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Abstract

Marques, Guilherme de Azevedo Pereira; Colcher, Sérgio (Advisor).
A Cluster-Based Method for Action Segmentation Using
Spatio-Temporal and Positional Encoded Embeddings. Rio
de Janeiro, 2022. 59p. Dissertação de mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

The rise of video content as the main media for communication has
been creating massive volumes of video data every second. The ability
of understanding this huge quantities of data automatically has become
increasingly important, therefore better video understanding methods are
needed. A crucial task to overall video understanding is the recognition
and localisation in time of di�erent actions. To address this problem,
action segmentation must be achieved. Action segmentation consists of
temporally segmenting a video by labeling each frame with a specific
action. In this work, we propose a novel action segmentation method that
requires no prior video analysis and no annotated data. Our method involves
extracting spatio-temporal features from videos using a pre-trained deep
network. Data is then transformed using a positional encoder, and finally a
clustering algorithm is applied where each cluster presumably corresponds
to a di�erent single and distinguishable action. In experiments, we show
that our method produces competitive results on the Breakfast and Inria

Instructional Videos dataset benchmarks.

Keywords

Clustering; Action Segmentation; Deep learning; Positional
Encoding.
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Resumo

Marques, Guilherme de Azevedo Pereira; Colcher, Sérgio. Método
baseado em agrupamento para a segmentação de ações utili-
zando embeddings espaço-temporais e com codificação posi-
cional. Rio de Janeiro, 2022. 59p. Dissertação de Mestrado – Depar-
tamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

Vídeos se tornaram a principal mídia para a comunicação, com um
volume massivo de dados criado a cada segundo. Conseguir entender essa
quantidade de dados de forma automática se tornou importante e, por
conseguinte, métodos de video understanding são cada vez mais necessários.
Uma tarefa crucial para o entendimento de vídeos é a classificação e
localização no tempo de diferentes ações. Para isso, a segmentação de ações

precisa ser realizada. Segmentação de ações é a tarefa que consiste em
segmentar temporalmente um vídeo, classificando cada quadro com alguma
ação. Neste trabalho, é proposto um método de segmentação de ações que
não requer análise prévia do vídeo e nenhum dado anotado. O método
envolve a extração de embeddings espaço-temporais dos vídeos com redes
de aprendizado profundo pré-treinadas, seguida por uma transformação
realizada por um codificador posicional e pela aplicação de um algoritmo de
grupamento em que cada cluster gerado corresponde a uma ação diferente.
Os experimentos realizados demonstram que o método produz resultados
competitivos nos conjuntos de dados Breakfast e Inria Instructional Videos.

Palavras-chave

Clusterização; Segmentação de Ações; Aprendizado profundo;
Codificação Posicional.
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1

Introduction

In recent years, video streaming platforms and services have been growing
immensely. This growth has led to the production and consumption of a
massive volume of video data. For instance, in 2019 more than one billion hours
of YouTube videos were watched per day.1 Therefore, to e�ectively extract
information from this data, better video understanding methods are needed.

Video understanding methods aims to extract high-level semantic infor-
mation from videos such as activities, actions, objects and scenes. In particular,
a crucial task of video understanding is the segmentation in time of di�erent
actions that are present along a video (1, 2). In other words, this task aims to
provide answer for the following questions: (i) What are the actions and (ii)
when do the actions happen?

Figure 1.1: Video understanding goals and examples in the same color.2

To properly answer both questions we ought to define what is an action. A
few works in the literature have proposed definitions for actions (3, 4, 5, 6, 7, 8),
but the one we think is the most complete and in accordance to our goals is
the following from Herath et al. (8): “Action is the most elementary human-

1
https://kinsta.com/blog/youtube-stats/

2
https://feichtenhofer.github.io/pubs/teaching/IVUConvolutionalN etworksandV ideoRepresentations.pdf
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Chapter 1. Introduction 14

surrounding interaction with a meaning“. Where we can define the category
(e.g., take cup, pour co�ee) of an action by the meaning of its interaction.
Moreover, the surrounding in this definition might be a specific object that
enables a proper meaning for a given interaction. An important aspect in this
definition in our interpretation is that when thinking of actions as a hierarchical
breakdown of motions, one can derive meaning for an interaction as it better
suits the context of its task or objective. For instance, in Figure 1.2 one could
say that multiple actions are happening. First the throwing of the ball, followed
by the striking of the ball by the other player, until it stops. As a matter of
fact, there are even more sub-actions that form these actions described that it
may make sense for someone to call it an action as we have defined it. However,
this sequence of frames might also be regarded as a cricket shot, which in this
case is a single action, as it is in the Kinetics dataset (9). Therefore, even with
a definition, actions are context-dependent and subjective.

Figure 1.2: Sequence of actions or one action?

Initial e�orts focused on answering (i), the so called action recognition

task, which aims to classify trimmed videos with a single action (10, 11, 12, 13).
Early methods were primarily based on the extraction of hand-crafted features
(10), but more recently, deep learning methods became end-to-end learning
models with automatic feature extraction (11, 12, 13), achieving state-of-the-
art results.

Since in real-life situations videos are not always trimmed and may
have multiple actions, the research community started to address the complex
problem of action segmentation, which encompasses both questions (i) and (ii).
Action segmentation consists of temporally segmenting a video by labeling
each frame with a specific action. Such task might be of particular interest
for applications of surveillance, human robots interaction, medical diagnosis,
sports analytics, video recommendation and video summarisation (8, 4).

Although the performance achieved by fully supervised methods for
this task is encouraging, whenever we propose a fully-supervised approach,
there is a necessity for labelled data, which is a very challenging task. In
a supervised setting, solutions may require frame-level annotations that are
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Chapter 1. Introduction 15

incredibly laborious and time-consuming. For instance, a short video of 5
seconds with a frame rate of 30 frames per second would have 150 frames
to be labelled. Furthermore, actions might be subjective and there might not
be a clear definition about the exact temporal span of an action (14, 15),
which may be an indication that discovering action boundaries should be done
directly from data.

For this reason, researchers started focusing on methods with less super-
vision, such as weakly-supervised (16, 17, 18, 19) and unsupervised methods
(20, 21, 22). Most of these methods (17, 18, 19, 23, 24) are based on the idea
of generating pseudo-labels that are used to train supervised models. However,
the feature embeddings of these approaches are usually not e�ective due to the
high level of uncertainty introduced by these pseudo-labels. Therefore, in this
dissertation, we propose a cluster-based method for the temporal segmentation

of actions in videos.
Our method takes advantage of spatio-temporal feature spaces learned

from state-of-the-art action recognition models trained on large-scale datasets
to generate highly discriminative visual and motion representation of videos.
We break a video into short video clips and feed them to an action recognition
model, generating for each video clip a feature descriptor f œ Rd, where d is the
descriptor’s dimensionality. Thus for a video with t video clips it generates a
video representation V œ Rt◊d. We can then use V as the input for a clustering
algorithm, which already produces good results. However, common clustering
algorithms do not use the temporal position of these embeddings. Moreover, the
video snippets embeddings we generate are only capturing visual and motion
patterns within that temporal window and are ignoring long-range relations.
To mitigate this problem, we propose the usage of a positional encoding module
to inject positional information into the feature space and make it available
for the clustering procedures.

In order to demonstrate the e�ectiveness of our proposal, we follow
a quantitative methodology, in which we experiment our method with two
di�erent challenging benchmarks in the literature, reporting three di�erent
metrics. Moreover, our experiments help to shed light on how positional
encoding a�ects action segmentation and how di�erent video snippet lengths
influence the quality of segmentations.

The remainder of this dissertation is structured as follows. In chapter
2, we discuss works related to ours such as action recognition, temporal
action segmentation and positional encoding. In Chapter 3 we define the
core of this dissertation: our cluster-based method for action segmentation

using spatio-temporal feature extraction and positional encoding. It is composed

DBD
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Chapter 1. Introduction 16

of: video snippets sampling, embeddings generation, positional encoding and
clustering. Chapter 4 is devoted to detail the datasets and metrics, and to
present the results with our findings. Finally, Chapter 5 points out the overall
contributions, conclusions and future work.
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2

Related Work

In this chapter we make a review of the related works. In section 2.1, we
present works with focus on the action recognition task, followed by section 2.2,
where we concentrate on works about temporal action segmentation. Finally,
in section 2.3, we make a review about positional encoding.

2.1

Action recognition

Action recognition on trimmed videos has been widely studied. Early
methods were based on hand-crafted features such as the work proposed by
Wang and Schmid (10), in which they present one of the most used fea-
ture descriptors, the Improved Dense Trajectories (IDT). However, follow-
ing the impressive results of deep convolutional neural networks proposed
by Krizhevsky et al. (25) at the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) (26), deep learning methods started to flourish for video
classification. For instance, Karpathy et al. (27) proposed a 2D CNN, basi-
cally by repurposing an image classification network for video by extracting
features of individual frames and then pooling predictions. The problem with
this approach is that there is no temporal learning (e.g this model can not dif-
ferentiate the opening and closing of a window). To overcome this limitation,
2D CNN combined with LSTM were introduced by Donahue et al. (28) and Ng
et al.(29). There was also propositions such as Simonyan et al. (11) in which
they applied 2D CNN with two-way streams for action recognition, where one
stream aims to incorporate spatial information and the other temporal infor-
mation with optical flow (30) as inputs. Optical flow or motion-estimation
algorithms as defined by Horn and Brian G. Schunck (30) as the distribution
of apparent velocities of movement of brightness pattern in an image, in other
words, these algorithms compute estimates of the motion of image intensities
over time in a video.

As conventional 2D CNNs are not very good in capturing temporal
relations, the community started to explore 3D CNNs. Carreira et al. (12)
proposed a two-stream architecture, but now with 3D ConvNets. By inflating
2D ConvNets into 3D, they were able to extract better spatio-temporal
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features. Besides that, they also bootstrapped the parameters of the 3D filters
and layers with inflated 2D parameters from pre-trained ImageNet models.
Moreover, they also applied the strategy of feeding RGB frames to one stream
and optical flow to the other, which greatly improved results. Feichtenhofer
et al. (13) also proposed a two-pathway model called SlowFast, where one
pathway is designed to capture semantic and spatial information by operating
at low frame rates and a second pathway operating at a high temporal rate
designed to capture motion information. They proposed this di�erent temporal
rates for each path based on the intuition that spatial semantics often evolve
slowly, and on the other hand, motion may evolve much faster. For instance, a
person is still a person even if she is running or walking, meanwhile its motion
information might be lost if we use a low temporal rate, since walking and
running have evolve at di�erent rates over time. By handling input video with
di�erent temporal rates, their method with two pathways, each with their own
expertise on video modeling, achieved state-of-the-art results with no extra
data. Another important contribution is that they do not have to compute
optical flow from videos, which is computationally expensive, and all features
extracted are learned end-to-end from the raw data.

In contrast to 2D CNNs, 3D CNNs are good in modelling temporal
relations, but their computational cost is large. The following works focused
on tackling accuracy and computation trade-o�, a crucial consideration for on-
device applications with a constrained computational budget, such as mobile
cameras and some IoT devices. Li et al. (31) proposed a novel module called
Temporal Shift Module (TSM) that is adds no computational cost on top of
a 2D convolution, but is able to capture and model temporal relations. TSM
works by shifting the feature map along the temporal dimension. Authors
showed that their approach significantly improved pure 2D CNNs baselines.
Moreover, at the time, they reached state-of-the-art results, outperforming 3D
convolution based methods on both Something-Something V1&V2 (32).

A similar proposal to extend 2D CNNs capabilities by Kwon et al.

(33) introduced a generic learnable motion feature extractor that can be
inserted in any neural network called MotionSqueeze (MS). The MS module,
given two adjacent frames learns to extract motion features in three steps:
(i) correlation computation, (ii) displacement estimation, and (iii) feature
transformation. Another contribution from their work is the MSNet which
is a network architecture with the TSM ResNet as its backbone combined
with MS modules, at the time, with a marginal increase of computation,
they achieved state-of-the-art results in the Something-Something V1&V2 (32)
datasets. Feichtenhofer (34) on the other hand proposed a novel network called
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Expand 3D (X3D). Their core idea is to progressively “expand“ a lightweight
2D image architecture into an architecture with spatio-temporal capabilities by
expanding di�erent axes, while searching for the best computation/accuracy
trade-o�. They propose a neural architecture search method that searches the
hyper-parameter space defined by the candidate axes of temporal duration,
frame rate, spatial resolution, network width, bottleneck width, and depth.
X3D reaches competitive performance in the Kinetics-400 (9), Kinetics-600
(35) and Charades (36) datasets while needing less computational resources.
A recent proposal by Kondratyuk et al. (37) called Mobile Video Networks

(MoViNets) in similar spirit to X3D introduces a neural architecture search
method for MoViNets, creating a vast search space that encompass a family of
versatile networks. Nevertheless, one of the search dimensions is the number of
input frames that increases linearly with the memory footprint, which hamper
handling long videos on mobile devices. To tackle this problem they introduced
a Stream Bu�er that reduces this consumption increase from linear to constant
in video length, but with an accuracy drop of 1% on the dataset Kinetics-
600. So to mitigate this drop, their final contribution is Temporal Ensembles,
where they introduced a simple ensembling strategy that maintains the same
FLOPs as a single model, but achieving higher accuracy. MoViNets achieved
remarkable accuracy with significantly less FLOPs and lower memory usage,
reaching better computational and accuracy trade-o� compared to X3D in all
main benchmarks.

The proposed method in this dissertation clusters video snippets, and
these snippets are very similar to the trimmed videos that action recognition
models are trained for. Therefore we utilized models of this task for feature
extraction. For this end we picked the two 3D CNNs models, I3D (12)
and SlowFast (13), introduced here due to their remarkable results in the
main benchmarks and since this type of architectures are more mature and
commonly used (19) for feature extraction. However, our method works as
a framework for action segmentation, and other models may be utilized for
extracting features depending on your requirements. For instance, an IoT
scenario with edge devices might need a model that is computationally e�cient,
and works such as (31, 32, 33, 34, 37) could be used.

2.2

Temporal Action Segmentation

Temporal action segmentation has been getting increasing attention in
recent years. Fully supervised methods have achieved encouraging results,
but at the cost of widely annotated data that is prohibitive for many real-
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case scenarios. Therefore, our focus is on weakly supervised and unsupervised
setups.

Methods for weakly supervised action segmentation use the actions or-
dering, termed as transcripts, and the video-level activity as weak supervision.
One of the first works from Bojanowski et al. (16) proposed a method where
they use the information on the ordering of actions to train a discriminative
clustering approach for action alignment to perform segmentation. Koller and
Ney (38) proposed an iterative learning setup with a CNN-BLSTM embedded
with a HMM. Their iterative training consists of the CNN-BLSTM predicting
actions for each frame and the HMM aligning these predictions with the tran-
scripts, where the output of each is the input of the other. Similarly to Koller
and Ney (38), Richard et al. (39) proposed a pipeline also composed of a RNN
that classifies frames with actions and a HMM that aligns them based on the
transcript. The main di�erence between their works is that Richard et al. (39)
used iDT and Fisher Vectors features as input for their RNN, while Koller and
Ney (38) used the video frames directly as input. Moreover, Richard et al. (39)
also proposed to model each action as a sequential combination of subactions
treated as latent variables that are learned by the model, they showed that this
strategy of fine to coarse learning is beneficial. The last two works introduced
are based on a similar strategy, which in order to learn action segmentation
from weakly annotated data, they use an iterative training strategy of pseudo
ground-truth generation and model learning that is not ideal. This approach
has the following drawbacks, first they are sensitive to the initialization of the
pseudo ground-truth (39). Secondly, since pseudo-labels are noisy the train-
ing tends to be unstable and oscillate between iterations (23), and finally,
both need to process the entire dataset in each step, preventing incremental
learning. So another work from Richard et al. (23) proposed a new learning
algorithm that draws a random sequence of frames, which then is forwarded
through a neural network (it can be any architecture) and a Viterbi decoding
is used to predict the final segmentation. With a novel Viterbi-based loss that
directly leverages transcripts they allowed online and incremental learning,
while also discarding the need for pseudo-labels. A recent proposal by Li et

al. (18) also used the approach of a RNN combined with a HMM, but to mit-
igate the problem of training with pseudo-labels, they developed an e�cient
recursive estimation of energy score of all valid and invalid paths in the HMM,
where each path is a candidate segmentation. Then with the accumulated en-
ergy di�erence they compute a novel loss called constrained discriminative
forward loss (CDFL), hence minimizing the total energy of valid paths in the
segmentation graph, instead of optimizing for label probabilities of each frame.
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Kuehne et al. (40) contributed with a method very similar to Richard et al.
(39) where an RNN is used to recognize and classify small temporal clips, this
way learning local temporal information. By classifying these small clips, they
model complex action classes with subactions. These subactions allow their
model to learn fine-grained movements but still capture mid and long-range
temporal information frames. Moreover, to enhance even further the quality of
segmentations, they proposed the usage of a length prior to act as a regularizer
for the states of the HMM. Souri et al. (19) pointed out that during inference,
most approaches that rely on segmentation through alignment with HMM or
the Viterbi algorithm have to iterate over all of the training transcripts and
choose the transcript that best aligns with an unseen video. This character-
istic results in two major drawbacks. First, since it has to perform alignment
over all training transcripts with the unseen video, the inference is really slow.
Moreover, this approaches do not generalize to transcripts that are not seen
during training. So to tackle these issues, Souri et al. (19), proposed a two-
branch network where one branch predicts the transcripts and lengths of each
action, and the other branch predicts the frame-wise class probability. Since
both branches are predicting redundant representations of action segmenta-
tion, they exploit this characteristic by proposing a new mutual consistency
(MuCon) loss that makes both representations consistent with each other.

To avoid the necessity of any labeled data, unsupervised methods have
started to get more attention. Sener and Yao (24) proposed a linear model that
maps the visual features of every frame into a latent embedding space. This
embedding space is learned through an iterative process of clustering frames of
same actions into anchor points. This anchor points represent actions present
in the videos, however this is an unsupervised learning process, therefore they
proposed a generative model to learn the temporal structure of actions in
videos and the outputs of this temporal model are used to update the visual
model. Kukleva et al. (41) proposed a pipeline that first learns temporal
embedded frame-wise features, them cluster all features into K clusters (or
actions). For each cluster they calculate the mean over time of each frame
to create a cluster ordering. Finally by applying a frame-wise decoding with
the Viterbi Algorithm they temporally segment each video by maximizing the
probability of a sequence of frames that follows the cluster ordering, this way
helping to ensure consistency among the labels for each frame. VidalMatal
et al. (21) presented an unsupervised approach that segments actions based
on visual-temporal embeddings. To achieve this, they do a two stage training
method. In the first stage they train two disjoint models, one for visual and
another for temporal embeddings, then in the second stage, they train a joint
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visual-temporal model that learns a feature space that accounts for visual
and temporal appearance. With this joint visual-temporal embeddings they
cluster all frames with a Gaussian Mixture Model and use a Viterbi decoding
to generate the final segmentation of each video. Li et al.(20) presented a
new self-supervised learning approach to generate embeddings that, instead of
focusing on capturing the temporal structure at the frame level or video level,
they focus on learning the temporal structure at the action level. They train
this model with a HMM in an iterative fashion, where the HMM generates
the action segmentations followed by a Viterbi decoding and this outputs are
used to update the action embeddings which are then fed to the HMM. To
train this pipeline they used a expectation-maximization algorithm. Sarfraz
et al.(22) proposed action segmentation as a grouping problem. With this
in mind they developed a new hierarchical clustering algorithm designed for
action segmentation. This clustering algorithm works by creating a spatio-
temporal graph representation of a video of nearest neighbours based on their
visual features proximity and position in time. With this graph they recursively
cluster each sample to generate the segmentation. Their approach achieved
state-of-the-art results in all main benchmarks.

Almost all methods, weakly supervised or unsupervised, are based on the
usage of pseudo-labels, which as explained before have some major drawbacks.
Moreover, many of them perform segmentation through an alignment strategy
with the Viterbi algorithm or HMM, that also introduces important limita-
tions. Additionally, most methods require training in order to generate mean-
ingful embeddings, either through the iterative training with pseudo-labels or
conventional training setups. In comparison, our method utilizes features of
powerful pre-trained action recognition models that are highly discriminative
and are able to capture short-range spation-temporal features. Furthermore,
instead of embedding these features in a new latent space to encode long-range
temporal positioning information and perform training in a new objective, we
utilize a common strategy in NLP tasks (42, 43, 44) to encode positioning in
sequential data, the so called positional encoding that requires no training at
all. Also, in line with Sarfraz el al. (22) we see action segmentation purely as
a grouping problem, rather than, for example, a task that requires modeling
actions as states with a HMM. A brief review of these di�erences can bee seen
in 2.1 below.
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Table 2.1: Comparison on temporal action segmentation methods

Method Supervision Pseudo-labels? Actions as states? Training
Bojanowski et al. (16) Weakly Yes Yes Yes

Koller and Ney (38) Weakly Yes Yes Yes

Richard et al. (39) Weakly Yes Yes Yes

Richard et al. (23) Weakly No Yes Yes

Li et al. (18) Weakly Yes Yes Yes

Kuehne et al. (40) Weakly Yes Yes Yes

Souri et al. (19) Weakly No No Yes

Sener and Yao (24) Unsupervised Yes Yes Yes

Kukleva (41) Unsupervised No Yes Yes

VidalMata et al. (41) Unsupervised No Yes Yes

Li et al. (20) Unsupervised Yes Yes Yes

Sarfraz et al. (22) Unsupervised No No No

Ours Unsupervised No No No

2.3

Positional Encoding

The concept of using positional encoding to inject positional information
was first proposed in the context of NLP tasks. Long short-term memory
(45) and gated recurrent neural networks (46) are common approaches for
sequence modeling. However, LSTM and GRU are very ine�cient in modern
GPU computation due to their sequential nature that inhibits parallelization.
To overcome this problem works such as convolutional seq2seq (42) used
convolutional neural networks to enable the usage of GPUs. Nevertheless,
convolutions, outside of their kernel size, are position-insensitive and for
this reason they proposed the first usage of a positional encoding as a
learnable position embedding layer. Soon after them, in 2017 (43) proposed
the Transformer model architecture based on the self-attention module that
employs no usage of positional information. To overcome that they used a
deterministic positional encoding based on sinusoidal functions, the one we
used in this dissertation. Finally, there is also a relative positional encoding
proposed by (44) that works directly with the mechanisms of the self-attention
module.
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3

A Cluster-Based Method For Temporal Action Segmentation

This chapter describes the core of this dissertation, which is a method
for Temporal Action Segmentation based on clustering.

We consider a video as a sequence V = {fi}
N

i=1 of N samples, where each
sample fi is a video snippet with the same number of frames. Since our method
relies on clustering, we have to generate discriminative descriptors for each
sample. In order to do this, we extract spatio-temporal embeddings for each
sample fi œ V , transforming each video snippet into a one-dimensional vector
representation that captures spatial and motion information. This produces a
matrix MN◊dmodel

where dmodel is the embeddings’s dimensionality.
Since this clustering approach lacks any frame ordering information,

following the approach proposed by Vaswani et al. (43), we use a positional
encoding technique to inject positional information into the video’s embedding.
Then, we cluster the embeddings with either FINCH or, when using Kmeans,
applying the cluster-based heuristic proposed by Mendes et al. (47) to find the
optimal number of clusters in which each cluster is expected to represent a
di�erent action. Figure 3.1 illustrates the method.

Figure 3.1: Temporal action segmentation clustering process.

In the remainder of this section, we detail each step involved in our
proposal.

3.1

Video snippets sampling

The first step in our method is to break a video into snippets as illustrated
in figure 3.2. In order to do this, first we have to define the temporal window
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t we are using to generate each video snippet. The temporal window defines
how many seconds this video snippet is going to last, and therefore, depending
on the video’s frame rate, how many frames each video clip is going to have.

Figure 3.2: In the left we have the whole video. The first four frames are higher
than the rest, indicating a four frames length per video snippet. In the right
is the original video splitted into 3 video snippets each with 4 frames.

A video V with T seconds can be represented as V = [v1, · · · , vk] where
vi is a video clip with t seconds and k =

Ï
T

t

Ì
. We can also define the length of

vi as the number of frames we want it to have as n, this way k =
Ï

N

n

Ì
, where

N is the total number of frames in V. In theory, each video snippet length
n (measured in frames) should be constrained by 2 Æ n Æ N . We limit the
minimum length for a video snippet to be 2 frames since a feature descriptor of
a single frame would actually be generating a representation with only spatial
information and no temporal information at all.

The length of video snippets is also an important hyperparameter to
be chosen in our method, since it has important implications related to
computational requirements and to the quality of the embeddings. Regarding
the computational requirements, this step has some important consequences.
Firstly, the memory footprint, m, for each video snippet increases linearly with
the temporal window size, m = n◊H ◊W ◊C, which might be prohibitive for
systems without large memories, specially in the feature extraction process,
since it is necessary to have the full clip in memory. On the other hand, an
increase in the value of n, represents a linear decrease in the value of k, which
might be helpful for the rest of the steps in our method’s pipeline. For instance,
the generation of the positional encoding matrix has a complexity of O(kd)
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where d is the dimensionality of each feature vector, which would result in
a linear decrease in computational complexity and memory in this step. The
value of n also greatly influences the quality of our method, as n increases,
more information is packed in a single video snippet. However, to properly
extract this information, the feature extractor’s algorithm has to be able to
capture long-range dependencies, otherwise the process of feature extraction is
only more computationally intensive. Also, a greater n means we have a greater
probability of capturing more than one action per video snippet, and since we
are clustering each video snippet, this might cause an under-segmentation and
the lost of fine-grained actions.

3.2

Video Embeddings Extraction

With video snippets in hand, we have to define the feature-descriptor
generation. We look for a function f that maps each video snippet in V =
[v1, · · · , vk] to a point in a feature space Rd, that is

f : Rn◊k◊H◊W ◊C
æ Rk◊d

where vi œ Rn◊H◊W ◊C , n is the number of frames per video snippet, H and
W are the height and width of each frame, C is the number of channels and
d is the dimensionality of the feature space.

To extract spatio-temporal features there are two main options in the
literature: (i) hand-crafted features such as Improved Dense Trajectories (IDT)
(48) and HOG3D (49), or, (ii) deep learning models. Recently, the state-of-
the-art results for the main benchmarks of tasks that require spatio-temporal
features are based on deep learning models. So to extract our features, we
used action recognition models, since these expect inputs very similar to our
video snippets. Action recognition models are trained on datasets with short
duration, trimmed videos with a single action, which in theory, are exactly
the same as our video snippets. So for the function f , we used two di�erent
action recognition models to extract spatio-temporal features: the I3D model
(12) and the SlowFast model (13).

The I3D model has a two-pathway architecture, where the inputs for one
pathway are the RGB frames of the input video and for the other pathway are
the optical flow (30) frames extracted from the input video. Extracting optical
flow is well known to have a high computational cost. The algorithm used in
the I3D paper is the TV-L1 (50), that requires heavy computation. For this
reason, we used the PWC-Net (pyramid, warping, and cost volume network)
(51) in our method, which is a time e�cient and accurate CNN for optical
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flow extraction. Moreover, the I3D model generates embeddings in the R2048

feature space, so for a video with k video snippets we would generate a video
embedding representation E œ Rk◊2048. We evaluate our method with video
snippets embeddings from the I3D model with the following number of frames,
n œ {10, 16, 24, 32, 64}, with n = 10 being the shortest possible video snippet
input for this architecture.

The SlowFast model is a generic two-pathway architecture, each pathway
focused on a di�erent aspect of video modeling. The slow pathway is focused
on the spatial domain, so its inputs are low frame rate RGB frames of a
video snippet, while the fast pathway is responsible for capturing motion and
temporal information from the high frame rate RGB frames. The model can be
instantiated with di�erent backbones. We used the 3D ResNet-50 8x8 model,
where the number of frames for each pathway input is 4 and 32 for the slow
and fast pathways respectively. The embeddings generated by this model are in
the R2304 feature space; therefore, a video embedding representation with the
SlowFast can be described as E œ Rk◊2304, and we varied the video snippets
length by using n œ {32, 40, 48, 64, 72, 128}, with n = 32 being the shortest
possible video snippet input for this architecture.

For both models the number of frames we experimented are based on
the minimum number of frames each model is able to receive and the number
of frames used in test time for each model in the original papers, which is 64
frames. So the idea here is to progress from the shortest possible video snippet
to the length of the video snippet in test time with a fine-grained granularity
of frames, so we chose to increase 8 frames in order to get to 64 frames (with
exception from 10 to 16 in the I3D case).

Figure 3.3: Diagrams of both architectures, in the left the I3D and in the right
the Slowfast.

Both models are very good when it comes to extracting spatio-temporal
features, although they have significant di�erences. First, even though both
have a two-pathway architecture, their strategy to learn video representations
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are quite di�erent. I3D and SlowFast rely on the fact that 3D CNNs can
directly learn temporal patterns, and on top of that, both have a specialized
strategy to go further when extracting temporal information. The I3D model
have two identical streams, but one of them, as mentioned earlier, utilizes
optical flow as the input to one of the streams. They argue that 3D CNNs are
pure feed-forward networks and that optical flow algorithms are recurrent, and
to feed a flow representation to the model is beneficial. SlowFast, on the other
hand, utilizes two di�erent streams to process data and extract specialized
information. The SlowFast spatial stream receives low frame rate inputs, in
other words, its inputs have a large temporal stride because their focus here
is not to capture displacement and motion, but static features. Moreover, in
order to focus on visual appearance, this network utilizes a 2D convolutional
kernel in most layers because they argue that using temporal convolution in
all layers is detrimental to accuracy. Inversely, the temporal stream has a high
frame rate, this high temporal resolution is processed by a stream that has no
temporal down-sampling until the last layers, this way maintaining temporal
fidelity through almost all the network. Furthermore, the fast pathway has a
lower channel capacity which translates into a lower ability to model spatial
features. Their experiments shows that this is a desired trade-o�, to weaken
the spatial modeling ability while strengthening its temporal counterpart
and having a lower computational requirement. Another important di�erence
is in their backbones, the I3D utilizes inflated (from 2D to 3D) inception
modules and the SlowFast a 3D ResNet-50. Finally, their training strategy and
prediction di�ers greatly. The I3D trains both streams separately and average
their predictions. While the SlowFast trains both streams simultaneously and
has lateral connections between streams, so no pathway is unaware of the
representation learned by the other. At the end of the network both feature
vectors are pooled and then concatenated to be the input of a fully-connected
classifier to output the final predictions. The SlowFast network has a more
sophisticated strategy and better results in all benchmarks when compared
to the I3D. However, the I3D was one of the first 3D CNN with incredible
results in most benchmarks and was important to the community get to the
point of developing the SlowFast model. Even though the SlowFast architecture
produces better models for action recognition, features from the I3D might be
more discriminative depending on the snippets size, hence we tested both.

Finally, when feeding the video snippets to these models is also necessary
to define the frames sampling strategy. Frames sampling strategy determines
how we are picking frames for each video. For instance, if we have a video
snippet composed of 32 frames, we could use all 32 frames to generate its
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feature vector and that would be a dense temporal sampling. Here we used this
exact strategy, however as pointed out by Wang et al. (52), consecutive frames
are highly redundant and depending on the task may be unnecessary. For this
reason they proposed a sparse sampling strategy that might be beneficial for
our case, but we leave it as future work.

3.3

Positional Encoding

In our method, we aim to segment a video by clustering video snippets
feature vectors. However, common clustering algorithms make no use of
positional information of the frames within the flow, which is important
for temporally segmenting a video. This positional information is crucial to
establish the sub-actions that form more complex actions, which of course
are close to each other in the time dimension. To address this problem, most
works utilize a strategy where feature vectors of frames (or directly the frames)
are used to train a new model that learns the timestamp or some temporal
related objective function. This function generates an embedded space that
captures the temporal characteristics for each frame. For instance, VidalMata
et al.(21) trained a temporal embedding model as a Multilayer Perceptron with
the learning goal of predicting the relative timestamp t of a given frame.

We have chosen a simpler way that requires no training to store temporal
information in the video embeddings. We opted to use the positional encoding

method, proposed by Vaswani et al.(43), in which we produce an encoding
matrix, PEk◊dmodel

, where k is the number of video snippets feature vectors
and dmodel is the dimensionality of each video feature descriptor. Likewise, we
use the positional encoding with sinusoidal functions:

PE(pos,2i) = sin( pos

100002i/dmodel
)

PE(pos,2i+1) = cos( pos

100002i+1/dmodel
)

Where each position in the PE matrix corresponds to either a sine
or cosine function. Positions with even columns are sine functions, and odd
columns with a cosine function. Both sine and cosine are parameterized by the
position’s row and column, and also by the feature’s descriptor dimensionality.

After constructing the PE, we sum it to the video representation in
the feature space resulting in a representation with time-related positional
information. In other words, we are equipping each video snippet feature
descriptor with information about its position in that video timeline.
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A possible drawback of this approach is that video snippets of same
actions occurring in distant moments in the timeline might be assigned to
di�erent clusters due to the increasing di�erence of their positional encodings,
predicting more clusters (actions) than necessary — causing the so called over-
segmentation problem. Therefore, datasets with actions that occur in di�erent
places in the timeline might have deterioration in accuracy. In fact, we did
observe this behavior in our experiments, and we will detail it in section 4.

3.4

Action Clustering

For this step, following (22) we considered two representative clustering
algorithms: (i) Kmeans (53) representing centroid-based methods and one of
the most used unsupervised learning algorithms, and (ii) FINCH (54) a state-
of-the-art hierarchical agglomerative clustering method.

Combined with Kmeans, we apply the method proposed by Mendes et al.

(see Algorithm 1), that uses the Silhouette Score to find the optimal number
of clusters. The Silhouette Score corresponds to the mean of the Silhouette

Coe�cient of all samples, which is calculated by the following equation:

S = b ≠ a

max(a, b) (3-1)

where a is the mean distance from a sample to all other samples in the same
cluster, and b is the mean distance from a sample to all other samples in the
closest cluster to that sample.

This way, the best value is 1, and the worst is -1. Values close to 0 indicate
overlapping clusters, whereas negative values usually indicate that a sample
has been assigned to the wrong cluster since a di�erent cluster is more similar.
In this strategy, we try to increase the number of clusters until the maximum
Silhouette Score does not increase for more than t times in a row or until it
reaches the maximum number of clusters, which is a hyperparameter to be
defined. When it stops, we return the clustering configuration with the highest
Silhouette Score, where each cluster corresponds to a di�erent action.

While with Kmeans, we used the Silhouette Score to propose an auto-
matic way of finding the optimal number of clusters, FINCH does not need
that. Most clustering methods are based on the direct distance between sam-
ples. However, in high dimensional spaces, distances are less informative. For
this reason, Sarfraz et al.(54) proposed FINCH, a clustering method based on
the intuition that semantic relations are indirect relations that are not sensitive
for high dimensional spaces. They observed that the first neighbor of each data
point is su�cient to discover linking chains in the data. So given the indices
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Algorithm 1 Iteratively finding the best clustering configuration for unknown
number of clusters.
1: procedure BlindClustering(e, t, Ê)

2: nK Ω 1

3: smax Ω ≠1

4: tcur Ω 0

5: while tcur Æ t & nK < |e| do
6: nK Ω nK + 1

7: Kcur Ω Clustering(e, nK)

8: s Ω SilhouetteScore(Kcur)

9: if s < smax then
10: tcur Ω tcur + 1

11: else
12: K Ω Kcur

13: tcur Ω 0

14: if s > smax then
15: smax Ω s
16: end if
17: end if
18: end while
19: return K
20: end procedure

of the first neighbor of each data point, they define the first neighbor graph as
an adjacency link matrix with equation 3-2, where k

1
i

is the first neighbor of
point i.

A(i, j) =

Y
]

[
1, if j = k

1
i

or k
1
j

= i or k
1
i

= k
1
j

0, otherwise
(3-2)

So with a recursive approach, they generate a first neighbors adjacency
matrix with equation 3-2, representing the clusters for the first partition. For
each new partition, they use mean vectors of the previous partitions to generate
the next one, applying again equation 3-2. At the end of this process, they
generate a hierarchical structure where each successive partition is a superset
of all previous partitions. This algorithm achieved state-of-the-art results in
the main clustering benchmarks with the complexity of O(n log n).

By the end of this process, we expect to have the temporal segmentation
of the actions present in a video. The following chapter describe the experi-
ments we investigate in this dissertation. We dive in the datasets and setup
used, the evaluation method and metrics, the experiments conducted, the re-
sults and findings.
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Experimentation

In this chapter, we describe the experiments to evaluate the e�ectiveness
of our method by comparing it with state-of-the-art models in two benchmark
datasets. Additionally, we compare the two models for spatio-temporal fea-
tures extraction: SlowFast (13) and I3D (12). Moreover, we also present the
experiments varying the temporal window size to understand how the duration
of video snippets a�ects the segmentation quality. Since our proposal consists
of an unsupervised method, we restrict the model list in both benchmarks only
to models of the unsupervised or weakly supervised type for a fair comparison.

The remainder of this chapter is structured as follows. Section 4.1
describes the two datasets used in the experiments. Section 4.2 presents our
experimental setup. Our evaluation protocol is defined in section 4.3, and the
experiments carried out are detailed in section 4.4. Results are registered in
section 4.5 followed by section 4.6 inn which we discuss these results and
comment on our empirical findings.

4.1

Datasets

We evaluate our method using two of the most well-known benchmark
datasets in the literature: the Breakfast Actions Dataset (55), and Inria
Instructional Videos (56).

The Breakfast dataset is a large-scale dataset with 1,712 videos of
common cooking activities performed in a breakfast situation. The videos
comprise ten di�erent complex cooking activities, such as prepare scrambled

eggs or prepare co�ee, resulting in a total of 48 di�erent actions. Each video
has on average six actions, the videos duration can vary significantly, ranging
from 30 seconds to a few minutes, and, the whole dataset contains only 6% of
background frames. Figure 4.1 illustrates examples from this dataset.
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Figure 4.1: Samples from the Prepare tea and Prepare co�ee activities from
the Breakfast Dataset

The Inria Instructional Videos (INRIA) dataset has 150 videos of dif-
ferent activities such as Making a co�ee, Changing car tire, Performing car-

diopulmonary resuscitation (CPR), Jumping a car and Repotting a plant, with
a total number of actions equal to 47. Each video has 2 minutes of duration
on average, containing nine actions on average. This dataset also has a very
high ratio of background frames of 65%. Figure 4.2 illustrate examples of the
INRIA dataset.

Figure 4.2: Samples from “Change car tire“ action in INRIA Dataset

Background frames are frames that contain no actions relevant for the
activity that a video depicts. They present a major challenge in the context of
action segmentation since they are randomly distributed in the time dimension,
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as well as in the spatial dimensions, meaning that they may appear at any point
in the timeline and a single video may have background frames of completely
di�erent motion and visual appearance. For this reason, the INRIA dataset is
more challenging, since it has a very high rate of background frames. A more
detailed analysis of its results are discussed in section 4.6.

4.2

Setup

Our method was tested with a 6 cores i7 2.60 GHz CPU and a RTX-
2070 Max-Q Design GPU. We set 3 hyperparameters: the number of times, t,
that the Silhoutte Score does not increase which we used t = 5; the maximum
number of clusters, C that the Silhoute Score heuristic could reach we set it to
C = 98 which is twice the total number of actions in all activities combined, to
make sure our experiments wouldn’t be biased to a number that in a real-life
situation we wouldn’t know.

4.3

Evaluation Protocol

In this section we detail the metrics used to evaluate each dataset, how
we compute them and describe the mapping algorithm between clusters and
ground-truth labels necessary to evaluate the unsupervised method.

For both datasets, we report the mean over frames (MoF) metric, which is
calculated the same way as the accuracy metric as can be seen in equation 4-1.
Moreover, for the Breakfast dataset we also compute the intersection over union
metric, since it is less sensitive for class imbalance, because it is calculated as
the average of the IoU of each class. The computing of IoU for a single class
is described in equation 4-2. For the INRIA dataset we also report the F1-
Score, also known as the harmonic mean between precision and recall, shown
in equation 4-3.

MoF = TP + TN

TP + TN + FP + FN
(4-1)

IoU = TP

TP + FP + FN
(4-2)

F1 = TP

TP + 1
2(FP + FN) (4-3)

In order to compute these metrics and evaluate the temporal segmenta-
tion predicted by our unsupervised approach, we need some means of mapping
our method’s output clusters of actions to a ground-truth annotated base.
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The output of our method, represented by cluster labels for each video snip-
pet, do not necessarily match the boundaries nor the action’s labels used in
the dataset. For this reason we need to make a one-to-one mapping between
the predicted segments and the ground truth labels. For example, in figure 4.3
there are 5 actions and 4 predicted clusters and we need to find the mapping
that maximizes the similarity between the ground truth and the predictions.

Figure 4.3: The problem of finding the mapping that maximizes the similarity
between the ground truth actions and the predicted clusters

So to generate such a mapping, following (22, 24, 41), we use the
Hungarian method. This method is an algorithm that solves the assignment
problem, in our case, the goal is the optimum assignment that maximizes the
similarity between the predicted clusters and the ground-truth actions. Figure
4.4 illustrates the problem posed in figure 4.3 as a bipartite graph where each
edge is weighted by the number of matching frames each ground-truth action
has with each cluster, in this case is easy to visually understand the mapping
that maximises the frame similarity.

Figure 4.4: The assignment problem represented as a bipartite graph where
each edge is weighted by the number of matching frames each ground-truth
action has with each cluster.

So the Hungarian method assigns for each action a predicted cluster that
maximizes its similarity, where the similarity is the number of intersecting
frames. This method tries to find a perfect matching, which is a matching that
matches all vertices of the graph while maximizing its weights. To properly
understand this algorithm first we have to define the concept of labeling and
an equality subgraph.
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1. A labeling for graph G = (V, E) is a function l : V æ R, such that:

’(u, v) œ E : l(u) + l(v) Ø weight((u, v)) (4-4)

2. An Equality Subgraph is a subgraph Gl = (V, El) µ G(V, E), fixed on a
labeling l, such that:

El = (u, v) œ E : l(u) + l(v)weight((u, v)) : (4-5)

Now that we have these two definitions we have to state the theorem
that is the basis of the Hungarian Algorithm, the Kuhn-Munkres theorem:

Teorema 4.1 Given labeling l, if M is a perfect matching on Gl, then M is

maximal-weighting of G.

1. Let M
Õ be any perfect matching in G. By definition of a labeling function

and since M
Õ is perfect,

weight(M Õ) =
ÿ

(u,v)œM
Õ
weight((u, v)) Æ

ÿ

(u,v)œM
Õ
l(u) + l(v) =

ÿ

vœV

l(v)

(4-6)

2. This means: q
vœV is an upper bound for any perfect matching M

Õ of G.

3. Now the weight of matching M :

weight(M) =
ÿ

(u,v)œM

weight((u, v)) =
ÿ

(u,v)œM

l(u)+l(v) =
ÿ

vœV

l(v) (4-7)

4. By equations 4-6 and 4-7, we have that for all perfect matchings M
Õ of

G: weight(M) Ø weight(M Õ)

Therefore, by the Kuhn-Munkres theorem the problem of finding a
maximum weight assignment is reduced to finding the right labeling function
and any perfect matching on the corresponding equality subgraph. Explained
next in a step-by-step manner.
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The Kuhn-Munkres Algorithm (57)
Given a bipartite graph G = (X, Y, E). Start with an arbitrary feasible vertex
labeling l, determine Gl, and choose an arbitraty matching M in Gl

1. If M is complete for G, then M is optimal and stop. Otherwise, there is
some umatched x œ X. Set S = x and T =

2. if JGl
(S) ”= T , go to step 3. Otherwise, find

–l = min
xœS,yœT C

l(x) + l(y) ≠ w(xy) (4-8)

Where T
C denotes the complement of T in Y , and construct a new

labeling l
Õ by

l
Õ(v) =

Y
____]

____[

l(v) ≠ –l for v œ S

l(v) + –l for v œ T

l(v) otherwise

(4-9)

Note that –l Ø 0 and JGl
(S) ”= T . Replace l by l

Õ and Gl by G
l
Õ

3. Choose a vertex y in JGl
(S). If y is matched in M , say with z œ X,

replace S by S fi z and T by T fi y, and go to step 2. Otherwise, there
will be an M-alternating path from x to y, and we may use this path to
find a larger matching M

Õ in Gl. Replace M by M
Õ and go to step 1.

4.4

Experiments

In this section we go through the experiments performed, detailing the
goal and configuration of each. To properly evaluate our method from di�erent
perspectives, we devised experiments changing its main components. For all
of the experiments defined in the next paragraph, we implemented them for
both datasets described in section 4.1. The main components of our method
are the video snippet temporal window and its feature extractor, the positional
encoding and the clustering algorithm. The video snippet and feature extractor
are considered one component because the temporal window size is dependent
on the model we are using, as mentioned in section 3.2, the I3D model has a
minimum video input length of 10 frames, while the Slowfast of 32 frames.

The first experiment devised we fixed the temporal window of video
snippets at the minimum length the feature extractor used accepted, what
would be the vanilla version of our method, since this minimum snippet values
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are the default inputs length for both architectures. In this test we compared
how the di�erent combinations of feature extractor and clustering algorithm
a�ected the performance of the method. For this experiment, we also performed
an ablation test, where we utilize the positional encoding component or not.

The other experiment performed consists in changing the temporal
window of video snippets. However, for this experiment, we only tested it
with the FINCH algorithm. The computing time for KMeans with Silhouette
Score, depending on the video was taking too long, this could be mitigated
by testing di�erent t and C values, but we leave it as future work. For the
SlowFast model we tried values of n œ {32, 40, 48, 64, 72, 128} and for the
I3D n œ {10, 16, 32, 40, 48, 64}. We stopped at 128 frames for SlowFast and
64 frames for I3D due to memory issues. We could go a bit further with
SlowFast since it does not use optical flow and has a more computational
e�cient architecture. Here we also performed an ablation experiment with the
positional encoder component. This experiment’s goal is to shed light into how
the representations learned by the models of longer temporal windows a�ects
our method. Moreover, how the positional encoder alters the geometry of the
embeddings of di�erent temporal window’s length.

4.5

Results

Next we present the main results of our method for both datasets. First
we present the best overall results of our experiments, than go through the
results for the experiments described in the previous section. A more in-depth
discussion is detailed in 4.6.

The main results for the Breakfast Actions Dataset can be seen in table
4.1, where we compare our best results for both MoF and IoU metrics, for
the pair of feature extractors with or without positional encoding compared
to other state-of-the-art works.
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Table 4.1: Comparison on the Breakfast dataset. Here we present the best
results for both metrics with and without positional encoding, while comparing
it with other approaches.

# Method Type MoF IoU
01 TW-FINCH (22) Unsupervised 62.7 42.3
02 I3D-64+FINCH (Ours) Unsupervised 57.99 29.61
03 I3D-64+FINCH+PE (Ours) Unsupervised 57.75 35.52
04 Slowfast-72+FINCH+PE (Ours) Unsupervised 57.38 32.17
05 Slowfast-32+KMeans+SS (Ours) Unsupervised 56.50 33.80
06 CDFL (18) Weakly Sup. 50.2 33.7
07 MuCon (19) Weakly Sup. 49.7 -
08 VTE-UNET (21) Unsupervised 48.08 -
09 D3TW (58) Weakly Sup. 45.7 -
10 Slowfast-32+KMeans+SS+PE (Ours) Unsupervised 45.10 43.40
11 NN-vit (23) Weakly Sup. 43.0 -
12 LSTM+AL (59) Unsupervised 42.9 46.9
13 CTE (41) Unsupervised 41.8 -
14 TCFPN (60) Weakly Sup. 38.4 24.2
15 RNN+HMM (40) Weakly Sup. 36.7 -
16 Mallow (24) Unsupervised 34.6 47.1
17 RNN-FC (17) Weakly Sup. 33.3 -
18 SCT (61) Weakly Sup. 30.4 -
19 GMM+CNN (62) Weakly Sup. 28.2 12.9

Our method’s best results (weather using the positional encoder or not)
outperforms almost all other unsupervised and weakly supervised methods. In
the case of positional encoded features extracted with the I3D model, the best
performance for both metrics was produced with the configuration in which
the video snippets had a length of 64 frames clustered with FINCH (I3D-
64+FINCH+PE), achieving 57.75% and 35.53% for the MoF and IoU metrics
respectively.

The best results for both metrics without positional encoding with the
I3D model are also with 64 frames videos snippets clustered with FINCH (I3D-
64+FINCH), scoring 57.99% for MoF and 29.61% for IoU.

For positional encoded Slowfast embeddings, the best results for the MoF
were found with video snippets of 72 frames clustered with FINCH (Slowfast-
72+FINCH+PE), achieving a MoF of 57.38% . For the IoU, the best value of
43.4% was achieved with 32 frames long video snippets clustered with KMeans
(KM) and the Silhoutte score method (Slowfast-32+KM+SS+PE). Finally,
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without positional encoding, the best performing configuration with Slowfast
features for both metrics was the 32 frames video snippets clustered with
KMeans and the Silhoutte score (Slowfast-32+KM+SS+PE), scoring 56.5%
for MoF and 33.8% for IoU.

The main results for the INRIA Instructional Videos dataset are pre-
sented in table 4.2.

Table 4.2: Comparison on the Inria Instructional Videos dataset. Here we
present the best results for both metrics with and without positional encoding,
while comparing it with other approaches.

# Method Type MoF F1-Score
01 TW-FINCH (22) Unsupervised 58.6 51.9
02 Slowfast-128+FINCH+PE (Ours) Unsupervised 53.89 46.32
03 I3D-64+FINCH+PE (Ours) Unsupervised 53.35 45.97
04 I3D-64+FINCH (Ours) Unsupervised 52.74 44.56
05 Slowfast-48+FINCH (Ours) Unsupervised 51.34 44.17
06 LSTM + AL (59) Unsupervised - 39.7
07 CTE (41) Unsupervised 39.0 28.3
08 Mallow (24) Unsupervised 27.8 27.0

Once again, the top results of our method surpass almost all other ap-
proaches. Our top achieving result with Slowfast positional encoded embed-
dings for both metrics is the setup combined with FINCH, with 128 frames
video snippets (Slowfast-128+FINCH+PE), achieving 53.80% and 46.32% for
MoF and F1-Score respectively. Without positional encoding, the best Slow-
fast configuration for both metrics was with snippets of 48 frames clustered
with FINCH (Slowfast-48+FINCH), with a MoF of 51.34% and an F1-Score
of 44.17%.

For I3D features with positional encoding, our top score for both metrics
was achieved with 64 frames clustered with FINCH, scoring 53.35% on MoF
and 45.97% on the F1-Score. Removing the positional encoder component, our
top achieving result with the MoF metric is the I3D combined with FINCH
with snippets of 48 frames, attaining a MoF score of 53.08%; for the F1-Score,
the best result was also with FINCH, but now with 64 frame-snippets, scoring
44.56%.

Vanilla experiment’s results can be seen in table 4.3 and 4.4 for the
Breakfast and INRIA datasets respectively. The best results for both datasets
are without positional encoding, but with di�erent feature extractors and
clustering procedure. For the Breakfast our best result in the vanilla setup
is the SlowFast with KMeans, meanwhile for INRIA is I3D with FINCH.
Furthermore, we point it out that, on average, the MoF metric is 51.72% with
positional encoding, and 54.98% without it. For the IoU metric is 35.72%, and
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29.63% with positional encoding and without, respectively. Looking at the
INRIA results, on average, the MoF metric is 44.72% for positional encoded
embeddings, and without is 46.44%. Moreover, the F1-Score is on average
39.95% with positional encoding, and without is 40.70%.

Table 4.3: Our method’s results from the vanilla experiment with the Breakfast
dataset

# Method MoF IoU
01 Slowfast-32+KMeans 56.5 33.8
02 I3D-10+FINCH 55.33 27.83
03 I3D-10+KMeans+PE 54.7 29.4
04 I3D-10+KMeans 54.2 29.4
05 Slowfast-32+FINCH 53.9 27.5
06 I3D-10+FINCH+PE 53.89 29.68
07 Slowfast-32+FINCH+PE 53.2 40.4
08 Slowfast-32+KMeans+PE 45.1 43.4

Table 4.4: Our method’s results from the vanilla experiment with the INRIA
dataset

# Method MoF F1-Score
01 I3D-10+FINCH 49.85 43.42
02 I3D-10+FINCH+PE 47.25 43.22
03 Slowfast-32+FINCH 45.83 40.27
04 Slowfast-32+FINCH+PE 45.47 40.17
05 Slowfast-32+KMeans 45.4 39.89
06 Slowfast-32+KMeans+PE 44.93 39.71
07 I3D-10+KMeans 44.69 39.23
08 I3D-10+KMeans+PE 41.22 36.72

The temporal window length variation experiment results are displayed
in table 4.5 for the Breakfast dataset, and in table 4.6 for the INRIA dataset.
This time we separate the results also by feature extractor, since increasing
the temporal window length helps us measure and understand how well the
representations learned by both models capture larger and larger spatio-
temporal information from videos.

For the Breakfast Dataset while using the Slowfast feature extractor, the
top-5 results are only formed by the largest temporal window embeddings
combined with positional encoding. For the I3D, almost all are positional
encoded, but the first position, which is the 64 frames temporal window.
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Table 4.5: Our method’s results from the temporal window length variation
experiment with the Breakfast dataset

# Method MoF IoU
01 Slowfast-72+FINCH+PE 57.38 32.17
02 Slowfast-64+FINCH+PE 57.11 32.75
03 Slowfast-48+FINCH+PE 56.72 36.03
04 Slowfast-128+FINCH+PE 55.86 25.21
05 Slowfast-40+FINCH+PE 54.75 36.94
06 Slowfast-48+FINCH 54.07 27.05
07 Slowfast-72+FINCH 53.92 25.24
08 Slowfast-32+FINCH 53.90 27.5
09 Slowfast-32+FINCH+PE 53.20 40.40
10 Slowfast-128+FINCH 51.2 20.42
11 Slowfast-40+FINCH 50.71 24.84

01 I3D-64+FINCH 57.99 29.61
02 I3D-48+FINCH+PE 57.75 34.3
03 I3D-40+FINCH+PE 57.73 33.32
04 I3D-64+FINCH+PE 57.49 35.52
05 I3D-32+FINCH+PE 57.47 32.98
06 I3D-48+FINCH 57.42 28.87
07 I3D-24+FINCH+PE 56.33 32.09
08 I3D-40+FINCH 56.07 29.25
09 I3D-16+FINCH 55.45 30.49
10 I3D-32+FINCH 55.4 28.6
11 I3D-10+FINCH 55.33 27.83
12 I3D-24+FINCH 54.49 27.8
13 I3D-16+FINCH 54.28 27.67
14 I3D-10+FINCH+PE 53.89 29.68

The INRIA results for the Slowfast features behave very similarly to the
Breakfast dataset. The top-5 results contain only one combination without
positional encoding embeddings in fifth place, while the top-4 is all formed by
the largest temporal window features with positional encoding. On the other
hand, the I3D results are not regular regarding this analysis. The top-5 is
formed by the largest temporal window embeddings as well, but even though
the first place is the 64 frames video snippets positional encoded features, there
are three variations with no positional encoding in the top-5.
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Table 4.6: Our method’s results from the temporal window length variation
experiment with the INRIA dataset

# Method MoF F1-Score
01 Slowfast-128+FINCH+PE 53.89 46.32
02 Slowfast-64+FINCH+PE 52.91 44.81
03 Slowfast-48+FINCH+PE 51.56 44.48
04 Slowfast-40+FINCH+PE 51.45 45.91
05 Slowfast-48+FINCH 51.34 44.17
06 Slowfast-64+FINCH 50.09 43.75
07 Slowfast-40+FINCH 49.53 43.74
08 Slowfast-128+FINCH 48.47 42.26
09 Slowfast-32+FINCH 45.83 40.27
10 Slowfast-32+FINCH+PE 45.47 40.17

01 I3D-64+FINCH+PE 53.35 45.97
02 I3D-48+FINCH 53.08 44.37
03 I3D-40+FINCH 52.86 44.42
04 I3D-64+FINCH 52.74 44.56
05 I3D-48+FINCH+PE 52.51 45.79
06 I3D-16+FINCH 50.91 43.95
07 I3D-40+FINCH+PE 50.77 44.54
08 I3D-10+FINCH 49.85 43.42
09 I3D-16+FINCH+PE 49.24 44.56
10 I3D-32+FINCH 48.88 42.27
11 I3D-32+FINCH+PE 48.49 42.07
12 I3D-24+FINCH 48.31 41.9
13 I3D-10+FINCH+PE 47.25 43.22
14 I3D-24+FINCH+PE 46.76 41.5

4.6

Discussion

In this section we go through the results as well, but now discussing
findings and analysis of each experiment.

4.6.1

Comparison with the state-of-the art

Our method, independently of the configuration, reached very good
results when looking at the current landscape of weakly supervised and
unsupervised approaches. Our worst performing test for the Breakfast dataset
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when looking at the MoF metric, the Slowfast with 32 frames long positional
encoded embeddings, clustered with KMeans and the Silhouette Score, is in
the top-10 results with a MoF of 45.1%. Furthermore, this same configuration
reaches top-4 results when looking at the IoU metric, achieving a 43.4% score.
The average results of our method with positional encoding are 55.39% and
33.64% for the MoF and the IoU metric respectively, reaching a second place
overall when comparing with the best results of other approaches. All of this
without the need for any kind of annotation, nor training, very common in
many of other approaches as shown in table 2.1 in chapter 2.

Following a similar analysis done for the Breakfast dataset, our worst per-
forming configuration, I3D with 10 frames long positional encoded embeddings
clustered with KMeans and the Silhouttte Score, reached the second place over-
all for the INRIA dataset. When looking at the MoF metric with 41.22%, and
a third place when comparing the F1-Score with a result of 36.72%. Addition-
ally, on average our method reached improvements of over 10% for the MoF
metric, and of almost 4% for the F1-Score.

However, even though our method performed much better than almost
all other approaches, the top scoring approach is still TW-FINCH (22) by a
good margin for both datasets. We own this di�erence for two main reasons,
first the way TW-FINCH utilizes positional information to build its clusters.
FINCH utilizes a one nearest neighbor graph to generate clusters recursively,
and TW-FINCH is very similar. The di�erence is that when TW-FINCH builds
its graph, it does by computing the spatio-temporal feature space distance and
modulating the frame’s features with their respective temporal position. The
second reason is due to the over-segmentation problem, where same actions
occurring in temporally distant moments are assigned to di�erent clusters.
This issue can be amplified in our method as a side e�ect of the positional
encoding component. For instance, two frames are injected with positional
information that is increasingly di�erent as their temporal distance increases.
This e�ect of over-segmentation may be especially detrimental for datasets
that have actions which appear multiple times in distant temporal instants,
which is the case of INRIA. The INRIA dataset has a very high percentage of
background frames, so multiple segments that should be assigned to the same
cluster are instead assigned to di�erent ones, such as in the Figure 4.5. In
this example, the high percentage of background frames creates a lot of noise
among the target actions happening in the video. In this case, the ground
truth has 9 actions in total, where the majority of the video is composed
by only one of them, which is the randomly distributed background class.
This makes the target actions interspersed by background frames, fooling our
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method into misclassifying same actions in di�erent ones, specially background
frames, causing the over-segmentation. Here our method predicted 15 classes,
instead of 9.

Figure 4.5: Action predictions produced by the SlowFast 64 frames positional
encoded embeddings clustered with FINCH of the video co�ee_0018 from the
INRIA dataset. Segments with equal colours belong to the same class.

One way to mitigate this issue is to add one more step to our method,
where after generating the clusters with the positional encoding, and finding
continuous segments of di�erent actions, apply a time-series cluster method.
The idea here is to interpret each cluster of video snippets as a time-series
sample, and cluster them. In theory, a clustering approach such Dynamic Time
Warping (63) should be able to match the actions that are classified as di�erent
clusters because of their similarities, we leave this as future work.

4.6.2

Positional encoding analysis

For both datasets the positional encoder has proven to be helpful. On
average, the MoF metric is 0.78% higher, and the IoU has an impressive
6.07% improvement for the Breakfast dataset. Even though, our best result
considering the MoF metric is the configuration with I3D 64 frames without
positional encoding clustered with FINCH (I3D-64+FINCH), the di�erence
of 0.24 % to our second best configuration to the MoF metric is statistically
insignificant, which is the same set up but with positional encoding. Now, when
comparing both IoU results, the positional encoded version presents significant
gains of 5.91%. This high gains in the IoU metric are very relevant, since its
calculation is an average of the IoU per class, showing that the positional
encoder is helpful to achieve better class-wise segmentations.

When looking at the INRIA dataset, the MoF metric for configurations
without the positional encoder is slightly higher with a di�erence of 0.28%.
Meanwhile, the F1-Score has an average performance better with positional
encoding, 43.27% versus 42.72%, a gain of 0.55%. In spite of the statistical
equivalence when averaging all the results, our top result is a configuration with
positional encoding. The SlowFast 128 frames positional encoding embeddings
clustered with FINCH is our best result, with improvements of 0.81% for the
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MoF metric, and 1.95% for the F1-Score when compared with the best result
of our method without positional encoding.

The results are far better for the Breakfast dataset since its videos have
actions that are contiguous and appear only once, furthermore, they also have
a much lower percentage of background frames as can be seen in the example
displayed in Figure 4.6. This characteristics are very good for positional
encoding embeddings because video snippets that are closer to each other in the
timeline will be injected with similar positional encoding information, while
farther video snippets in the timeline have increasingly di�erent positional
encodings.

Figure 4.6: The timelines for the same video, the first are the ground truth
segments and in the second are the predictions made by our I3D with 48 frames
positional encoded embeddings. Even though it misses two classes, there is a
nice smooth characteristic for the predicted segments.

This trait is very desirable for a clustering algorithm based on first
neighbors to find the linking chains of each action such as FINCH. In Figure
4.7 we can see the clear path the video snippets make with positional encoding,
and how dispersed they are without it. In contrast with the a�nity of positional
encoding and FINCH, the same can be said for KMeans and the absence of
positional encoding. Even so, that most results for both datasets of our method
with KMeans are better without positional encoding. For instance, SlowFast
32 frames embeddings with KMeans and no positional encoding is 11.4%
better in the MoF metric comparing to its positional encoded version. While
for INRIA, the I3D 10 frames embeddings with KMeans and no positional
encoding configuration has a 3.47% advantage when comparing the MoF metric
with its positional encoded counterpart.
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Figure 4.7: Projections of the Slowfast 32 frames video snippets embeddings
of the video webcam01/P03_co�ee.avi. On the left, embeddings without posi-
tional encoding, and on the right, with positional encoding.

4.6.3

Temporal window size analysis

The temporal window size has a very important role in our method, since
its length changes completely the quality of the embeddings, and therefore in
the behavior of the predicted clusters. Logically, the amount of spatio-temporal
information contained in a video snippet is proportional to its length. However,
to be able to translate and capture this information into an embedding we are
dependent on the capacity of the feature extractor to do so.

There are two main types of dependencies to be captured in the spatial
and temporal domain, short and long. To understand this concept, in figure 4.8,
a 2D kernel of a convolutional layer is processing an image. In each step its
algorithm is processing spatial data within the kernel dimensions, therefore
capturing a short-range dependency. However, to properly understand an
image, algorithms must be able to generate long-range dependencies. To
capture a long-range dependency in the image example an algorithm would
have to be able to compute the dependencies between distant pixels in the space
dimensions. This is true also for the time domain, but instead of extracting
the dependencies only in the two dimensions of space in a frame, there is also
the time dimension. Capturing long-range dependencies is well-known to be
a harder task than short-range (64). In our experiments, we tried to explore
that by testing our embeddings with the shortest possible temporal window
per model, to the longest that our computers permitted.
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Figure 4.8: Visualization of how a 2D convolutional kernel works. Here it is easy
to see why a convolutional operation captures only short-range dependencies,
more precisely inside the kernel dimensions. 1

The Slowfast model in the Breakfast dataset shows that larger temporal
window sizes are good until a certain point for the MoF metric. As can be seen
in Figure 4.9, the chart in the left shows that the MoF metric increases until
the temporal window of 70 frames, but then drops for 128 frames. This makes
sense since larger and larger temporal windows will end up merging multiple
actions in one video snippet, thus degrading the performance, such as in the
example in Figure 4.10. Another important observation is that the increase
of temporal window size only benefits positional encoded embeddings. The
pure embeddings seem to have a non-linear behavior as the temporal window
increases with a downwards trend.

Figure 4.9: Slowfast results for the Breakfast dataset, on the left the chart of
MoF vs Temporal window Size, and on the right of IoU vs Temporal window
Size.

For the IoU the increase of the temporal window only led to losses, in
the right chart of Figure 4.9, it is clear the negative correlation that this two
variable present. This decrease may also be explained by the e�ect shown
in Figure 4.10, since the IoU is calculated as the average IoU of each class,
therefore, this under-segmentation we see for larger temporal windows may be
leading to these losses.
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Figure 4.10: Each timeline represents a segmentation of the video
cam02/P42_co�ee.avi with Slowfast positional encoded features and clustered
with FINCH. The first row is the ground truth, and the following ones are the
predictions with increasingly larger temporal window sizes. In this example,
same colours in di�erent timelines do not necessarily correspond to the same
action. The main point here is to show an example that a larger temporal
window yields less clusters.

The I3D showed results that are very di�erent from the Slowfast, for both
metrics, as shown in Figure 4.11. First, the only similarity is that when looking
at the MoF metric for positional encoded embeddings, is safe to say that in
spite the positive correlation between MoF and the temporal window size, we
can see that the increase in the MoF score starts to get dimmer and dimmer as
the temporal window increases, even so that the 48 frames embeddings reach
better MoF than the 64 frames. We couldn’t test this model with 128 frames
video snippets due to computational constraints, but a similar trend can be
seen in the Slowfast before the 128 frames test. A important point to notice
here is that the results with pure embeddings extracted by the I3D are also
increasing with the temporal window. The same is true for the IoU, but now
for both positional encoded and pure embeddings. This may be an indication
that the I3D features are better suited for cluster-based methods, even though
the Slowfast reaches better results in action recognition benchmarks.

Figure 4.11: I3D results for the Breakfast dataset, on the left the chart of MoF
vs Temporal window size, and on the right of IoU vs Temporal window size.

The INRIA dataset results for the Slowfast model are displayed in
the chart in Figure 4.12. There we can see that there is an overall positive
correlation for positional encoded embeddings temporal window size and both
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metrics. We believe this is happening because as explained before, larger
temporal windows yield less clusters, which may be mitigating the over-
segmentation problem caused by background frames and interspersed actions.
Meanwhile, without the positional encoding, the behavior is totally non-linear
for the MoF and IoU metrics. This behavior was also seen for Breakfast dataset,
which might be an indication that the capabilities of capturing long-range
dependencies for the Slowfast model are not so good. Moreover, the positional
encoding seems to be helping to produce better segmentations, even when the
embeddings are not very discriminative.

Figure 4.12: Slowfast results for the INRIA dataset, on the left the chart of
MoF vs Temporal window size, and on the right of IoU vs Temporal window
size.

Now for the INRIA dataset analysis with the I3D model, its results are
displayed in the charts of Figure 4.13. For both metrics and positional encoded
or not, the results increase until 16 frames, drop and then go back to increase.
We believe this a mix of the under-segmentation caused by longer temporal
windows mitigating the over-segmentation problem present in the INRIA, and
also that the I3D embeddings seem to be highly discriminative, independently
of the temporal window size.

Figure 4.13: I3D results for the INRIA dataset, on the left the chart of MoF
vs Temporal window size, and on the right of IoU vs Temporal window size.
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5

Conclusions

In this dissertation, we present a method for the important task of tempo-
ral segmentation of actions with important applications in many applications
such as video surveillance, human-robots interaction, medical diagnosis, video
recommendation and video summarisation (4, 8). Our proposal is a cluster-
based method, in which we address action segmentation as a grouping problem.
A trivial way to generate predictions would be simply by generating frame-
wise feature vectors and cluster them. However, actions are composed by visual
and temporal information and such a method like this would be totally un-
aware of temporal information. For this reason, we explored ways to generate
frames representations that are imbued with spatio-temporal information and
are highly discriminative. Additionally, another important cue for segmenting
actions is the positional information that a frame or a sequence of frames are
relative to the timeline. In other words, the order of the embeddings we are
generating is also valuable when predicting action boundaries.

Regarding the generation of video embeddings, we realize that short video
snippets are of the exact same type of input that action recognition models
are trained for. So we leverage mature action recognition architectures pre-
trained in large scale datasets to generate our embeddings. We investigate two
of them, the I3D (12) and the Slowfast (13) models. Moreover, we also explore
how varying the length of video snippets that generate the feature vectors
a�ects the quality of segmentation.

For the positional information signal we use a method originally proposed
for NLP tasks: the positional encoding method, by Vaswani et. al (43). As far as
we know, this is the first work to investigate this method in a temporal action
segmentation task. We perform ablation experiments to understand how its
usage a�ects the method.

Two di�erent clustering algorithms, FINCH (54) and KMeans (53) were
investigated, and our method (without any training or annotation) reaches
competitive results in two of the main benchmark datasets (the Breakfast
dataset (55), and the INRIA dataset (56)).

In summary, we highlight the following contributions of this dissertation:

1. A method for temporal action segmentation that needs no training or
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annotated data;

2. An investigation of how di�erent temporal windows a�ect the behavior
of our proposal;

3. An investigation of the usage of the positional encoding method from the
paper of Vaswani et. al (43) in a temporal action segmentation task;

4. An investigation of the e�cacy of our method in two challenging bench-
marks and reach competitive results with the state-of-the-art;

Our method, composed by the steps of video snippets sampling, feature
extraction, positional encoding and clustering provide a backbone for temporal
action segmentation of any video. Therefore, each step may be filled with a
di�erent algorithm than the ones investigated here, opening opportunities for
future research. For example, a future work could investigate the usage of this
method for IoT devices and see how e�cient action recognition architectures
would behave, explore new positional encoding strategies, try new modalities
when generating features such as audio.

Furthermore, there are still open problems for temporal action segmen-
tation. The over-segmentation problem caused by temporally distant frames
of same actions amplified by the e�ect of positional encoder. This could be
tackled by a post-processing step inside our method’s pipeline, such as using
a time-series clustering procedure and modelling each cluster as a time-series
sample. Another future work in this specific problem is to investigate if di�er-
ent strategies for injecting the positional information are better suited here.
For example, instead of summing the positional encoding matrix with the
video embeddings, concatenate them might lead to better results. There is
also the problem of under-segmentation caused by longer temporal windows
when extracting features. A possible future work would be after generating the
clusters, focus on the boundaries of each action and try to explore specifically
the frames around it to mitigate the issue of a single feature vector with more
than one action. Finally, there is still the huge problem of background frames
that hinder so much the quality of current propositions.

Although our quantitative experiments demonstrated the remarkable re-
sults our method can achieve, there is still much to improve, specially when
compare to the TW-FINCH (22). A good future work could be the combination
of TW-FINCH with our method and investigate how deep feature extractors
and positional encoding would behave with such a powerful clustering proce-
dure specifically designed for temporal action segmentation.
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Moreover, when thinking on future work, our method could be used to
recommend videos or summarise videos. A proposition for video recommen-
dation would be to generate the segmentation of videos, and cluster all these
segmentations to generate clusters of segments, and sample recommendations
from these groups that are based on the actions present in a video. In the
challenging task of video summarisation our method could be used to gener-
ate segments, and a summary could be inferred by sampling frames from the
segments generated, for example.

Finally, another usage for this method is to be a helper for humans to
annotate video data. Since our method does not need any kind of training, any
dataset can be segmented by it. A temporal segmentation annotation tool could
have this method in the background generating suggestions of segmentation,
and a human would just fine-tune over them. This could be helpful to create
new datasets quicker, hence helping research in this area even further.

DBD
PUC-Rio - Certificação Digital Nº 1921160/CA



Bibliography

[1] G. N. d. Santos, P. V. de Freitas, A. J. G. Busson, Á. L. Guedes, R. Milidiú, and
S. Colcher, “Deep learning methods for video understanding,” in Proceedings

of the 25th Brazillian Symposium on Multimedia and the Web, 2019, pp.
21–23.

[2] P. R. C. Mendes, E. S. Vieira, P. V. A. de Freitas, A. J. G. Busson, Á. L. V.
Guedes, C. d. S. S. Neto, and S. Colcher, “Shaping the video conferences
of tomorrow with ai,” in Anais Estendidos do XXVI Simpósio Brasileiro de

Sistemas Multimídia e Web. SBC, 2020, pp. 165–168.

[3] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in
vision-based human motion capture and analysis,” Comput. Vis. Image

Underst., vol. 104, no. 2, p. 90–126, nov 2006. [Online]. Available:
https://doi.org/10.1016/j.cviu.2006.08.002

[4] R. Poppe, “A survey on vision-based human action recognition,” Image and

Vision Computing, vol. 28, no. 6, pp. 976–990, 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0262885609002704

[5] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine
recognition of human activities: A survey,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 18, no. 11, pp. 1473–1488, 2008.

[6] A. A. Chaaraoui, P. Climent-Pérez, and F. Flórez-Revuelta, “A review on
vision techniques applied to human behaviour analysis for ambient-assisted
living,” Expert Syst. Appl., vol. 39, no. 12, p. 10873–10888, sep 2012.
[Online]. Available: https://doi.org/10.1016/j.eswa.2012.03.005

[7] X. Wang, A. Farhadi, and A. Gupta, “Actions ~ transformations,” in CVPR,
2016.

[8] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recognition,”
Image Vision Comput., vol. 60, no. C, p. 4–21, apr 2017. [Online]. Available:
https://doi.org/10.1016/j.imavis.2017.01.010

[9] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan,
F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman, “The

https://doi.org/10.1016/j.cviu.2006.08.002
https://www.sciencedirect.com/science/article/pii/S0262885609002704
https://doi.org/10.1016/j.eswa.2012.03.005
https://doi.org/10.1016/j.imavis.2017.01.010
DBD
PUC-Rio - Certificação Digital Nº 1921160/CA



Bibliography 55

Kinetics Human Action Video Dataset,” arXiv:1705.06950 [cs], May 2017,
arXiv: 1705.06950. [Online]. Available: http://arxiv.org/abs/1705.06950

[10] H. Wang and C. Schmid, “Action Recognition with
Improved Trajectories,” 2013, pp. 3551–3558. [Online].
Available: https://openaccess.thecvf.com/content_iccv_2013/html/Wang_
Action_Recognition_with_2013_ICCV_paper.html

[11] K. Simonyan and A. Zisserman, “Two-Stream Convolutional Networks
for Action Recognition in Videos,” in Advances in Neural Information

Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2014, pp. 568–576. [Online]. Available: http://papers.nips.cc/paper/
5353-two-stream-convolutional-networks-for-action-recognition-in-videos.
pdf

[12] J. Carreira and A. Zisserman, “Quo Vadis, Action Recognition?
A New Model and the Kinetics Dataset,” 2017, pp. 6299–6308.
[Online]. Available: https://openaccess.thecvf.com/content_cvpr_2017/
html/Carreira_Quo_Vadis_Action_CVPR_2017_paper.html

[13] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “SlowFast Networks
for Video Recognition,” 2019, pp. 6202–6211. [Online]. Available:
https://openaccess.thecvf.com/content_ICCV_2019/html/Feichtenhofer_
SlowFast_Networks_for_Video_Recognition_ICCV_2019_paper.html

[14] K. Schindler and L. van Gool, “Action snippets: How many frames does human
action recognition require?” in 2008 IEEE Conference on Computer Vision and

Pattern Recognition, 2008, pp. 1–8.

[15] H. Xia and Y. Zhan, “A survey on temporal action localization,” IEEE Access,
vol. 8, pp. 70 477–70 487, 2020.

[16] P. Bojanowski, R. Lajugie, F. Bach, I. Laptev, J. Ponce, C. Schmid, and
J. Sivic, “Weakly Supervised Action Labeling in Videos Under Ordering
Constraints,” arXiv:1407.1208 [cs], Jul. 2014, arXiv: 1407.1208. [Online].
Available: http://arxiv.org/abs/1407.1208

[17] A. Richard, H. Kuehne, and J. Gall, “Weakly Supervised Action Learning
with RNN based Fine-to-coarse Modeling,” arXiv:1703.08132 [cs], Oct. 2017,
arXiv: 1703.08132. [Online]. Available: http://arxiv.org/abs/1703.08132

http://arxiv.org/abs/1705.06950
https://openaccess.thecvf.com/content_iccv_2013/html/Wang_Action_Recognition_with_2013_ICCV_paper.html
https://openaccess.thecvf.com/content_iccv_2013/html/Wang_Action_Recognition_with_2013_ICCV_paper.html
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
https://openaccess.thecvf.com/content_cvpr_2017/html/Carreira_Quo_Vadis_Action_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Carreira_Quo_Vadis_Action_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Feichtenhofer_SlowFast_Networks_for_Video_Recognition_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Feichtenhofer_SlowFast_Networks_for_Video_Recognition_ICCV_2019_paper.html
http://arxiv.org/abs/1407.1208
http://arxiv.org/abs/1703.08132
DBD
PUC-Rio - Certificação Digital Nº 1921160/CA



Bibliography 56

[18] J. Li, P. Lei, and S. Todorovic, “Weakly Supervised Energy-Based
Learning for Action Segmentation,” arXiv:1909.13155 [cs], Sep. 2019, arXiv:
1909.13155. [Online]. Available: http://arxiv.org/abs/1909.13155

[19] Y. Souri, M. Fayyaz, L. Minciullo, G. Francesca, and J. Gall, “Fast
Weakly Supervised Action Segmentation Using Mutual Consistency,”
arXiv:1904.03116 [cs], Mar. 2020, arXiv: 1904.03116. [Online]. Available:
http://arxiv.org/abs/1904.03116

[20] J. Li and S. Todorovic, “Action Shu�e Alternating Learning for Unsupervised
Action Segmentation,” arXiv:2104.02116 [cs], Apr. 2021, arXiv: 2104.02116.
[Online]. Available: http://arxiv.org/abs/2104.02116

[21] R. G. VidalMata, W. J. Scheirer, A. Kukleva, D. Cox, and H. Kuehne,
“Joint Visual-Temporal Embedding for Unsupervised Learning of Actions in
Untrimmed Sequences,” arXiv:2001.11122 [cs], Sep. 2020, arXiv: 2001.11122.
[Online]. Available: http://arxiv.org/abs/2001.11122

[22] M. S. Sarfraz, N. Murray, V. Sharma, A. Diba, L. Van Gool,
and R. Stiefelhagen, “Temporally-Weighted Hierarchical Clustering for
Unsupervised Action Segmentation,” arXiv:2103.11264 [cs], Mar. 2021,
arXiv: 2103.11264. [Online]. Available: http://arxiv.org/abs/2103.11264

[23] A. Richard, H. Kuehne, A. Iqbal, and J. Gall, “NeuralNetwork-
Viterbi: A Framework for Weakly Supervised Video Learning,”
arXiv:1805.06875 [cs], May 2018, arXiv: 1805.06875. [Online]. Available:
http://arxiv.org/abs/1805.06875

[24] F. Sener and A. Yao, “Unsupervised Learning and Segmentation of Complex
Activities from Video,” in 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition. Salt Lake City, UT: IEEE, Jun. 2018, pp. 8368–
8376. [Online]. Available: https://ieeexplore.ieee.org/document/8578971/

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the

ACM, vol. 60, no. 6, pp. 84–90, May 2017. [Online]. Available:
https://doi.org/10.1145/3065386

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” arXiv:1409.0575 [cs], Jan. 2015,
arXiv: 1409.0575. [Online]. Available: http://arxiv.org/abs/1409.0575

http://arxiv.org/abs/1909.13155
http://arxiv.org/abs/1904.03116
http://arxiv.org/abs/2104.02116
http://arxiv.org/abs/2001.11122
http://arxiv.org/abs/2103.11264
http://arxiv.org/abs/1805.06875
https://ieeexplore.ieee.org/document/8578971/
https://doi.org/10.1145/3065386
http://arxiv.org/abs/1409.0575
DBD
PUC-Rio - Certificação Digital Nº 1921160/CA



Bibliography 57

[27] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei, “Large-scale video classification with convolutional neural networks,” in
2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014,
pp. 1725–1732.

[28] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama,
K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for
visual recognition and description,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 39, no. 4, pp. 677–691, 2017.

[29] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,
and G. Toderici, “Beyond short snippets: Deep networks for video classifica-
tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2015.

[30] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial

Intelligence, vol. 17, no. 1, pp. 185–203, 1981. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0004370281900242

[31] J. Lin, C. Gan, and S. Han, “TSM: temporal shift module for e�cient
video understanding,” in 2019 IEEE/CVF International Conference on

Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -

November 2, 2019. IEEE, 2019, pp. 7082–7092. [Online]. Available:
https://doi.org/10.1109/ICCV.2019.00718

[32] R. Goyal, S. Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim,
V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag, F. Hoppe, C. Thurau,
I. Bax, and R. Memisevic, “The âÄœsomething somethingâÄ video
database for learning and evaluating visual common sense,” in 2017 IEEE

International Conference on Computer Vision (ICCV). Los Alamitos, CA,
USA: IEEE Computer Society, oct 2017, pp. 5843–5851. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.622

[33] H. Kwon, M. Kim, S. Kwak, and M. Cho, “Motionsqueeze: Neural motion
feature learning for video understanding,” in ECCV, 2020.

[34] C. Feichtenhofer, “X3d: Expanding architectures for e�cient video recogni-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), June 2020.

[35] J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, and A. Zisserman, “A
short note about kinetics-600,” CoRR, vol. abs/1808.01340, 2018. [Online].
Available: http://arxiv.org/abs/1808.01340

https://www.sciencedirect.com/science/article/pii/0004370281900242
https://doi.org/10.1109/ICCV.2019.00718
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.622
http://arxiv.org/abs/1808.01340
DBD
PUC-Rio - Certificação Digital Nº 1921160/CA



Bibliography 58

[36] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta,
“Hollywood in homes: Crowdsourcing data collection for activity understand-
ing,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016, pp. 510–
526.

[37] D. Kondratyuk, L. Yuan, Y. Li, L. Zhang, M. Tan, M. Brown, and B. Gong,
“Movinets: Mobile video networks for e�cient video recognition,” in Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2021, pp. 16 020–16 030.

[38] O. Koller, S. Zargaran, and H. Ney, “Re-sign: Re-aligned end-to-end sequence
modelling with deep recurrent cnn-hmms,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3416–3424.

[39] A. Richard, H. Kuehne, and J. Gall, “Weakly supervised action learning with
RNN based fine-to-coarse modeling,” CoRR, vol. abs/1703.08132, 2017.
[Online]. Available: http://arxiv.org/abs/1703.08132

[40] H. Kuehne, A. Richard, and J. Gall, “A Hybrid RNN-HMM Approach for
Weakly Supervised Temporal Action Segmentation,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 42, no. 4,
pp. 765–779, Apr. 2020, arXiv: 1906.01028. [Online]. Available:
http://arxiv.org/abs/1906.01028

[41] A. Kukleva, H. Kuehne, F. Sener, and J. Gall, “Unsupervised Learning
of Action Classes With Continuous Temporal Embedding,” 2019, pp.
12 066–12 074. [Online]. Available: https://openaccess.thecvf.com/content_
CVPR_2019/html/Kukleva_Unsupervised_Learning_of_Action_Classes_
With_Continuous_Temporal_Embedding_CVPR_2019_paper.html

[42] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolu-
tional sequence to sequence learning,” in Proceedings of the 34th International

Conference on Machine Learning - Volume 70, ser. ICML’17. JMLR.org,
2017, p. 1243–1252.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You Need,”
arXiv:1706.03762 [cs], Dec. 2017, arXiv: 1706.03762. [Online]. Available:
http://arxiv.org/abs/1706.03762

http://arxiv.org/abs/1703.08132
http://arxiv.org/abs/1906.01028
https://openaccess.thecvf.com/content_CVPR_2019/html/Kukleva_Unsupervised_Learning_of_Action_Classes_With_Continuous_Temporal_Embedding_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Kukleva_Unsupervised_Learning_of_Action_Classes_With_Continuous_Temporal_Embedding_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Kukleva_Unsupervised_Learning_of_Action_Classes_With_Continuous_Temporal_Embedding_CVPR_2019_paper.html
http://arxiv.org/abs/1706.03762
DBD
PUC-Rio - Certificação Digital Nº 1921160/CA



Bibliography 59

[44] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative position
representations,” CoRR, vol. abs/1803.02155, 2018. [Online]. Available:
http://arxiv.org/abs/1803.02155

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-

putation, vol. 9, no. 8, 1997.

[46] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” in NIPS 2014 Workshop

on Deep Learning, December 2014, 2014.

[47] P. Mendes, A. Busson, S. Colcher, D. Schwabe, A. Guedes, and C. Laufer, “A
cluster-matching-based method for video face recognition,” in Proceedings of

the Brazilian Symposium on Multimedia and the Web, 2020, pp. 97–104.

[48] H. Wang and C. Schmid, “Action recognition with improved trajectories,” in
2013 IEEE International Conference on Computer Vision, 2013, pp. 3551–
3558.

[49] A. Klaser, M. Marszalek, and C. Schmid, “A Spatio-Temporal Descriptor
Based on 3D-Gradients,” in BMVC 2008 - 19th British Machine Vision

Conference, M. Everingham, C. Needham, and R. Fraile, Eds. Leeds, United
Kingdom: British Machine Vision Association, Sep. 2008, pp. 275:1–10.
[Online]. Available: https://hal.inria.fr/inria-00514853

[50] J. Sánchez Pérez, E. Meinhardt-Llopis, and G. Facciolo, “TV-L1 Optical
Flow Estimation,” Image Processing On Line, vol. 3, pp. 137–150, 2013,
https://doi.org/10.5201/ipol.2013.26.

[51] D. Sun, X. Yang, M. Liu, and J. Kautz, “Pwc-net: Cnns for optical flow
using pyramid, warping, and cost volume,” CoRR, vol. abs/1709.02371,
2017. [Online]. Available: http://arxiv.org/abs/1709.02371

[52] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. V.
Gool, “Temporal segment networks: Towards good practices for deep
action recognition,” CoRR, vol. abs/1608.00859, 2016. [Online]. Available:
http://arxiv.org/abs/1608.00859

[53] J. Macqueen, “Some methods for classification and analysis of multivariate
observations,” in In 5-th Berkeley Symposium on Mathematical Statistics and

Probability, 1967, pp. 281–297.

[54] M. S. Sarfraz, V. Sharma, and R. Stiefelhagen, “E�cient Parameter-free
Clustering Using First Neighbor Relations,” Feb. 2019. [Online]. Available:
https://arxiv.org/abs/1902.11266v1

http://arxiv.org/abs/1803.02155
https://hal.inria.fr/inria-00514853
https://doi.org/10.5201/ipol.2013.26
http://arxiv.org/abs/1709.02371
http://arxiv.org/abs/1608.00859
https://arxiv.org/abs/1902.11266v1
DBD
PUC-Rio - Certificação Digital Nº 1921160/CA



Bibliography 60

[55] H. Kuehne, A. Arslan, and T. Serre, “The Language of Actions: Recovering
the Syntax and Semantics of Goal-Directed Human Activities,” in 2014 IEEE

Conference on Computer Vision and Pattern Recognition, Jun. 2014, pp.
780–787, iSSN: 1063-6919.

[56] J.-B. Alayrac, P. Bojanowski, N. Agrawal, J. Sivic, I. Laptev, and S. Lacoste-
Julien, “Unsupervised Learning from Narrated Instruction Videos,” in
CVPR2016 - 29th IEEE Conference on Computer Vision and Pattern

Recognition, Las Vegas, United States, Jun. 2016. [Online]. Available:
https://hal.inria.fr/hal-01171193

[57] H. Kuhn, “The hungarian method for the assignment problem,” Naval Re-

search Logistic Quarterly, vol. 2, 05 2012.

[58] C.-Y. Chang, D.-A. Huang, Y. Sui, L. Fei-Fei, and J. C. Niebles, “D3TW:
Discriminative Di�erentiable Dynamic Time Warping for Weakly Supervised
Action Alignment and Segmentation,” arXiv:1901.02598 [cs], Apr. 2019,
arXiv: 1901.02598. [Online]. Available: http://arxiv.org/abs/1901.02598

[59] S. N. Aakur and S. Sarkar, “A Perceptual Prediction Framework for Self
Supervised Event Segmentation,” arXiv:1811.04869 [cs], Apr. 2019, arXiv:
1811.04869. [Online]. Available: http://arxiv.org/abs/1811.04869

[60] L. Ding and C. Xu, “Weakly-Supervised Action Segmentation with Iterative
Soft Boundary Assignment,” arXiv:1803.10699 [cs], Mar. 2018, arXiv:
1803.10699. [Online]. Available: http://arxiv.org/abs/1803.10699

[61] M. Fayyaz and J. Gall, “SCT: Set Constrained Temporal Transformer for Set
Supervised Action Segmentation,” arXiv:2003.14266 [cs], Mar. 2020, arXiv:
2003.14266. [Online]. Available: http://arxiv.org/abs/2003.14266

[62] H. Kuehne, A. Richard, and J. Gall, “Weakly supervised learning of actions
from transcripts,” arXiv:1610.02237 [cs], Jun. 2017, arXiv: 1610.02237.
[Online]. Available: http://arxiv.org/abs/1610.02237

[63] J. Kruskal and M. Liberman, “The symmetric time-warping problem: From
continuous to discrete,” Time Warps, String Edits, and Macromolecules: The

Theory and Practice of Sequence Comparison, Jan. 1983.

[64] X. Wang, R. B. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” CoRR, vol. abs/1711.07971, 2017. [Online]. Available:
http://arxiv.org/abs/1711.07971

https://hal.inria.fr/hal-01171193
http://arxiv.org/abs/1901.02598
http://arxiv.org/abs/1811.04869
http://arxiv.org/abs/1803.10699
http://arxiv.org/abs/2003.14266
http://arxiv.org/abs/1610.02237
http://arxiv.org/abs/1711.07971
DBD
PUC-Rio - Certificação Digital Nº 1921160/CA


	A Cluster-Based Method for Action Segmentation Using Spatio-Temporal and Positional Encoded Embeddings
	Resumo
	Table of contents
	Introduction
	Related Work
	Action recognition
	Temporal Action Segmentation
	Positional Encoding

	A Cluster-Based Method For Temporal Action Segmentation
	Video snippets sampling
	Video Embeddings Extraction
	Positional Encoding
	Action Clustering

	Experimentation
	Datasets
	Setup
	Evaluation Protocol
	Experiments
	Results
	Discussion
	Comparison with the state-of-the art
	Positional encoding analysis
	Temporal window size analysis


	Conclusions



