 5.27: Viscosity field according to the thixotropic model at Vw=250
mm/s, G=2.8, and Xdcl=0 mm, for: a) σy=0 Pa (top) and b) σy=6 Pa
(bottom).
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6
Conclusions

In the final chapter of this thesis, the general conclusions from effects
of thixotropy in complex flows are presented. Suggestions for future work are
presented in section 6.3.

Small scale flows of thixotropic liquids were analyzed and the range of
parameters at which neglecting time-dependent effects might lead to inaccurate
results were determine. Two rheological models were used in the calculations:
a thixotropic model at which time dependency is considered, and a time-
independent model. The thixotropic model adopted here, was proposed by
Souza Mendes et al. (2018) [9], and is based on fluidity (i.e. reciprocal
of viscosity) instead of the traditional structure factor (λ). In the time-
independent model, the viscosity is solely dependent on the shear stress (or
shear rate). In order to illustrate time-dependent effects, the time-independent
model used corresponds to the equilibrium fluidity of the thixotropic model.
Both models were used to describe two small scale flows: through a constricted
microcapillary and in a slot coating process, where residence times are usually
very short.

6.1
Flow through a constricted capillary

In the first geometry considered, despite being simple, there are signif-
icant changes in the liquid structure state as a liquid particle flows through
different regions. In fact, a fluid particle flows through a region at which the
microstructure is in equilibrium (before the constriction), through a region at
which the structure is destroyed (converging section) and through a region at
which the microstructure is recovered (diverging section) until reaching equi-
librium in the outlet tube. Due to the time dependency of the liquid, the
behavior of the liquid particle in the constriction and the outlet tube may be
predicted differently by the rheological model used.

According to the time-independent model, the liquid instantaneously
adapts itself to the flow condition changes as it moves into the constriction. In
the converging part, it is predicted a sustained decrease of viscosity as defor-
mation rate increases. In the diverging part, it is predicted an instantaneous
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recovery of microstructuring level represented by a continues increase in vis-
cosity. In both sections, it is only considered the stress imposed on the liquid
particle. Eventually, the model predicts a recovery of the initial viscosity val-
ues (i.e. those before the constriction) when the liquid has just passed through
the constriction and goes into the outlet tube. On the other hand, complex
thixotropic flows are not steady in a Lagrangian frame of reference. In fact,
a thixotropic liquid particle may not have enough time to reach the steady-
state viscosity described by the rheological model at each point of the flow.
Therefore, the use of time-independent models may lead to inaccurate results.

For the laponite suspension used here, as example, the thixotropic model
predicts higher pressure drop at the constriction than the time-independent
model does. For certain range of flow and rheological parameters, this difference
could be about 50 %. It means that neglecting the liquid time-dependency
could lead to very erroneous results.

However, the pressure drops at the constriction predicted by the
thixotropic and time-independent models may be similar (i.e. the ratio of pres-
sure drops may be about one). First, at low enough flow rate, the thixotropy
number (i.e. ratio between liquid’s characteristic time and its residence time)
is low enough to allow the material to have time to achieve the equilibrium
(i.e. steady-state) viscosity at each point of the flow. In the other extreme, at
high enough flow rates, the dimensionless wall stress is high enough leading
to a fully unstructured liquid almost everywhere within the flow upstream the
constriction. Therefore, the viscosity along the microcapillary wall is almost
constant and does not change near the capillary throat.

6.2
Slot coating modeling

Slot coating is largely used in the manufacturing of functional films
with particle suspensions, including battery electrodes. These slurries show
thixotropic behavior, which may affect the operability limits of the process.
Most analyses presented in the literature on slot coating of particle suspensions
do not include time-dependent effects of the coating liquid.

In the present work, the effects of thixotropy on flow pattern and process
limits were analyzed. The solutions obtained with the time-independent model
were used as a base case to evaluate the time-dependent effects. All results were
obtained using the rheological data of a laponite suspension obtained by Souza
Mendes et al. [9].

For the laponite suspension, used as example, the results reveal that mod-
eling slot coating flow of inelastic liquids that exhibit time-dependent behavior
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with a time-independent model can lead to very inaccurate predictions of the
operability window of the process. Moreover, the solutions obtained with the
thixotropic model show hysteretic behavior, which a TIM is not able to pre-
dict. This behavior implies two different solutions at the same flow parameters,
which may lead to strong oscillation of the flow.

The most remarkable differences in the prediction of operability limits
were presented at the lower wed speed studied, Vw = 25 mm/s. For example,
the low flow limit predictions were: G ≈ 43.3 according to the time-independent
model, whereas G = 10.3 according to the thixotropic model. Considering a
coating gap of 100 µm, the model that does not take into account the time-
dependent response of the thixotropic material predicts that the minimum
thickness that can be coated at the conditions explored here is h ≈ 2.3 µm and
would require a vacuum pressure of ∣Pvac,g ∣ = 650 Pa. When time-dependent
effects are considered in the model, the predicted minimum thickness that can
be coated is h ≈ 9.3 µm and would require a vacuum pressure of ∣Pvac,g ∣ = 950
Pa.

6.3
Future work

Experimental work, in both constricted capillary and slot coating, could
be beneficial to validate the results properly.

It could be also very interesting to run the simulations in other geometries
with higher range of flow rate conditions. It might also be beneficial to include
data from various particle suspensions.
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