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Abstract

Sousa, Lucas Castro; Ayala, Helon Vicente Hultmann (Advisor).
Nonlinear identification and predictive control of vehicle
dynamics. Rio de Janeiro, 2023. 145p. Tese de Doutorado –
Departamento de Engenharia Mecânica, Pontifícia Universidade
Católica do Rio de Janeiro.

Automated vehicles must travel in a given environment detecting, plan-
ning, and following a safe path. In order to be safer than humans, they must be
able to perform these tasks as well or better than human drivers under different
critical conditions. An essential part of the study of automated vehicles is the
development of representative models that are accurate and computationally
efficient. Thus, to cope with these problems, the present work applies artificial
neural networks and system identification methods to perform vehicle modeling
and trajectory tracking control. First, neural architectures are used to capture
tire characteristics present in the interaction between lateral and longitudi-
nal vehicle dynamics, reducing computational costs for predictive controllers.
Secondly, a combination of black-box models is used to improve predictive con-
trol. Then, a hybrid approach combines physics-based and data-driven models
with black-box modeling of the discrepancies. This approach is chosen to im-
prove the accuracy of vehicle modeling by proposing a discrepancy model to
capture mismatches between vehicle models and measured data. Results are
shown when the proposed methods are applied to systems with simulated/real
data and compared with approaches found in the literature, showing an incre-
ase of accuracy (up to 40%) in terms of error-based metrics while having lesser
computational effort (reduction by up to 88%) than conventional predictive
controllers.

Keywords
Artificial neural networks; Autonomous vehicles; Hybrid models; Predic-

tive control; System identification; Vehicle dynamics.
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Resumo

Sousa, Lucas Castro; Ayala, Helon Vicente Hultmann. Identifica-
ção não-linear e controle preditivo da dinâmica do veículo.
Rio de Janeiro, 2023. 145p. Tese de Doutorado – Departamento de
Engenharia Mecânica, Pontifícia Universidade Católica do Rio de
Janeiro.

Os veículos automatizados devem trafegar em determinado ambiente de-
tectando, planejando e seguindo uma trajetória segura. De modo a se mos-
trarem mais seguros que seres humanos, eles devem ser capazes de executar
essas tarefas tão bem ou melhor do que motoristas humanos sob diferentes
condições críticas. Uma parte essencial no estudo de veículos automatizados o
desenvolvimento de modelos representativos que sejam precisos e computacio-
nalmente eficientes. Assim, para lidar com esses problemas, o presente traba-
lho aplica métodos de inteligência computational e identificação de sistemas
para realizar modelagem de veículos e controle de rastreamento de trajetória.
Primeiro, arquiteturas neurais são usadas para capturar as características do
pneu na interação entre a dinâmica lateral e longitudinal do veículo, reduzindo
o custo computacional em controladores preditivos. Em segundo lugar, uma
combinação de modelos caixa-preta é usada para melhorar o controle predi-
tivo. Em seguida, uma abordagem híbrida combina modelos baseados na física
e orientados por dados com modelagem de caixa-preta das discrepâncias. Essa
abordagem é escolhida para melhorar a precisão da modelagem de veículos,
propondo um modelo de discrepância para capturar incompatibilidades entre
modelos de veículos e dados medidos. Os resultados são mostrados quando os
métodos propostos são aplicados a sistemas com dados simulados/reais e com-
parados com abordagens encontradas na literatura, mostrando um aumento
de precisão (até 40%) em termos de métricas baseadas em erro, com menor
esforço computacional (redução de até 88%) do que os controladores preditivos
convencionais.

Palavras-chave
Redes neurais artificiais; Veículos autônomos; Modelos híbridos; Con-

trole preditivo; Identificação de sistemas; Dinâmica de veículos.
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General Introduction
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1
Contextualization and goals

Autonomous ground vehicles (AGVs) are likely to revolutionize the trans-
portation system since they reduce pollution and mobility costs [1, 2]. More-
over, increase efficiency and safety by reducing human interference responsible
for 94% of vehicle crashes [3]. Motivated by this, autonomous vehicles must
operate under different and variable circumstances safer than human drivers.
Though some autonomous commands (e.g., autopilot in airplanes and ships)
have been used since the 1920s, their application in ground vehicles is con-
sidered a recent problem since autonomous commands, applied in AGVs, were
first identified in the 1980s and gaining new importance due to the Defense Ad-
vanced Research Projects Agency Grand Challenge [4]. In recent years, AGVs
have been a research trend in the automotive field. Several automotive com-
panies and technical institutes have been producing technological advances in
developing intelligent autonomous vehicles [5].

As with many technological revolutions, the vehicle’s capabilities will
arrive in stages. Thus, conveyances will ascend a ladder of automated functions
through the next years leading to an autonomous vehicle that can drive itself.
The steps given to the progress in the implementation of AGVs may lead
users, in general, to need clarification regarding the gradations of autonomy.
Therefore, one of the first procedures along those lines was the six different
levels outlined by SAE-J3016 [6] (Fig. 1.1), in which, for an automated vehicle,
the levels of autonomy can be defined:

– Level 0: The human operator is responsible for controlling the vehicle.
The presence of automated systems may indicate warnings;

– Level 1: Adaptive Cruise Control, Parking and lane keep assistance, and
other automated assistance may be available;

– Level 2: The vehicle system executes important functions such as accel-
eration, braking, and steering. In addition, the automated system can be
deactivated upon takeover by the driver;

– Level 3: The automated vehicle is able to perform auto-pilot within
specific conditions, such as freeways. When the automated features
request, the human operator must drive;
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Chapter 1. Contextualization and goals 19

– Level 4: The system can control the vehicle in any direction except
under severe weather. Moreover, the human operator must enable the
automated system when it is safe;

– Level 5: The system allows the vehicle full autonomy under any condition.
In addition, the driver’s attention and intervention are not required
anymore;

Figure 1.1: Levels of driving automation according to SAE-J3016.

In general, the architecture for AGVs is typically composed of three
basic modules or layers: sensing and perception, robust route planning, and
a trajectory tracking [7, 8] (Fig. 1.2). The sensing and perception layer may
provide updated data for the system to identify the actual time, location, and
environment around the vehicle. Thus, output data is prepared for the system
to process. The planning layer uses the data produced by the sensing and
perception layer to indicate a feasible and safe trajectory to be followed. Then,
the trajectory tracking layer contains the control strategies (including actuator
control of each subsystem) to allow the vehicle to follow a reference path.

Focusing on the latter, trajectory tracking control is an essential part of
the study of AGVs. It aims to keep the vehicle on a pre-established trajectory,
reduce accidents, and improve the traffic flow [9]. However, path-tracking is
arduous for ground vehicles since these vehicles may be subject to high slip
conditions due to curvy trajectories, obstacles, and environmental conditions,
which may directly affect the performance of this type of control [10]. Thus,
many works have dealt with the problem of AGV trajectory tracking control
[4, 7]. Geometric and kinematic controllers, for example, are popular strategies
due to their simplicity and stability and inspired several configurations found in
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Chapter 1. Contextualization and goals 20

Figure 1.2: Overview regarding the autonomous vehicle system.

the literature. Among them, follow the carrot [11], its extension, the well-known
Pure pursuit [12–15], as well as the Stanley method [13, 16, 17]. These latter
methods have been a standard benchmark to validate new proposed controllers
[7]. In addition, these controllers are useful for applications mainly at low
speed, becoming popular due to reduced computational cost [18]. However,
these controllers usually do not consider dynamic aspects. They, therefore,
may be unsuitable for particular circumstances under urban or racing tracks,
mainly when uncertainties and limits of handling are easily achieved.

The vehicle-environment interaction can be better understood by using
Vehicle Dynamics. According to [19], vehicle dynamics can be divided into
longitudinal, vertical, and lateral. Longitudinal dynamics act to verify the
behavior of the vehicle when subjected to acceleration and braking forces.
The vertical dynamics deals with the ride, focusing on the comfort of vehicle
occupants during vibrations at low frequencies (generally between 0 and 25
Hz) when the vehicle is subjected to excitation from the base [20, 21]. Lateral
dynamics, in turn, deals with the stability and maneuverability of the vehicle.
However, this work addresses only studies regarding lateral and longitudinal
dynamics. With this view, dynamic-based controllers are a potential solution
for accurate path-tracking control. Common approaches include Sliding Model
control [22, 23], H∞ control [24, 25], Game-based control [26, 27], and Model-
based controllers [9, 28, 29].

Model-Based Predictive Control (MPC) has become an attractive control
method since it allows for handling system constraints and future forecasts
[30]. This method applies optimal control actions to the system within a
limited horizon using optimization mechanisms [31]. The MPC approach is
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Chapter 1. Contextualization and goals 21

generally used when linear design methods fail to ensure adherence to the
project requirements. The advantages of MPC control include its ability to
handle different variables and constraints [30] and provide a nonlinear control
law concerning path-following errors, even when applied to linear systems
[28]. These characteristics lead to performance gains in closed-loop system
operation. In addition, the imposition of constraints on the vehicle states can
ensure comfort and safety for the passengers [32]. However, a setback for the
MPC approach is its dependence on an accurate vehicle model [4, 33]. Although
a complex and reliable dynamic vehicle model can guarantee satisfactory path-
tracking in terms of accuracy, the computational effort required by the MPC
solver may not be suitable for real-time implementation.

The parameters commonly used to derive linear and nonlinear dynamic
models are difficult to determine with precision and to tune correctly, which
may lead to uncertain results [34], specifically for autonomous vehicles that
require vehicle models for control design. The traditional dynamic modeling
needs insight into propulsion and nonlinear tire effects besides the vehicle
behavior, which are relatively complicated to control, implement in real-time,
and analyze in terms of stability [35]. For ground vehicles, one of the main
difficulties is the modeling of tire-surface interactions considering both road
and off-road vehicles, where, for the latter, deformable soils are composed of
different unstable particles and commonly result in a considerable deviation
between predicted and measured data [36].

In this way, Computational Intelligence (CI) and System Identification
(SYSID) data-driven models emerge as a potential solution since they may
represent complex systems from measured data, providing a suitable trade-off
between uncertainties throughout the system and accuracy [18, 37]. System
Identification is the science of developing mathematical models of physical
systems using experimental data [38]. In the control field, system identification
is focused on modeling physical processes that describe the behavior of a
given system, being an effective tool in the advanced control strategies [39].
The system identification models may be classified as white, gray, and black-
box models regarding the prior information about the system [40]. Moreover,
identified models may also be classified as linear and nonlinear according to the
adherence to the superposition condition [41]. The white-box modeling requires
the full knowledge of the law governing the system, and the measured data is
commonly used for model validation. On the other hand, black-box models
are derived from a technique in which it is assumed that no prior information
regarding the system is available [40]. Gray-box models stand between the
previous models. Due to the complexity and uncertainties regarding tire-
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Chapter 1. Contextualization and goals 22

road interaction modeling and other nonlinear aspects, white-box modeling
is challenging for vehicle applications. Therefore black-box models become a
potential solution for designers. Among them, models considered suitable for
this approach include higher-degree polynomial functions, fuzzy systems, and
artificial neural networks (ANNs) [42].

Typical CI and SYSID studies related to vehicle dynamics generally ob-
tain longitudinal dynamics [37, 43–45], estimation of some lateral dynamic pa-
rameters such as the side slip angle[46, 47] (requiring a dynamic model), and
the proper lateral dynamics [36] including driver steering model [48]. Other
approaches include the tire study, which contributes most to ground vehicle
dynamics [49]. Tires are the link between the vehicle and the environment,
capable of transmitting forces that influence vehicle motion. Therefore, the
knowledge of friction aspects on the contact patch is crucial for the vehicle
safety systems and in improving noise emission and fuel economy [50]. More-
over, one of the essential topics of vehicle research has been the design of
traction/braking control systems since the loss of adhesion between the tire
and the surface leads to vehicle instability.

Previous studies have used different methodologies to approximate tire
models as [51], which obtained different curve fittings to the traditional Pacejka
tire model1 using rational functions, expansions in a series of Chebyshev
polynomials, and a series of rational orthogonal functions. In [52], the authors
applied a multilayer feed-forward neural network to build an intelligent tire.
The peak value of the tire-road friction curve to control the slip using linear
methods is the main topic of the work presented by [53]. In [54], a neural
network tire model is applied to predict both longitudinal and lateral forces on
the tire by estimating the Pacejka model parameters. Reference [55] applied
Artificial Neural Networks to predict Pacejka model parameters.

Mainly aiming at the path-tracking problem based on system identifica-
tion, a few studies have been made regarding two-wheeled ground vehicles [56],
and considering four-wheeled vehicles [3, 18]. Therefore, path-tracking based
on system identification is undoubtedly a topic that needs exploration, as will
be mentioned in the specialized literature review (Chapter 2). The system
identification method is based on an iterative task considering experimental
or simulated data. Fig. 1.3 shows an overview of the system identification
procedure based on four stages. In Stage 1: Acquire data, the main objective
is the data acquisition which can be obtained from simulated or experimen-
tal tests. This stage is crucial for the purpose of system identification since

1Mathematical representation widely used to simulate the longitudinal/lateral tire forces
as a function of longitudinal/lateral slip. Further information in Section 3.1.2.
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whether input signals are introduced in the system producing unexpected and
non-informative output data, then the resultant model will fail to represent
the system accurately. Therefore, poorly designed experiments/tests may lead
to unsatisfactory and inadequate data acquisition, leading to badly identified
models.

Figure 1.3: Overview regarding the system identification method, adapted from
[57].

In Stage 2: Define model, one has to choose the model configuration,
particularly linear and nonlinear models. When linear, the model configura-
tion (model order) has to be defined. Then, the prediction approaches may be
applied to derive and build the identified linear models. A significant advan-
tage of using linear models is their simple application together with control
approaches since they are easier to interpret and make direct relations with
real physical systems. On the other hand, under certain conditions in which
nonlinear aspects dominate the system, the accuracy of linear models fails, and
nonlinear models are required. In addition, if the linear model can perform the
prediction with accuracy based on validation metrics, there is no reason to
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choose a nonlinear model. Suppose one opts to choose a nonlinear model. In
that case, structure and orders should be set using a family of models with
structure and model order variations, commonly by trial-and-error tasks.

Next, in Stage 3: Estimate the model parameters, once the model config-
uration, including structure and order, becomes possible, the estimation of the
model parameters by using, generally, an optimization problem. Considering
ANNs, this procedure is commonly referenced as learning or training steps. The
optimization task relies on the minimization of the One-Step-Ahead (OSA) or
Free-run prediction residuals (detailed in Section 4.1.1).

Finally, in Stage 4: Validate the model, the designer has to test the
identified model and check it based on validation metrics and effectiveness
through the desired application. One of the most common ways to check
the model validation is using error-based metrics in which the data residuals
from the prediction and the measured data are compared (detailed in Section
4.1.1). Once the validation is set, the designer can decide whether the model
is valid. If the model is unsatisfactory, the designer should go backward in the
methodology and re-apply some of the abovementioned stages.

As mentioned above, due to the nonlinear aspects of vehicle dynamics,
modeling automotive subsystems remains a challenging task. On the one hand,
physics-based models can provide accurate and feasible results when the de-
signer knows the vehicle’s properties but may require enormous computational
effort. On the other hand, whether measured data is available, data-driven ap-
proaches can be used to derive identified models that represent the acquisition
data. However, these procedures may face significant challenges, such as noise
in the data and the inability to include and satisfy physical constraints [58, 59].
Thus, to cope with these issues, the present work also deals with a hybrid ap-
proach (Fig. 1.4) that combines vehicle modeling with a black-box modeling
of the discrepancies. This approach is able to increase the accuracy and feasi-
bility of vehicle modeling since the discrepancy model can capture mismatches
between vehicle models and measured data. First, the vehicle model outputs
are compared to the acquisition data to derive the discrepancy data. Then,
the black-box approach is used to model the error or mismatches. Finally, the
discrepancy data is summed to the vehicle’s outputs to derive the hybrid ap-
proach’s output. Hence, the new discrepancy data is expected to be less than
the original discrepancy data.
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Figure 1.4: General regarding the hybrid approach: The vehicle models produce
discrepancy data to be modeled by the discrepancy model. Next, the hybrid
approach comprises the vehicle models’ outputs summed with their respective
identified discrepancy models.

1.1
Motivation

As highlighted before, the modeling, control, and simulation of AGVs face
difficulties for implementation in real-time in the presence of nonlinearities.
Thus, methods aiming to enhance the effectiveness of predictive modeling by
means of accurate and statistically valid models are of interest to the vehicle
dynamics community.

The present work deals with applying the Computational Intelligence
methods and System Identification as accurate models for predicting tire mod-
eling and longitudinal and lateral dynamics behaviors, leading to effectively
performing predictive control.

These procedures also aim to produce less research effort since previous
minor information regarding the nonlinearities and other vehicle properties
is needed. These could lead researchers to spend more time analyzing the
results than with tedious and financially costly procedures to obtain terrain and
vehicle properties. Besides, the present work allows the development of future
work related to different CI and SYSID algorithms and the implementation of
different control approaches for the control of ground vehicles.
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1.2
Objectives

The main goal of the present thesis is to apply CI and SYSID techniques
in vehicle dynamics to allow the application of predictive control for path-
tracking effectively.

According to the aforementioned main goal of this work, it is possible to
enumerate the specific goals as follows.

– To approximate the tire interaction by means of Machine Learning,
in particular, Radial basis function (RBF) and multilayer perceptron
(MLP) neural networks;

– To compare the learned model with Pacejka’s tire model and experimen-
tal data for efficient model predictive control;

– To identify lateral dynamics of a ground vehicle using AutoRegressive
with eXogenous inputs (ARX) models;

– To elaborate on a novel Multi-ARX-MPC (MARX-MPC) control frame-
work for adopting a unique cost function that considers multiple vehicle
data-driven models;

– To compare the MARX-MPC with conventional model predictive con-
trollers, in particular, linear (LMPC) and nonlinear MPC (NMPC);

– To obtain a more accurate vehicle model using a hybrid approach of
vehicle models (data-driven and physics-based models) and discrepancies
modeled by black-box models;

– To compare the proposed hybrid approaches with the conventional
vehicle models presented in the literature and establish their importance;

DBD
PUC-Rio - Certificação Digital Nº 1912774/CA



2
Literature review and contributions

The aim of the present chapter is to present the literature review
regarding MPC and vehicle models, together with the original contributions
and the outline of the present thesis. The first part deals with the literature
review of MPC controllers applied to trajectory tracking control which will be
the focus of two of the proposed contributions. Secondly, a literature review
regarding data-driven and physics-based vehicle models, which will be part of
all the original contributions, is established. Next, the original contributions
are stated and described. Lastly, the outline of the present thesis is presented.

2.1
Model predictive control for trajectory tracking

In the context of AGVs, the MPC methodology has been used for
trajectory-tracking tasks since it deals with representative system models, con-
straints, and future predictions based on that model [9, 28]. Moreover, the MPC
control proved effective for robust control with a reasonable computational
cost. Furthermore, passenger comfort and vehicle handling can be improved
by implementing an MPC control due to the possibility of using multiple states
and constraints to ensure stability and security [32]. Another factor contribut-
ing to the widespread use of MPC control is its robustness against system
uncertainties.

The MPC for trajectory tracking control has been generally applied
by using two different approaches, i) NMPC, designed using a nonlinear
vehicle dynamics model, tends to enhance path-tracking, capturing nonlinear
vehicle characteristics, and ii) LMPC, generally designed by applying simplified
vehicle dynamics through linearization processes at specific operating points,
using the linear approximation of the model [33]. Considering the NMPC
approach, the application and formulation of a Nonlinear Programming (NLP)
problem is expected [60, 61]. Then, to solve this problem, techniques such
as the Sequential Quadratic Programming (SQP) [62, 63] and the Interior-
Point Method (IPM) [64] were developed. However, due to the complexity
commonly involved during the NLP process, linearization techniques have
been proposed, enabling Quadratic Programming (QP). Thus, the system
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(kinematic or dynamic model) is changed to a Linear Time-Varying (LTV)
system [60, 65]. It is important to point out that the tire aspect becomes
essential when linearizing the vehicle’s dynamics. When using linear tire
modeling, the tire force approximation turns the slip angles limited to large slip
angles [60]. In addition, constraints are commonly used to keep slip angles in
the linear envelope [66, 67]. Based on the principle of MPC controllers, a linear
time-varying model predictive controller (LTV-MPC) considering cornering
characteristics is designed and optimized in [68]. Ignoring the effects of vertical,
roll, and pitch motions, the authors established a three-degree-freedom model
of vehicle monorail, considering the Pacejka Formula. The results show that
the controller has good self-adaptability under rough terrains. In [69], a linear
time-varying model predictive controller (LTV-MPC) is designed through local
linearization, tracking the desired vehicle velocity and the reference path.

Even though the LTV procedure can reduce the computational effort,
it requires performing the successive linearization process online. Then, to
further reduce the computational burden in the process, a Linear Parameter
Varying (LPV) approach can be derived [70]. Through this process, the model’s
parameters vary for the different polyhedral regions of the state-space by
using a scheduling variable [33]. In contrast to the LTV approach, the LPV
method does not need successive online linearization. Therefore it can reduce
computational burden and efficiently improve MPC.

At low speeds, applying real-time MPC becomes possible with accuracy
due to the use of simplified models. However, with the increase in speed, the
simplified model becomes uncertain and complex in the implementation in
real-time [28]. Thus, more detailed models and the use of punctual simplifi-
cations have been proposed to enhance the MPC in terms of accuracy and
computational efficiency. In [28], the authors used a Switched MPC in which
vehicle models (kinematics, linear and nonlinear dynamics) are switched during
the prediction according to error-based metrics and computational time. Ref-
erence [71] has considered an MPC control with 2 degrees of freedom (DoF)
vehicle model with Pacejka tire modeling. The authors propose a steering
angle envelope in the MPC function to improve lateral stability. Reference
[72] has proposed a different approach to trajectory control by using a time-
varying and non-uniformly spaced control horizon. The approach reduces the
time interval for the near future and increases the time interval to extend the
prediction horizon. Thus, the approach maintains the trajectory tracking per-
formance and reduces the computational effort. In [73], the authors develop
an NMPC controller with a single-track prediction model and Pacejka tire
modeling to control the lateral position and yaw. The novelty is the imple-
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mentation of an optimizer called continuation/generalized minimal residual.
Moreover, different works have used dynamic and kinematic models with slip
assumptions to design an MPC controller. In [74, 75], the authors used a kine-
matic model with slip angles to develop an MPC controller, which presented
satisfactory results even though the slip estimation was considered a problem
because of the absence of a more robust method in their modeling. Reference
[14] presents an MPC controller architecture considering both the kinematic
and the dynamic control in a cascade structure to perform path-tracking of
an autonomous Baja vehicle. The results were considered satisfactory after
practical experiments to validate the simulation data. Reference [76] applied
an MPC-based path-tracking control in a ground vehicle over three types of
roads: wet and dry asphalt pavement and ice-covered soil. In [77], the authors
proposed a nonlinear model predictive controller for path-tracking of a ground
vehicle considering the Pacejka Formula. Under some situations, high precision
of path-tracking could result in loss of lateral stability. Thus, a direct yaw con-
trol with an MPC controller based on linear matrix inequality is proposed by
[78], which achieves satisfactory results for a real vehicle. A trajectory tracking
method with a time-varying model based on a simple dynamic model which
considers both the linear and nonlinear MPC algorithms is proposed by [79].
The designed control architecture proposed by [80] is composed of an MPC
controller based on a kinematic model, internal feedback control of yaw rate,
and sideslip compensation to enhance path-tracking.

Machine Learning techniques can also be used to predict the future states
of AGV during path-tracking control instead of using a physics-based model.
In [18], an MPC controller is designed with learned vehicle dynamics employing
experimental data. The metric results demonstrated that the proposed tech-
nique could successfully represent vehicle behavior and be suitable for real-time
operation. In [81], the authors proposed a data-driven identification using neu-
ral networks to learn vehicle operation data to implement MPC control of a
racing car. Reference [82] developed a data-driven identification of an AGV
based on an LPV framework using machine learning techniques.

2.2
Physics-based and data-driven vehicle models

An essential aspect of studying autonomous vehicles is the development
of representative mathematical models of vehicle dynamics. Vehicle modeling
is an essential task in the design process since the final product can be built
faster, with a satisfactory level of performance, while reducing financial costs.
Moreover, control laws, in particular for path-tracking, are usually derived from
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vehicle models [7]. Being so, several works have been developed considering
three usual configurations consisting of a geometric, kinematic, and dynamic
model.

Geometric models only consider the dimension and position of the vehicle
during the motion and are commonly based on Ackermann steering [7, 83].
Different works have used geometric models [12, 13, 16, 84] as an initial step to
develop some traditional and widely used geometric trajectory controllers, Pure
Pursuit and Stanley controllers. However, geometric models are unsuitable for
high-speed path-tracking due to their inability to include vehicle dynamics
[4, 7].

On the other hand, kinematic vehicle models rely on the motion of
the vehicle based on its position, velocity, and acceleration, usually lateral
direction and yaw motion concerning fixed and global axes. Several works have
extensively used these models due to their essential relationship to describe
vehicle motion with simple equations. To mention a few, the authors [14]
present a four-wheeled vehicle as a bicycle model where only one wheel per axle
is considered. In [85], a steering controller based on a simple kinematic model
was developed for autonomous vehicles in the Defense Advanced Research
Projects Agency Grand Challenge. Other works have enhanced kinematic
models by including both rear and front wheel slip angles to account for
slippery terrains [74, 75, 80, 86].

Unlike geometric and kinematic models, dynamic models consider inter-
nal forces (e.g., the mass of the vehicle and tire-road interactions), momentum,
or energy within the system [7]. Dynamic models are commonly related to the
previous models. They derive from Newtonian equations of motion and may
be commonly described as full-vehicle, or half-vehicle (bicycle model) models
[83]. Moreover, tire forces derived from the interaction between tire and ground
can be represented during maneuvering in both the lateral and longitudinal
directions using different approaches, such as the Pacejka tire model applied in
[7, 68, 77], and developed by [49], LuGre friction model designed by a collab-
oration between control groups in Lund and Grenoble [87], and the tire model
based on Julien’s Theory described by [21].

Models derived from physics combine Newton’s second law and empirical
observations under certain conditions, making them easy to understand. When
nonlinear [88–90], these models maintain good interpretability but are complex
and challenging to configure/adjust. Thus, when applied to control schemes,
they become relatively complicated to implement in real-time. On the other
hand, when linear [80, 91, 92], the models could be more simplified, taking into
account only characteristics representative of the vehicle, such as tires, suspen-
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sion, and powertrain. Thus, a predictive control based on a simplified model
may perform well in situations where nonlinear aspects are not dominant. In
addition, unmodeled dynamics introduce uncertainties, significantly reducing
the performance of the MPC control.

The MPC considering a highly complex model, is not a good solution due
to the computational cost of the optimization. We can see in [28] that although
alternating the models reduces the computational time, situations in which
dominant nonlinear control can increase solver time. In [71, 93], the authors
did not use longitudinal dynamics modeling, excluding longitudinal tire slip
effects and powertrain acceleration effects. Furthermore, in [72], the authors
consider linear tire modeling and very low speeds. In summary, whether linear
or nonlinear, models derived from physics suffer from different shortcomings,
including prior knowledge of vehicle aspects and time-consuming efforts.

Alternatively, one potential solution is CI using machine learning (ML)
and SYSID techniques, which ensures a given system can learn and adapt to
different situations [41]. Although system identification and machine learning
have been developing independently through the years, recently, a great effort
has been made to establish a common ground for these approaches [38].
Moreover, no prior information about the system is required resulting in an
essential advantage for model approximation [94]. In [45], longitudinal model
identification and velocity control of an AGV vehicle are designed for low-
speed applications. An adaptive ARX model as a function of the operating
point is used to identify throttle level as the input signal and vehicle velocity
as the output. The velocity control is designed using a PI (Proportional-
Integral) controller. In [43], and [37], data-driven techniques are applied to
derive longitudinal and the combination of lateral and longitudinal dynamics of
a vehicle, respectively. In both works, linear system identification is compared
to nonlinear physical modeling resulting in satisfactory results for normal
driving conditions. References [48, 95] proposed identifying parameters related
to the driver model incorporating human sensory dynamics. In [96], the authors
proposed an identification approach for parameter identification and lateral
vehicle dynamics state estimation based on a Linear Fractional Transform
reformulation of the vehicle and tire models. The approach allowed the use of
nonlinearities and proved to be suitable for real-time applications.

Machine learning methods are a potential solution since they have
learning characteristics and adaptation to different complex problems with
precision [3]. Reference [97] proposed a data-driven model based on deep
neural networks to represent the longitudinal characteristics of a ground
vehicle. The proposed approach predicts the distance and velocity of the
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vehicle in real-time with accuracy. Longitudinal dynamics identification is also
proposed by reference [44]. The authors compared four different structures of
neural networks (NNs) (with and without pre-wired structure, non-recursive,
and recursive), indicating the versatility of NNs. In order to improve racing
performance and capture vehicle dynamics, references [98] and [3] use data-
driven methods. The former applies an iterative learning control to improve
lateral and longitudinal tracking over multiple laps. At the same time, a second
algorithm alters the vehicle trajectory. The latter reference proposed a neural
network architecture using past states and inputs from the physical model. The
proposed method results achieved satisfactory performance on an experimental
ground vehicle.

However, these approaches may face significant limitations and chal-
lenges, such as noise in the data, which may introduce overfitting. In addition,
it is challenging to include aspects to satisfy physics constraints [58, 59]. Thus,
to cope with these problems, hybrid approaches combining vehicle models with
the modeling of the discrepancies can be proposed. This approach is chosen to
improve the accuracy of vehicle modeling by proposing a discrepancy model to
capture mismatches between vehicle models and measured data. Every model,
to varying extents, has discrepancies, that is, the mismatches between mea-
sured real data and the predicted by the model [99]. Several approaches have
been proposed to model discrepancies. In [99, 100], the authors proposed a
discrepancy model based on the Bayesian hierarchical model in building struc-
tures. The Bayesian hierarchical approach is also applied to model discrepancy
problems in [101]. In [58], the authors applied the learning discrepancy model
to improve the physics-based model of a double pendulum on a cart. In [59],
discrepancy models are used to improve dynamic models regarding the physics
of falling objects. Reference [102] proposed a hybrid approach, including a
physics-based model and gray-box for discrepancy models.

2.3
Original contributions

To the best of our knowledge, although researchers have proposed data-
driven models to approximate vehicle dynamics, such approaches have not been
applied so far, neither for tire modeling and multi-identified vehicle models
for efficient predictive control nor hybrid approaches combining vehicle and
discrepancy models.

The first contribution of this thesis (Chapter 6) relies on using ML
architectures for tire learning to enhance model predictive control efficiently
and contributes with the following:
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– Artificial neural networks can be applied to approximate nonlinear tire
models with arbitrary precision;

RBF and MLP neural networks are designed to approximate Pacejka’s
tire model and experimental data. High computational efforts are com-
monly required to accurately predict tire curves from traditional tire
models. Moreover, vehicle control depends on the tire-road interaction,
demanding an accurate tire model. These issues can be relieved by using
data-driven models. Therefore, in this thesis, data-driven neural tires are
built using machine learning from simulated/measured data resulting in
models with optimized architectures. It is worth noting that neural ap-
proaches to predict tire curves have been used before [52, 55, 103], but
that techniques only consider lateral curves or parameter estimation of
traditional tire modeling, unlike the approach adopted in this thesis;

– Neural tire models can be used effectively with MPC to provide nonlinear
control laws;

Predictive controllers based on AGVs with data-driven tire models
(MPC-Neural) are designed to regulate virtual plants’ torque and steer-
ing angle inputs considering simulated and experimental tire data. The
present method considers a reduced dataset instead of numerous datasets
present in system identification and data-driven control, which is a stan-
dard procedure used in the literature [18, 35, 37].

– MPC with neural tire model as prediction inference is computationally
more efficient than traditional approaches.

The predictive control results show that it is possible to improve com-
putational time by 25% in some cases, which indicates that using a
data-driven model motivates the application in real-time. The gain in
computational efforts is relevant compared to recent references [18, 104]
considering neural networks to predict control laws.

Next, the second contribution (Chapter 7) relies on the application of
multi-ARX vehicle models to efficiently enhance model predictive control
aiming:

– To demonstrate that simplified data-driven vehicle models can be used as
reliable predictions for developing predictive control laws when no prior
knowledge of the vehicle is available.

– To propose a novel Multi-ARX-MPC (MARX-MPC) control framework
for adopting a unique cost function that considers multiple vehicle
data-driven models. The controller’s performance is evaluated based on
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trajectory error and computational complexity compatible with recent
works [18, 28, 72]).

– To demonstrate that data-driven models as MPC prediction perform
better in computational terms compared to conventional approaches
present in the literature due to low sensitivity to the action of lateral
force (results point to a 63% reduction compared to LMPC and 88% to
NMPC).

– To reduce computational effort by using data-driven models as MPC
prediction, maintaining a satisfactory error for sudden trajectory change.

Lastly, the third contribution (Chapter 8) deals with the use of a hybrid
approach that combines vehicle models approaches with black-box modeling
of the discrepancies aiming:

– To obtain a more accurate vehicle model using a hybrid approach of
vehicle models (data-driven and physics-based models) in which black-
box models model discrepancies. The vehicle models are derived using
experimental open data [105] collected across racing driving conditions,
enabling reproduction by the interested reader. In this regard specifically,
the proposed approach was able to improve other approaches by up to
28% in terms of RMSE reduction;

– To demonstrate that the proposed hybrid approach can accurately
improve the vehicle modeling of racing vehicles in maneuvers at the
limits of handling. Few existing works apply system identification to
learn vehicle dynamics from sampled data [18, 37, 43, 44]. However,
those studies only considered normal driving conditions with small
steering angles due to gentle maneuvers. From the results, the proposed
approach outperforms the state-of-the-art, which is relevant for model-
based control applications and digital twins [106].

– To easily reformulated the proposed approach for different levels of model
complexity. Therefore, one may select the model most suitable for each
desired application;

– To modify the physics-based model to receive driver’s commands directly
instead of force variables (traction and braking forces). This procedure
allows the hybrid approach to be used directly by higher-level control
applications;

– To add a metric of discrepancy model contribution through simulation
outputs. Thus, it is possible to quantify the black-box submodel enhance-
ments. This effect is essential for decision-making, indicating which en-
velopes of the physical models have room for improvement.
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In summary, the positioning of this thesis (Table 2.1) concerning some
of the related works of literature regarding AGVs relies specifically on path-
tracking using MPC, tire modeling, and vehicle models. Moreover, Fig. 2.1
presents an overview of the thesis position regarding path-tracking using MPC
control.

Figure 2.1: Thesis position regarding AGVs: the present thesis focuses on path-
tracking using MPC control, vehicle models based on physics, and data-driven
approaches.

2.4
Outline

The present thesis is organized into four main parts, being this introduc-
tory part (Part 1) the first. Part 2 presents a theoretical background regarding
the subjects used in the scope of this thesis. Part 3 elucidates the original
contributions and the proposed methodologies’ results. Lastly, Part 4 brings
conclusions, suggestions for future research publications, and the references
used in this thesis. The parts and their respective chapters are divided as:

Part I: This part of the thesis is devoted to establishing a general
introduction to the present work.

– Chapter 1: An introductory chapter is stated about the contextualization,
motivation, and goals of this thesis;

– Chapter 2: This chapter details the literature review, together with the
related original contributions, and the outline of this thesis;

Part II: This part of the thesis deals with concepts about vehicle system
modeling, system identification, machine learning, and predictive control.

– Chapter 3: This chapter is devoted to exposing the basics of ground
vehicle modeling;
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Table 2.1: Summary of selected references describing techniques for vehicle
models for efficient MPC.
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This thesis
MPC
Linear ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Nonlinear ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Data-driven ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Tire models
Linear ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓

Nonlinear ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

ML models ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Vehicle
models
Linear ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓

Nonlinear ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓

Data-driven ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hybrid ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

– Chapter 4: Fundamentals for system identification with black-box models
and the mathematical formulation of the artificial neural networks are
stated in the present chapter;

– Chapter 5: This chapter deals with the details regarding the mathemat-
ical formulation of the model predictive control;

Part III: The main contributions of the present thesis are stated in this
part.

– Chapter 6: Machine learning architectures are applied for tire learning
to enhance model predictive control efficiently;

– Chapter 7: This chapter is devoted to detail the results obtained by
applying ARX models to enhance model predictive control;

– Chapter 8: The novel hybrid approach, combining data-driven ap-
proaches with black-box modeling of the discrepancies are given in this
chapter to enhance vehicle modeling;
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Part IV: Final comments, future research directions, and proposed work
plan are given.

– Chapter 9: General conclusions obtained in the scope of the present
work are given with a list of contributed publications. Moreover, future
research directions are given at the end of this chapter;

Appendix: The appendix gives insight and description of different
systems, making the document more easily readable.

– Appendix A: This appendix gives details about the case studies used in
the scope of the present thesis, together with related references;
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3
Physics-based vehicle models

The present chapter aims to state basic concepts regarding physics-based
vehicle models. The first part is devoted to presenting the single-track model
commonly used for control applications [107], which will be the focus of the
first and second contributions. Secondly, other two approaches are presented,
distinguishing the longitudinal [43] and lateral vehicle dynamics [72, 96, 108],
which will be the focus of the third contribution.

3.1
Single-track model

The single-track model (Fig. 3.1) is a vehicle dynamic model widely used
for control applications [107]. The vehicle is assumed to travel on a rigid path
with suspension and aerodynamic aspects neglected. The vehicle motion can
be described in the vehicle (x and y) and global frames (X and Y ). Moreover, ψ
is the vehicle’s and global frames’ yaw angle. Based on Newton’s theorem, the
governing equations of motion considering longitudinal and lateral dynamics
can be expressed as

Figure 3.1: Single-track dynamic model.
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mẍ = mẏψ̇ + 2(Fxfcosδ − Fyfsinδ) + 2Fxr , (3-1)

mÿ = −mẋψ̇ + 2(Fxfsinδ + Fyfcosδ) + 2Fyr , (3-2)

Izψ̈ = 2lf (Fxfsinδ + Fyfcosδ) − 2lrFyr , (3-3)

Iωf ω̇f = −2Fxfrd + Tf , (3-4)

Iωrω̇r = −2Fxrrd + Tr , (3-5)

where Iz and m are the moment of inertia about the yaw axis and vehicle mass,
respectively; lf and lr are the front and rear axle distance from the center of
gravity (CG). Besides, Fxf , Fxr, Fyf , and Fyr are the longitudinal and lateral
forces applied to the front and rear axles, respectively. The parameters Iωf and
Iωr are the mass moment of inertia of the wheels, rd is wheel radius, Tf and
Tr are the torque applied to the driven wheels when considering a front- and
rear-wheel drive vehicle, respectively. The wheel rotational speeds for front and
rear wheels are given by ωf and ωr, respectively. Finally, δ is the front wheel
angle which can be defined as the relation between steering wheel angle δsw

and steering transmission ratio isw [109], as follows

δ = δsw

isw

. (3-6)

The vehicle motion over the global frame can be derived from the
kinematic model as

Ẋ = ẋcosψ − ẏsinψ , (3-7)

Ẏ = ẋsinψ + ẏcosψ . (3-8)

3.1.1
Linear tire model

The tire-road interaction is one of the main aspects of the performance
of ground vehicles since tires connect the vehicle to the environment [50].
Therefore, friction aspects under the tire (contact patch region) are essential
for vehicle safety. Under situations with small slip angles, the lateral force and
slip angles produce a linear relation expressed as [83]:

Fyf = Cfαf , (3-9)

Fyr = Crαr , (3-10)
where the front and rear slip angles are given by αf and αr, respectively, and
can be derived from Eqs. (3-11) and (3-12). Besides, the cornering stiffness can
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be established for the front (Cf ) and rear (Cr) wheels.

αf = δ − ẏ + lf ψ̇

ẋ
, (3-11)

αr = − ẏ − lrψ̇

ẋ
. (3-12)

On the other hand, the longitudinal slip can be derived as

s = ẋ− ωrd

max[ẋ, ωrd] . (3-13)

The friction coefficients in longitudinal (µx) and lateral (µy) directions
represent the relation between tire efforts on the tire as [110], in which Fz is
the vertical effort on the tire.

µx(s) = Fx

Fz

, (3-14)

µy(α) = Fy

Fz

. (3-15)

3.1.2
Nonlinear tire model

Unlike the linear tire model, nonlinear models for tires became vital
because they can accurately predict at larger slip angles [28]. Thus, numerous
studies are available regarding tire models, including the Brush model and
Pacejka model [49], and the Tmeasy model [111]. The Pacejka tire model is
also known as “Magic Formula” since there is no particular physical basis.
Thus, the mathematical representation is based on experimental data, and
curve fitting to approximate tire curves [83]. Here, a simplified version of the
Pacejka formulation (Eqs. (3-16)-(3-17)) represents the tire-road interaction
as follows

F = Dsin(Catan(Bϕ)) + Sv , (3-16)

ϕ = (1 − E)(λ+ Sh) + (E/B)arctan(B(λ+ Sh)), (3-17)
where λ parameter is replaced by longitudinal slip (s) or lateral slip angle (α)
for longitudinal and lateral efforts on the tire (F ), respectively. Moreover, the
parameters B, C, D, and E are the stiffness and shape factors, peak value, and
curvature factor, respectively. In addition, Sv and Sh are vertical and horizontal
shift coefficients [49].
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3.2
Another perspective of physics-based vehicle modeling

This section introduces other mathematical formulations of vehicle
physics-based models distinguishing longitudinal and lateral dynamics.

3.2.1
Longitudinal dynamics

The longitudinal model described in [43] is used with a modification
regarding the tractive and braking efforts. Here, a modification is implemented
in the model to receive the driver’s command, specifically the pedal’s driver,
in terms of throttle and braking efforts in percentage, which allows the
modeling to be directly used for higher-level control approaches. Thus, based
on Newton’s theorem, the longitudinal motion can be expressed as

mv̇x = keP (t) − kdvx −mgkr , (3-18)

where m is the vehicle mass, vx is the vehicle’s longitudinal velocity, and g is
the acceleration due to gravity. The force resultant (traction and braking)
transmitted to the wheels is modeled by keP , where P approximates the
driver’s pedal signal. Here, the difference between the throttle and braking
signals represents the driver’s pedal signal. In addition, ke groups the driveline
gear ratio and the system’s efficiency. The drag force is given by a linear
function kdvx. Finally, the kr is the rolling friction parameter.

3.2.2
Lateral dynamics

The bicycle model is a linear dynamic model commonly used for control
solutions regarding lateral vehicle dynamics. The vehicle is assumed to travel
on a rigid path with suspension and roll aspects neglected. Moreover, the
lateral force remains in a linear function using a cornering stiffness coefficient
[83]. This model is characterized by two degrees of freedom, composed of lateral
velocity (vy) and yaw rate (ψ̇ = r), and can be defined as

v̇y = −
(
Cf + Cr

mvx

)
vy −

(
Cf lf − Crlr

mvx

+ vx

)
r + Cfδ

m
, (3-19)

ṙ = −
(
Cf lf − Crlr

Izvx

)
vy −

(
Cf l

2
f − Crl

2
r

Izvx

+ vx

)
r + Cf lfδ

Iz

, (3-20)

where Iz is the moment of inertia about the yaw axis, lf and lr are the front and
rear axle distance from the center of gravity. Besides, the cornering stiffness
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can be established for the front (Cf ) and rear (Cr) wheels, respectively. Finally,
δ is the front wheel angle.

3.3
Summary

Due to computational development, many vehicle designers have chosen
to perform computational tests instead of tests with physical prototypes.
A large part of this is because tests with physical prototypes have a high
cost of preparation and implementation, in addition to a great demand
for time to be completed, and are currently used only as the last step
for the final validation of the models and computational tests. When done
well, computational tests have results that are very close to reality. Thus,
several techniques have been used for modeling mechanical processes that
allow more accurate evaluations of their behavior. Particularly for the AGVs
field, developing representative models regarding vehicle dynamics is essential
since they can be used to derive control laws. Thus, this chapter presented
models derived from physics combining Newton’s second law and empirical
observations. Dynamic models based on physics laws and constraints make
them easy to understand and interpret. Linear and nonlinear vehicle models
were presented with tire modeling regarding longitudinal and lateral dynamics.

The physics-based models herein presented are used through all the
original contributions (Sections 6-8) to be compared with the data-driven
approaches. In the first contribution, dynamic models with the Pacejka tire
model are compared with the proposed neural tires (neural architectures
are the focus of Section 4.3). The second contribution relies on data-driven
approaches to model a vehicle and perform path-tracking. The MPC control
based on the data-driven approach is compared with the traditional one based
on linear and nonlinear vehicle models. Lastly, the third original contribution
deals with the hybrid approach that combines vehicle models with modeling
the discrepancies between measured and predicted data from a vintage racing
car. The main objective is to enhance the vehicle model outputs.
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4
Machine learning and black-box system identification

The present chapter aims to state basic concepts regarding machine
learning using ANNs and black-box system identification. The first section is
devoted to presenting ARX models and validation metrics. Next, the nonlinear
ARX models are described. Then, ANNs formulation, including RBF and
MLP architectures, is given. Finally, the state-space approach is detailed when
applied to system identification. It is interesting to point out that each section
presents examples that the interested reader may reproduce.

4.1
ARX Models for system identification

A critical disadvantage of nonlinear dynamic models, consequently affect-
ing the NMPC controller, is that knowing prior information about the dynamic
system is necessary. In addition, the MPC procedure based on high-fidelity
models is time-consuming [37]. On the other hand, linear models depend on
their operating point [45]. Therefore, this work applies data-based system iden-
tification to overcome these difficulties. For this, an ARX model (Fig. 4.1) is
applied, where y(k), u(k) are the model’s output and input, respectively; ξ(k)
represents modeling error, measurement error, offset or noise for a sample k. In
addition, G(z−1) and H(z−1) are the dynamic transfer function and the noise
transfer function, respectively, and can be expressed as

Figure 4.1: Structure of an ARX model.
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
H(z−1) = B(z−1)

A(z−1)
G(z−1) = 1

A(z−1)

, (4-1)

where

 A(z−1) = 1 − a1z
−1 − ...− anaz

−nb

B(z−1) = b1z
−1 + ...+ bnbz

−na
, (4-2)

where a1, a2,..., ana and b1, b2,..., bnb are coefficients regarding delayed input
and output samples, respectively. Moreover, z−1 is the delay coefficient.

From Fig. 4.1, it is possible to determine that:

y(k) = B(z−1)
A(z−1)u(k) + 1

A(z−1)ξ(k) . (4-3)

Finally, the ARX model can be parameterized as follows,

y(k) = (1 − A(z−1))y(k) +B(z−1)u(k) + ξ(k) , (4-4)

and therefore, the ARX model can be represented as

y(k) = −a1y(k − 1) − a2y(k − 2) − ...− anay(k − na)+

+ b1u(k − 1) + b2u(k − 2) + ...+ bnbu(k − nb) + ξ(k) . (4-5)

The ARX model in Eq. (4-5) has na + nb coefficients to estimate.
Therefore, the batch least squares algorithm is used over input and output
data pairs. The coefficients to be found have to minimize a cost function
regarding the model’s error for one-step-ahead prediction. Then, Eq. (4-5) can
be rewritten using a linear regression model as

y(k) = ϕT (k)θ̂ + ξ(k) , (4-6)

where ϕT (k) is a vector containing input and output data, θ̂ is the vector of
coefficients to be estimated. Moreover, the residuals (ξ) is defined as

ξ(k) = y(k) − ŷ(k) , (4-7)

where y(k), and ŷ(k) are the measured and predicted outputs, respectively.
When enormous data are considered, Eq. (4-6) must be rewritten in matrices
form as

Yt = Φθ̂ + Ξ , (4-8)
where Yt is the target measurement vector, Φ is the regressors matrix, and Ξ
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is the residual vector. Finally, the regressors matrix θ̂ can be determined via
the minimum norm procedure

θ̂ = [ΦT Φ]−1ΦTYt . (4-9)

4.1.1
Model validation and metrics

In order to evaluate an identified model, some procedures and metrics can
be used, depending on the model’s purpose. Then, two different methods are
presented in this work to predict models. First, the One-Step-Ahead prediction
uses past measured values to determine the output. In contrast, the Free-Run
prediction uses past predicted values to calculate the future predictions [112].
Let ŷs denote the FR prediction of y(k) at a sample k. In addition, for brevity,
it is possible to write an ARX model with the case na = nb:

ŷs(1) = y(1)
ŷs(2) = y(2)
...
ŷs(na) = y(na)
ŷs(na+ 1) = [ŷs(na), ŷs(na− 1), ..., ŷs(1), u(nb), u(nb− 1), .., .u(1)]
...
ŷs(k) = [ŷs(k − 1), ŷs(k − 2), ..., ŷs(k − na), u(k − 1), u(k − 2), ..., u(k − nb)]
...

The error in the FR predictions are accumulated through the prediction
and easily shows whether the model is valid. On the other hand, the OSA
predictions present a reset at each interaction. Therefore, it is complicated to
validate the model using only OSA predictions.

Through this thesis, the prediction models may be compared using differ-
ent methods. First, error-based metrics include the Root Mean Squared Error
(RMSE), the Multiple Correlation Coefficient (R2) [113], and the normalized
fit metric [114] between measured and predicted data as follows

RMSE =

√√√√ 1
Nl

Nl∑
i=1

[y − ŷ]2 , (4-10)

R2 = 1 −

Nl∑
t=1

[y − ŷ]2

Nl∑
t=1

[y − y]2
, (4-11)

F = 100
(

1 − ∥ y − ŷ ∥2

∥ y − y ∥2

)
, (4-12)
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where y is the reference signal, ŷ is the predicted data, y is the mean value of
the reference signal, and Nl is the length of the data vector. Specifically for the
fit metric, a perfect fit is indicated by F = 100%, while a negative fit means a
poor fit.

A correlation analysis between the measured and predicted data is also
performed. The correlation approach can be determined by the variance-
accounted-for metric (VAF), given by:

VAF = 100
(

1 − var(y − ŷ)
var(y)

)
. (4-13)

A value of VAF = 100% ensures that the predicted model can identify the
variance in the measured data. However, the model mismatches due to the
noise in the data are responsible for that value not being expected.
Example 1: The present example shows the importance of calculating the OSA
and FR prediction errors to validate an ARX model.

The flexible robotic arm detailed in Section A.1 is used for this example.
During the study of the ARX model, different combinations of na and nb are
defined in intervals of [1, 10]. The best four cases are selected for each type of
simulation (FR and OSA). Finally, as model validation data, the final part was
used as the estimation data (15% of the entire dataset). The results obtained
are listed in Table 4.1, where the values of the RMSE and R2 for the estimation
and validation data consider both the OSA and FR simulations.

Table 4.1: Results in terms of R2 and RMSE metrics, considering OSA and
FR simulations for the robotic arm example.

Case na nb Estimation Validation
RMSE × 10−4 R2 RMSE × 10−4 R2

OSA

38 4 8 5.44 0.999 3.77 0.999
39 4 9 5.32 0.999 3.60 0.999
48 5 8 5.33 0.999 3.83 0.999
50 5 10 5.08 0.999 3.45 0.999

FR

38 4 8 145 0.997 105 0.997
39 4 9 91.1 0.999 104 0.998
48 5 8 179 0.996 109 0.997
50 5 10 95.2 0.999 107 0.997

After checking the best cases among all tests, the combination na = 4
and nb = 9 presented the best results considering the FR simulation. Due to
the characteristic of the step-ahead method, the errors are redefined at each
iteration, resulting in similar results.

On the contrary, the free simulation accumulates the error at each
iteration, making verifying discrepancies in each case easier. It is also noted
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Figure 4.2: Example 1: a) OSA and FR predictions considering estimation
phase. Raincloud considering (b) OSA and (c) FR model errors and the real
data.

Figure 4.3: Example 1: a) OSA and FR predictions considering validation
phase. Raincloud considering (b) OSA and (c) FR model errors and the real
data.
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that the increase in the parameters na and nb does not drastically influence
the result. However, the greater the number of parameters more complex it
tends to become visible the influence of each one of them in the system. This
may hinder the implementation of advanced control systems. Figs. 4.2 and 4.3
show the comparison between the measured data and the data estimation and
validation, considering the OSA and FR simulations.

4.2
NARX models for system identification

The Nonlinear AutoRegressive with eXogenous inputs (NARX) models
is applied for a vehicle and discrepancies learning and can be defined as

y(k) = F [ϕ(k)] = F [y(k − 1), ..., y(k − na),

u(k − 1), ..., u(k − nb) + ξ(k)] , (4-14)

where the difference between the linear approach aforementioned is the use of
the function F[ϕ(k)], which in this work is set as an artificial neural network
(the focus of the Section 4.3) that can be defined as the concatenation of
multiple hidden layers. In this sense, the ADAM learning algorithm is a first-
order stochastic gradient descent that allows an individualized step adaptation
of the free parameters in the search stage. This occurs due to the use of an
individual learning rate [115].
Example 2: The present example demonstrates the application of a NARX
model.

The simulated system detailed in Section A.2 is used for this example.
The main objective of this example is to identify a simulated system using the
NARX model. The true lags are known, and the application of the proposed
method relies on test NARX models with neural networks varying the number
of neurons with networks using Exponential Linear Unit (ELU) activation
through hidden layers varying from 2 to 10. After some trial and error, the
test was conducted using 50 neurons and three hidden layers using the ADAM
algorithm with a learning rate set 10−3.

Table 4.2: Results in terms of R2 and RMSE metrics, considering OSA and
FR predictions for Narendra and Parthasarathy’s example.

Estimation Validation
RMSE R2 RMSE R2

OSA 0.0489 0.9765 0.0541 0.9648
FR 0.0513 0.9720 0.0481 0.9791
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Table 4.2 shows the capability of the present approach to approximate
the simulated system. The model’s precision is also shown in Figs. 4.4 and 4.5,
which depict the system outputs and errors through the rainclouds considering
OSA and FR predictions, both in the estimation and validation phases.

Figure 4.4: Example 2: a) OSA and FR predictions for Narendra and
Parthasarathy’s example considering the estimation phase. Raincloud consid-
ering (b) OSA and (c) FR model errors and the real data.

4.3
Artificial neural networks

ANNs comprise neurons that form a complex architecture considering
inputs to produce approximations as a mapping [116]. The ANN architectures
can adapt from data by adjusting their connections and coefficients [117]. The
neural network as a topic rises from the work proposed by [118] dealing with
problems regarding the nervous system. After that, some structures emerged
in the NN topic as the perceptron [119] and the backpropagation algorithm
[120].

Reference [121] presented the advantages and drawbacks of using ANNs
in modeling systems. As advantages, ANNs are considered simple architec-
tures, conceptually easy to comprehend, and can be defined with a couple of
equations. However, drawbacks regarding NNs are that these models are often
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Figure 4.5: Example 2: (a) OSA and FR predictions for Narendra and
Parthasarathy’s example considering the validation phase. Raincloud consid-
ering (b) OSA and (c) FR model errors and the real data.

opaque, and it is challenging to capture dynamical system aspects and satisfy
primary physics constraints.

This work briefly describes radial basis functions and multilayer percep-
tron networks (two of the most widely used ANNs) in the following.

4.3.1
Radial basis functions neural networks

The RBF neural network (RBFNN) is a network that uses radial basis
functions as an activation function. RBF networks are built considering the
input, hidden, and output layers (Fig. 4.6). In the input layer, input data are
connected to source nodes. In contrast, in the hidden layer, different neurons
of the activation functions have their output data weighted and then summed
towards the output layer. The output of the neuron model is expressed as:

ŷ(t) =
M∑

i=1
Wiϕ(r(t), ci, σi) , (4-15)

where ŷ(t) is the neuron output, M is the quantity of neurons inside the hidden
layer, Wi is the output weights, r(t) is the input vector, σi and ci are the width
and the center of the i-th hidden node, respectively. The function ϕ(·) is known
as the activation function, and the designers can choose it according to their
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Figure 4.6: Scheme of an RBF Network with input, hidden, and output layers.

problem. Typical choices for radial basis functions networks are the following
[112, 122]

– Gaussian:

ϕ(l) = exp
(
l2

σ2

)
, (4-16)

– Cubic:

ϕ(l) = l3 , (4-17)

– Thin-plate spline:

ϕ(l) = l2

σ
log

(
l

σ

)
, (4-18)

– Multiquadratic:

ϕ(l) =
√
l2 + σ2 , (4-19)

where l represent the norm between the ANN input r to a given center c, i.e.
l = ∥r−c∥. In this thesis, the multi-quadratic function is used as the activation
function for RBF networks.

Some parameters of an RBFNN can be adjusted to obtain a better final
result, among them the number of neurons in the hidden layer, the width and
the position of the RBFs’ centers, and the output weights. In order to achieve
results with accuracy, the RBFNN parameters are defined using a supervised
method. To this end, in this work, the minimization of the sum of squared
errors is assumed and solved by an optimization problem to be discussed in
Section 6.1.1.
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4.3.2
Multilayer perceptron networks

MLP architectures were proposed to solve nonlinearly separable prob-
lems, including one or more hidden layers (Fig. 4.7). Mathematically, MLP
networks are complex and became viable when researchers started to use the
backpropagation algorithm [117]. The output of the MLP networks can be
defined as

ŷj(t) = ϕ

(
Z∑

i=1
Wijxij + bj

)
, (4-20)

where ŷj(t) is the MLP output, Z is the number of hidden layers, Wij are the
weights between the i-th neuron, in the prior layer, and the j-th neuron in the
actual layer, bj is the bias weight, i is the number of neurons connected to the
j-th neuron. Moreover, xij is the input data from the i-th neuron to the j-th
neuron.

Figure 4.7: Scheme of an MLP Network with input, multiple hidden, and
output layers.

In this work, the MLP networks with nodes connected by a feed-forward
approach, activated by the sigmoid function that allows training through the
backpropagation algorithm [123].
Example 3: In the present example, the MLP and RBF architectures are
applied to demonstrate the capacity of the ANNs.

For this example, the cornering force is used as a function of the slip
angle from real data detailed in Section A.3.

Considering the RBF and MLP neural networks, the limits of the search
of the network coefficients are summarized in Table 4.3 after some trial and
error. The RBF and MLP networks were also simulated considering multi-
quadratic with three neurons and two neurons in two layers with sigmoid
function, respectively. Finally, the optimization problems for RBF and MLP
models rely on the error minimization between predicted and real data. The
procedure is performed using the interior-point solver Ipopt [124] with the
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open-source software - CasAdi [125]. CasADi is a software that uses a symbolic
framework to enhance numeric optimization [125].

Table 4.3: Limits of search of the neural networks coefficients.
Network Symbol Definition Lower limit Upper limit

RBF
c center -1 1
σ width 0.01 7
W weights -20 20

MLP b bias parameters -2 2
W weights -2 2

Fig. 4.8.a shows the predictions performed by the networks. It is possible
to see a prediction accuracy with similar curve prediction from both results
corroborated by the raincloud plots (Fig. 4.8.b-c). Table 4.4 shows the results
for the RBF and MLP architectures regarding error-based metrics.

Figure 4.8: Example 3 (simulated system):(a) Dimensionless cornering force
approximation using RBF and MLP networks. Raincloud considering (b) RBF
and (c) MLP model errors and the real data.

4.4
State-space data-driven model

Another data-driven approach used for vehicle modeling is the subspace
system identification approach, successfully implemented for vehicle modeling
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Table 4.4: Results in terms of R2 and RMSE metrics, and solver average
computational time for all the architectures tested considering simulated tire
data.

Model R2 RMSE
{Architecture}

RBF {3} 0.9984 0.0347
MLP {2 2} 0.9995 0.0202

in recent literature [37, 43]. Thus, a linear time-invariant (LTI) model is
required to represent the measurements best:

ẋd = Adxd +Bdud , (4-21)

yd = Cdxd + w , (4-22)

where w is the noise, ud and yd are the input and output, respectively.
Considering the subspace methodology, the matrices Ad, Bd, and Cd are
commonly defined based on one’s knowledge of the system. On the other hand,
the values inside the matrices are defined by the algorithm that aims to explain
the output data based on the inputs applied.
Example 4: The present example is given to demonstrate the application of
the state-space data-driven model.

The Electro-Mechanical Positioning System (EMPS) system detailed in
Section A.4 is used. The main objective of this example is to identify a state-
space data-driven model based on the measured data obtained from the EMPS
experiment. Following the procedure adopted and successfully implemented
in [43], a second-order (nd = 2) state-space parameters were estimated
using a prediction error method (PEM) [114], generally solved by employing
a numerical search algorithm. In this example, the algorithm is initialized
using a subspace state-space system identification (N4SID) algorithm. The
System Identification toolbox of MATLAB®software is used to implement the
estimation of the state-space parameters. Besides, the “ssest” function that
combines the N4SID state-space initialization with the PEM estimation is also
applied. Finally, the output given by the input data is the motor force, and
the output data relies on the position and velocity data.

The data set was divided into training and test split of 60/40%, respec-
tively. For brevity, the present example only focuses on the test data set. Thus,
the results performed by the state-space data-driven method can be seen in
Figs. 4.9 and 4.10, while Table 4.5 summarizes their performance metrics. In
addition, the values of the optimized parameters for the state-space (with mean
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of data samples removed and normalized data) can be found in Table 4.6.

Table 4.5: Performance metrics - EMPS model.
Position Velocity

F% VAF% RMSE F% VAF% RMSE
90.60 99.16 0.009 82.15 96.83 0.012

Table 4.6: Parameters estimates for the state-space model.

A =
[

0.9973 −0.0036
−0.0014 0.9982

]
B =

[
0.0010

−0.0014

]

C =
[

3.7916 2.6788
−14.6146 −19.2883

]

Figure 4.9: Example 4: (a) Comparison of measured and predicted position
using the state-space approach considering test data. (b) Raincloud considering
the error between measured and predicted data. (c) Correlation between the
measured and the simulated position.

From the Figs. 4.9.b and 4.10.b, one can see raincloud plots considering
the error between predicted and measured data. Although the position predic-
tion is more accurate regarding the comparison metrics, its error distribution
does not produce results with a mean next to zero. Besides, the correlation
comparisons are given in Figs. 4.9.c and 4.10.c. The proposed approach can
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Figure 4.10: Example 4: (a) Comparison of measured and predicted velocity
using the state-space approach considering test data. (b) Raincloud considering
the error between measured and predicted data. (c) Correlation between the
measured and the simulated velocity.

explain the variances in the measurements to a certain degree, with a percent-
age of variance accounted for 99.16% and 96.83% regarding the position and
velocity data, respectively.

4.5
Summary

Potential solutions for modeling different processes are computational
intelligence and system identification methods. They may be capable of accu-
rately representing complex systems from measured data and considering the
presence of disturbances. Moreover, with systems in which properties and par-
ticular characteristics are hard to be obtained, and no prior information about
the process is available, the methodology arises as an alternative for modeling.

This chapter was devoted to presenting the (N)ARX models and their
mathematical formulations. In addition, artificial neural networks were pre-
sented using RBFs and MLPs architectures. Finally, the state-space model in
a data-driven way was presented and formulated. At the end of each section,
examples were elaborated to make the present thesis more easily readable.
The main topics presented in this chapter are inserted in this thesis by means
of all the original contributions (Chapters 6-8). Thus, the first contribution
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deals with using machine learning for tire learning by using RBF and MLP
architectures compared with the Pacejka tire model from the literature. Next,
the second contribution deals with a combination of ARX models to model
a vehicle plant accurately. Lastly, the third original contribution deals with
data-driven approaches to modeling a vintage racing car, including NARX
and state-space data-driven models. A hybrid approach is proposed combining
the vehicle models with a discrepancy model given by a NARX model.
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5
Model predictive control

The present chapter focuses on the mathematical formulation of the
MPC controller, which will be used in this work’s first and second original
contributions. The contributions rely on path-tracking control using the MPC
methodology. An MPC example is presented at the end of the present chapter
and may be reproduced by the interested reader.

5.1
Formulation

Model predictive control is a control procedure used to predict a dynamic
system’s future states during a finite-time window (horizon) [30]. The basic
part of the predictive controller is the prediction model. In this work, the
prediction model is derived from the vehicle dynamic model with neural and
Pacejka tires (Chapter 6) or the identified vehicle models (Chapter 7) in t ∈ R+

(continuous time), and it is abbreviated as

ẋt = f(xt, ut) , (5-1)

where xt ∈ X ⊆ Rn (n dimension) is the state vector, ut ∈ U ⊆ Rm (m
dimension) is the input vector, and f : X × U 7→ X is the function that
represents the dynamic model. Considering a reduced sampling interval T, the
dynamic model in Eq. (5-1) can be discretized using Runge-Kutta 4th order
or Taylor series. The latter approach is demonstrated as follows

xk+1 = xk + Tf(xk, uk) , (5-2)

where k = 0, 1, 2, ... denotes the instants in discrete time such that t = kT .
The main goal of the MPC controller, at each instant of time k = 0, 1, 2, ...,
is to find a sequence of optimal control actions u∗

k,k+N−1 to solve the control
problem that minimizes a cost function in a moving horizon window. One can
design different cost functions that combine linear or nonlinear functions of
the system states and inputs. Typical cost functions (such as Eq. (5-3)) aim
to minimize the following:

1. the error between the state vector and its desired trajectory;
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2. the amplitude of the control action; and

3. the variation of the control action.

JN(uk,k+N−1) =
k+N−1∑

i=k

∥ xi − qi ∥2
Q +

k+N−1∑
i=k

∥ ui − ri ∥2
R +

k+N−1∑
i=k+1

∥ ∆ui ∥2
S ,

(5-3)
where qk and rk are the references to xk and uk, respectively; the matrices
Q, R, and S, in general diagonals, give the importance to each term in the
optimization procedure, and the variation of the control action is given by

∆uk = uk − uk−1 . (5-4)

Each term in Eq. (5-3), reading from left to right, refers to each item 1-
3 aforementioned. Note that JN(uk,k+N−1) is evaluated in a window of size
N , and this notation shows that its argument is just uk,k+N−1. However, for
simplification the terms xk (start condition of the moving window), qk,k+N−1

(sequence of references to the state) and rk,k+N−1 (references to the control
action) are omitted but are needed to calculate the cost function. This work
focuses only on the first (path-tracking) and third (variation of the control
action) terms of the cost function, aiming mainly at comfort and accuracy
during the path-tracking. Therefore, the matrices Q and S provide an essential
effect on the controller performance in the present thesis. The matrix Q is
responsible for giving importance to the states to be followed by the vehicle.
In addition, the matrix S gives importance to the control actions to smooth
vehicle states or control actions.

To apply the real-time MPC, it is necessary that the optimization
problem in Eq. (5-3) be solved in a moving window of size N at every instant
k = 0, 1, 2, ... to get the optimal sequence of control actions as

min JN(uk,k+N−1) ,
s.t. ui ∈ U ,

xi ∈ X ,

umin ≤ ui ≤ umax ,

xmin ≤ xi ≤ xmax .

(5-5)

where umin,max and xmin,max are the constraints applied to the input and states.
In addition, the predictions may be computed recursively as

xi+1 = fd(xi, ui), i = k, k + 1, ..., k +N − 1 , (5-6)

where fd is the function that represents the dynamic model in discrete time.
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The computational effort required is higher when compared to simple
linear control laws. It is a consequence to obtain a gain in performance. An
important detail regarding the MPC controller is the application of the control
action. In a window [k, k + N − 1] of size N , the optimal control action u∗

k is
applied for each instant k = 0, 1, 2, ... . The other control actions are used to
initialize the algorithm optimization in the next iteration when the process is
repeated. The general overview of the MPC scheme is presented in Fig. 5.1. In
summary, the MPC algorithm can be computationally implemented as follows

1. To define the MPC parameters (horizon and matrices);

2. To initialize k = 0;

3. To read xk = 0;

4. To obtain u∗
k,k+N−1 from the minimization of the cost function;

5. To apply the control action u∗
k in the system;

6. k = k + 1;

7. Continue with step 2;

Figure 5.1: Overview of the MPC controller. At each instant, intending to
find the best control sequence over a future horizon, one has to: 1) get new
measurements to update the current state, 2) solve the optimization problem
inside the prediction horizon, and 3) apply only the first optimal move u∗

k,
discarding the remaining samples.
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5.2
Multiple shooting

The problem defined in Eq. (5-3) involves a recursive procedure regarding
the prediction model N times, aiming to calculate the cost function. This can
lead to overly complex cost functions, which is undesirable from any point of
view. In addition, the problem optimization problem is solved at each sampling
interval, which can make the application of MPC impossible with large forecast
horizons in fast dynamic systems.

One effective way to avoid recursion of the prediction model is to apply
the Multiple Shooting method [126]. This consists of including the sequence
of states inside the prediction window xk+1,k+N−1 as decision variables of the
procedure of optimization and add constraints that ensure that the dynamics
in Eq. (5-7) are respected. The procedure can be seen as the search for the
zeros of the equations that depend on the states in the prediction window that
satisfy the dynamics equations. Thus, the cost function now includes the states
of the system as a decision variable inside the prediction window, that is,

JN(uk,k+N−1, xk+1,k+N−1) =
k+N−1∑

i=k

∥ xi − qi ∥2
Q +

k+N−1∑
i=k

∥ ui − ri ∥2
R +

+
k+N−1∑
i=k+1

∥ ∆ui ∥2
S , (5-7)

and the optimization problem is reformulated in order to guarantee the
necessary recursion to the predictions through constraints that depend on Eq.
(5-6). In terms of defining optimization problem, changing the function implies
attracting constraints, such as

min JN(uk,k+N−1, xk+1,k+N−1) ,
s.t. ui ∈ U ,

xi ∈ X ,

umin ≤ ui ≤ umax ,

xmin ≤ xi ≤ xmax ,

xi+1 = fd(xi, ui) ,
for i = k, k + 1, ..., k +N − 1 .

(5-8)

Despite having more decision variables, the procedure is solved more
efficiently because it avoids the composition of functions necessary to make the
predictions. This presents advantages in cases where the prediction window is
large, as optimizing JN(.) is significantly simpler despite the more significant
number of decision variables that this implies. For path-tracking, the basic
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scheme regarding the MPC control can be seen in Fig. 5.2.

Figure 5.2: Schematic overview of MPC control applied to the path-tracking
of an AGV. It is required a model of the process to predict its likely evolution
and choose the “best” control action.

The resulting NLP is enabled to be solved by state-of-the-art numerical
optimization algorithms, such as the Interior Point [124], and Sequential
Quadratic Programming [63]. Through this thesis, a modification of the
interior-point method (for details, see [124]) is used to solve NLPs together
with the open-source application CasAdi [125] widely used for numerical
optimization due to the facility to work with symbolic expressions.
Example 5: The present example demonstrates the application of an MPC
controller.

The inverted pendulum problem detailed in Section A.5 is used to apply
MPC formulations. The motion equations can be rewrite by defining x =[θ p
θ̇ ṗ] and u = F . Therefore, this example gives the optimization problem by
Eq. (5-3) considering the states x and the control input u. The optimization
problem is solved using the interior-point method by means of the Ipopt
software package [124] with the open-source tool - CasAdi [125]. On the other
hand, the ODE (Ordinary Differential Equation) system is solved with CVodes
from the SUNDIALS Suite [127], which provides an accurate and fast solution
for nonlinear systems. The procedure is implemented in MATLAB®under a
laptop with Windows 10 OS endowed with an Intel i5-7300HQ CPU and 16
GB RAM.

For the predictive controller, the horizon N is set to 20, and the
simulation sampling interval is set to 0.1 seconds. The weighting matrices are
shown in Eq. (5-9), giving a more significant penalty for θ.
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Figure 5.3: Example 5: Results for the MPC applied to the inverted pendulum.
(a) Position. (b) Velocity. (c) Angle and (d) angular rate of the system. (e)
Force applied to the system submitted to constraints.

Q =


1 0 0 0
0 100 0 0
0 0 1 0
0 0 0 1

 ;S =
[

0
]
. (5-9)

The reference signals for all the states are the stabilization around the
zero value. Finally, constraints of -800 <u< 800 [N] are applied to the input
variable, and the initial conditions are set as x =[0 π 0 0].

Fig. 5.3 shows the MPC procedure applied to the inverted pendulum
system. MPC results achieved good tracking performance with the reference
signals followed through the simulation. In addition, the input variable (force)
achieved the constraints satisfactorily, showing one of the main advantages of
this type of control.

5.3
Summary

Although substantial work has been done developing control techniques
for the path-tracking of AGVs, much of this effort has focused on MPC
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controllers, which can be ascribed to numerous reasons. First, the MPC allows
the implementation of constraints, leading to performance gains in closed-loop
system operation. Next, the MPC tuning effort is low since it is relatively easy
to customize the cost function and its weights. Then, the MPC is considered a
robust controller since an optimal solution is found for each time step. Hence
it may present satisfactory results in the presence of disturbances. Finally, the
MPC controller is derived from a model of the process.

The present chapter dealt with the formulation of the MPC controller,
procedures to solve the NLP, and the steps to implement the MPC compu-
tationally. Finally, an example of the methodology was presented to control
an inverted pendulum. In this work, the focus of the first two original contri-
butions (Chapters 6 and 7) relies on 1) the use of machine learning for tire
learning to be used together with the nonlinear vehicle model and 2) the use
of a combination of data-driven vehicle models, both to derive control laws
to efficiently improve MPC approach in terms of accuracy and computational
effort. The proposed approaches are designed to be compared to the LMPC
and NMPC widely used in the literature showing the effectiveness, robustness,
and adaptability of the MPC controller.
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6
Nonlinear tire model approximation using machine learning
for efficient model predictive control

Model Predictive Controller is widely used as a technique for path-
tracking control since it allows for dealing with system constraints and future
forecasts. However, the performance of MPC is directly affected by the adopted
model. A complex dynamic model can guarantee accuracy in path-tracking but
may not be suitable in computational terms. On the other hand, a simplified
model may not capture essential nonlinear aspects. Thus, to cope with these
problems, the present contribution deals with data-driven tire modeling to
improve vehicle path-tracking control. The main contribution is to show that
neural tires can capture the nonlinearities in the interaction between lateral
and longitudinal vehicle dynamics with a reduced computational cost for
predictive controllers. Simulated and experimental tire data are approximated
to design data-driven tire models using radial basis function and multilayer
perceptron neural networks. Then, based on ground vehicles with neural tires,
model predictive controllers are designed to regulate wheel torque and steering
angle inputs. Tests were conducted to compare the proposed data-driven MPC
approach with the classical nonlinear MPC controller. The results show that
the neural tires approximate nonlinear tire models and experimental data
with arbitrary precision in terms of accuracy and error-based metrics. The
proposed methodology was successfully applied to perform trajectory and
velocity tracking of ground vehicles. In addition, MPC with a neural tire
model as prediction inference reduces the computational effort compared to
traditional approaches.

6.1
Proposed approach

The focus of the present section is on stating the proposed approach
based on data-driven models for tire modeling and MPC with ANN tire model
to perform path-tracking of ground vehicles.

DBD
PUC-Rio - Certificação Digital Nº 1912774/CA



Chapter 6. Nonlinear tire model approximation using machine learning for
efficient model predictive control 68

6.1.1
Data-driven tire modeling and optimization problem

The accuracy of the data-driven approach is relevant since the experi-
mental data may be non-viable to measure. Moreover, experimental tests are
costly to prepare and may demand work days. On the other hand, simulated
tests do not require significant computational time and are adaptable for dif-
ferent case studies. In the present contribution, simulated and experimental
data establish the relation between friction (output) and slip (input) in longi-
tudinal and lateral directions. Then, the data-driven approximation problem
is decomposed into parameter estimation to obtain data-driven models. Being
so, after setting the number of neurons and hidden layers (when required),
each architecture is designed to have a vector H representing MLP (weights
and biases) and RBF (centers, widths, and weights) model parameters. These
parameters are determined by the optimization algorithm presented in Eq.
(6-1):

min Jp = 1
Nl

∑Nl
n=1 ξnξn , (6-1)

where ξ(t) = y(t) − ŷ(t) i.e. the prediction error. Moreover, Nl indicates the
amount of data used. Besides, one has to specify the limits of the search of the
network parameter according to the problem.

Experimental data can also be used to determine the parameters present
in the Pacejka equation. The procedure is based on the same optimization
problem presented in Eq. (6-1), but with the view to obtain coefficients of the
well-known equation.

The optimization problems for RBF and MLP models and the Pacejka
curve with experimental data are solved using the Ipopt software package [124]
with the open-source software - CasAdi.

First, data-driven tire models are designed based on the number of
neurons and the dataset through an optimization problem (Fig. 6.1). Then,
for path-tracking, at each time step, longitudinal and lateral slippage (input)
are calculated using the dynamic model (Eqs. (3-1)-(3-8)) and sent to the ANN
tire models to produce the value of friction coefficient (output).

6.1.2
MPC with ANN as tire model prediction

Predictive controllers are herein designed to perform path and velocity
tracking. Dynamic vehicle models with data-driven tire modeling are used for
MPC prediction of optimized control actions. The optimized control actions,
steering, and torque on the driven wheels are first simulated on a virtual
plant with simulated tire data (Section 6.2) and then on a virtual plant with
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Figure 6.1: Neural networks architectures are designed to approximate friction
coefficient curves using slip (input) and friction (output). Each architecture has
a vector H representing model parameters to be determined by optimization
problems. In particular, for MLP (weights and biases) and RBF (centers,
widths, and weights) networks.

experimental tire data (Section 6.3). In the latter, look-up tables represent the
experimental tire data.

The proposed control methodology aims to improve computational ef-
ficiency and verify the application of neural tire models with MPC to de-
rive nonlinear control laws. The optimization problem is also solved using
the Ipopt software package [124] with the open-source tool - CasAdi [125].
The ODE system is solved with CVodes from the SUNDIALS Suite [127].
The procedure with multiple shooting is applied considering the states x =
[ẋ, ẏ, ψ̇, ωf , ωr, X, Y, ψ], and inputs u = [δ, Tf/Tr]. However, it is important to
point out that the MPC cost function (Eq. (6-2)) considers only the following
states x = [ẋ, X, Y ].

JN(uk,k+N−1,xk+1,k+N−1) =
k+N−1∑

i=k

∥ x̂i − xi ∥2
Q +

k+N−1∑
i=k+1

∥ ∆ui ∥2
S (6-2)

where x̂ represents the predicted states, x represents the references given to
the vehicle, Q is a weight that gives importance to the states to be followed by
the AGV, and S is a weight that gives importance to the inputs (steering and
torque). Moreover, the weights matrices are defined by trial and error. Finally,
the proposed approach is summarized in Fig. 6.2.

In this contribution, the vehicle parameters are assumed to be known.
However, the parameters needed to represent the vehicle for the proposed MPC
can be measured or estimated with accuracy based on tests with simulated and
real data. Recent works ([35, 37, 128]) have explored this topic by employing
identification approaches to solve this issue in aspects of vehicle suspension
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Figure 6.2: General overview of the proposed approach: Once the neural net-
work architectures are obtained, the neural tire model is linked to the dy-
namic vehicle model to derive optimized control actions in the MPC con-
troller. Finally, the control actions are sent to the virtual plant with simu-
lated/experimental tires.

systems and lateral-longitudinal dynamics. Finally, neural tire model creation
and path-tracking predictive control are implemented in MATLAB®under a
laptop with Windows 10 OS endowed with an Intel i5-7300HQ CPU and 16
GB RAM.

6.2
Trajectory tracking results with simulated tire data

This section presents the data-driven modeling results from simulated
tire data acquired from the Pacejka tire model. Moreover, an MPC controller
is designed based on a vehicle with neural tires to control a virtual plant with
Pacejka’s tires. The results are presented in Subsections 6.2.1 and 6.2.2.

6.2.1
Neural tire model creation

In this section, neural tires are compared with the Pacejka friction curves.
Simulated data from the Pacejka formula were developed with 200 data points
considering a vehicle (with weight distribution 50/50) and tire parameters [129]
listed in Tables 6.1 and 6.2, respectively. Besides, for RBF and MLP neural
networks, the limits of search of the network coefficients are summarized in
Table 6.3 after some trial and error.

Different RBF and MLP networks are simulated, modifying the number
of neurons for both approaches and the number of hidden layers for the latter.
In addition, this contribution considers two error-based metrics: Root Mean
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Table 6.1: Vehicle parameters - simulated case.
Symbol Definition Value
m Vehicle mass 2,500 kg
Iz Inertia moment about yaw axis 2,200 kg.m2

Iωf /ωr Inertial moment of the wheel 2.5 kg.m2

lt Wheelbase 2.7 m
rd Radius of the tire 0.42 m
isw Steering transmission ratio 30

Table 6.2: Coefficients from Pacejka formula - simulated case.
µx µy

Symbol Value Symbol Value
B 0.208 B 0.154
C 1.650 C 1.300
D 6,213.4 D 5,367.9
E 0.604 E -1.464
Sh 0.0 Sh 0.0
Sv 0.0 Sv 0.0

Table 6.3: Limits of search of the neural networks coefficients.
Network Symbol Definition Lower limit Upper limit

RBF
c center -1 1
σ width 0.01 7
W weights -80 80

MLP b bias parameters -4 4
W weights -4 4

Squared Error - RMSE and the Multiple Correlation Coefficient (R2), to
compare the numerical results.

Table 6.4 depicts the metric results for longitudinal and lateral friction
coefficients. The number of hidden layers inside the MLP network is set from
1 ({X}) to 3 ({X X X}), and the number of neurons inside these layers is
set from 1 to 3 (X=1,2,...3). In turn, the number of neurons inside the RBF
networks is set from 1 to 5 (X=1,2,...5). These quantities of the number of
neurons and layers were selected aiming a reduced computational cost which
leads to a less complex architecture to be implemented as a data-driven tire
model.

The results achieved by the neural networks were satisfactory, specifically
above one neuron, with R2 metric ranging from 0.9587 to 1.000 and 0.9921 to
1.000 for longitudinal and lateral friction coefficients, respectively. On the other
hand, the RMSE metric ranges from 0.1628 to 0.0004 and 0.0711 to 0.0022 for
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Table 6.4: Results in terms of R2 and RMSE metrics, and solver average
computational time for all the architectures tested considering simulated tire
data.

Model µx µy Average
{Architecture} R2 RMSE R2 RMSE time (s)

RBF {1} 0.2248 0.7055 0.2546 0.6922 0.0190
RBF {2} 0.9741 0.1289 0.9977 0.0382 0.1780
RBF {3} 0.9978 0.0374 1.000 0.0041 0.7405
RBF {4} 0.9998 0.0117 1.000 0.0022 0.6585
RBF {5} 0.9784 0.1179 0.9954 0.0687 0.8540

MLP {1 1} 0.9587 0.1628 0.9921 0.0711 0.0250
MLP {2 2} 0.9997 0.0155 1.000 0.0043 0.2530
MLP {3 3} 1.000 0.0011 1.000 0.0024 0.3305

MLP {1 1 1} 0.9832 0.1040 0.9988 0.0276 0.1655
MLP {2 2 2} 1.000 0.0004 1.000 0.0028 0.2865
MLP {3 3 3} 1.000 0.0004 1.000 0.0029 0.6260

longitudinal and lateral friction coefficients. Considering RBFNs, the RBF with
four neurons (RBF {4}) presented the best result for both friction coefficients
with an average simulation time (measured considering longitudinal and lateral
friction components) of 0.6585 s. Considering the MLP, the MLP architecture
composed of three hidden layers and three neurons in each layer (MLP {2 2 2})
presented the best results. However, this implies a more complex optimization
calculation of network parameters, and therefore, the simulation time increases.
Thus, considering both the simulation time and the accuracy of the error-based
metrics, the MLP network with two hidden layers with two neurons in each
layer (MLP {2 2}) presented the best result.

From the Figs. 6.3.a-b, one can see the longitudinal and lateral friction
coefficient curves obtained from the best RBF and MLP neural network
architectures. In particular, RBF {4} and MLP {2 2} neural networks. From
the figures, it can be seen that the curves of MLP and RBF architectures are
close to the reference tire model.

6.2.2
Path-tracking controller

This section compares the results of the MPC controller, based on a
front-wheel-drive vehicle with neural tires, with those performed by an MPC
controller designed based on a vehicle with Pacejka’s tire model. Here, the
vehicle model with neural tires (MLP {2 2}) is used to predict the future states
of the vehicle over a finite horizon to perform path-tracking using optimized
control actions. The effectiveness of the proposed control approach is verified
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Figure 6.3: (a) Longitudinal friction approximation using MLP and RBF
networks. (b) Lateral friction approximation using MLP and RBF networks.

by considering simulated tests on a plant with simulated tire data (Table 6.2)
under double lane change and consecutive lane changes.

For the predictive controllers, the horizon N is set from 5 to 15, and the
simulation sampling interval is set to 0.1 seconds. The weighting matrices are
shown in Eq. (6-3). Both weights are set equal for both MPC approaches after
some trial and error.

Q =


1, 500 0 0

0 200 0
0 0 2, 500

 ;S =
 100 0

0 1

× 103 . (6-3)

Finally, constraints of -0.9 < δ < 0.9 [rad] and -2,500 < T < 2,500 [N.m]
are applied on the steering angle and the front-driven wheels representing
typical vehicle operation zones. Moreover, an initial velocity of 19 m/s is given
to the vehicle.

6.2.2.1
Double lane change

In the simulation test, the vehicle is motivated to perform a double lane
change trajectory with a constant referenced speed of 20 m/s from an initial
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velocity of 19 m/s. The tracking performance and the computational effort can
be seen in Table 6.5.

Table 6.5: RMS and maximum error under different lengths of horizon and
control strategies for double lane change simulation.

MPC Horizon RMSE [Y ] |Ymax| Average solver
approach length (m) (m) time (s)

Pacejka
5 0.2029 0.3959 0.8437
10 0.1989 0.3872 1.5745
15 0.2019 0.3925 2.5170

Neural
5 0.2014 0.3938 0.8264
10 0.1972 0.3850 1.6291
15 0.1997 0.3894 2.5728

The results indicated that both MPC approaches achieved good path-
tracking performance for all cases. However, the MPC-Neural case presented
the smaller lateral offset and the smaller RMSE metric regarding the lateral
position, respectively, 0.3850 and 0.1972 m. It is interesting to note that,
as expected, the simulation time increases with the horizon. However, the
lateral error remains similar throughout the simulations. Overall, the maximum
computational effort go to MPC approaches with a horizon of 15. From this
point of view, a horizon length of 5 has an advantage in terms of precision and
simulation time.

In particular, from Fig. 6.4.a, one can see that both control methods
(MPC-Neural and MPC-Pacejka with Horizon set to 5) conducted the vehicle
to track the double lane change trajectory satisfactorily. Fig. 6.4.c demon-
strates that the offset error in the lateral direction achieved a maximum of
0.396 m for both cases, approximately. From Fig. 6.4.b, the vehicle starts with
an initial velocity of 19 m/s until it reaches the reference velocity of 20 m/s.
Moreover, the velocity state remains close to the reference through the simu-
lation, as shown in Fig. 6.4.d.

From Figs. 6.5.a-b, the MPC controllers provided similar responses,
with smooth control inputs to the steering wheel and driven wheels, giving
better control and stability on curves. Besides, Figs. 6.5.c-d demonstrate the
evolution of the lateral and longitudinal friction coefficients, respectively. Both
the controllers achieved low values for friction during the simulation in the
straight direction. However, lateral slips increase during the maneuver. Table
6.5 also presents the computational effort for the double lane change maneuver.
MPC-Neural performed similarly as the MPC-Pacejka in terms of accuracy and
computational time.
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Figure 6.4: Results for double lane change simulation considering simulated
data. (a) Trajectory. (b) Velocity. (c) Trajectory offset. (d) Velocity offset.
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Figure 6.5: Results for double lane change simulation considering simulated
data. (a) Steering wheel angle input. (b) Torque input. (c) Lateral friction
coefficient. (d) Longitudinal friction coefficient.
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6.2.2.2
Lane changes

Here, the vehicle is motivated to perform a sequence of lane changes with
a constant and referenced speed of 20 m/s from an initial velocity of 19 m/s.
The tracking performance and the computational efforts can be seen in Table
6.6.

Table 6.6: RMS and maximum error under different lengths of the horizon and
control strategies for multiple lane changes simulation.

MPC Horizon RMSE [Y ] |Ymax| Average solver
approach length (m) (m) time (s)

Pacejka
5 0.1728 0.3941 0.7887
10 0.1663 0.3850 1.5505
15 0.1682 0.3910 2.3741

Neural
5 0.1710 0.3910 0.8077
10 0.1647 0.3810 1.5303
15 0.1661 0.3872 2.3223

MPC results from both approaches achieved good path-tracking with
maximum error obtained during the double lane change maneuver. The RMSE
decreased during the simulation, and a better convergence between reference
and predicted data was performed. However, the MPC-Neural case presented a
smaller lateral offset and smaller RMSE metric regarding the lateral position.
Besides, the simulation time increased when the horizon was set to 15. On the
other hand, when the predictive horizon is set to 5, both approaches converge
to have precision and reduced computational effort.

Considering the application of the proposed MPC-Neural and the tra-
ditional MPC on the controllable plant, Figs. 6.6.a and 6.6.c show that both
MPC-Neural and MPC-Pacejka achieved similar results, with an offset error
of 0.395 m, approximately. From Figs. 6.6.b and 6.6.d, one can see that the
vehicle velocity achieved the reference velocity with a minimum error.

The control inputs for the lane changes path can be seen in Figs. 6.7.a-b
where both controllers achieved similar input curves. Moreover, Figs. 6.7.c-d
show the lateral and longitudinal friction coefficients, respectively. High levels
of longitudinal slip occurred on front-driven tires, while rear tires remained
with low levels of slip. On the other hand, lateral slips increase under both tires
during the maneuvers. Table 6.6 shows the average solver time considering lane
changes maneuver. MPC-Neural also performed similarly to the traditional
MPC-Pacejka in terms of computational time. This occurs mainly by the
neural architecture (MLP {2 2} that requires an extra computational effort.
Next, a more simplified architecture is used to represent real tire data.
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Figure 6.6: Results for lane changes simulation considering simulated data. (a)
Trajectory. (b) Velocity. (c) Trajectory offset. (d) Velocity offset.
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Figure 6.7: Results for lane changes simulation considering simulated data.
(a) Steering input. (b) Torque input. (c) Lateral friction coefficient. (d)
Longitudinal friction coefficient.
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6.3
Trajectory tracking results with experimental tire data

This section presents the results obtained from the experimental data-
based tire model. Besides, an MPC controller is designed based on a vehicle
with neural tires to control a virtual plant with experimental tires. The results
are presented in Subsections 6.3.1 and 6.3.2.

6.3.1
Neural tire model creation

Here, experimental data is used to derive a data-based tire model as an
approximate model for tire modeling. To further validate the proposed Neural
tire approach, experimental data [130] were obtained from tests performed
by the Calspan Tire Research Facility as part of the Formula SAE Tire Test
Consortium. The resulting test data are typical tire curves such as longitudinal
and lateral forces versus slip/slip angle, respectively, and the aligning torque
versus slip angle. For details regarding the tire tests and procedures, please
refer to [131].

RBF, MLP architectures, and a fit by the Pacejka model are applied to
approximate the experimental data. In particular, for longitudinal and lateral
friction curves to be fit, the results consider approximately a vertical load of
660 N. The longitudinal and lateral friction curves contain 322 and 1268 data
points, respectively.

For this case, the limits of the search of the network coefficients are the
same presented in Table 6.3 for longitudinal and lateral friction curves. Besides,
the same configuration regarding activation functions is used for the neural
networks. For the Pacejka tire model, the limits of search of the coefficients
(Table 6.7) are defined after some trial and error based on the reference [129].
Moreover, Table 6.8 indicates the optimized parameters to fit the experimental
tire curves through the Pacejka tire model.

Table 6.7: Limits of search of the Magic formula coefficients.
Parameter Definition Lower limit Upper limit

B stiffness factor -12 12
C shape factor -12 12
D peak value -12 12
E curvature factor -12 12
Sh horizontal shift -0.2 0.2
Sv vertical shift -1 1
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Table 6.8: Coefficients from Pacejka formula - experimental case.
µx µy

Symbol Value Symbol Value
B 10.3075 B -10.8138
C 1.9157 C -1.6192
D 2.6268 D 2.7166
E 0.5182 E 0.4118
Sh 0.0322 Sh -0.0036
Sv -0.2819 Sv 0.0694

The Neural and Pacejka tire model’s friction curves are compared based
on error metrics and average computational time. From the metric results
presented in Table 6.9, one can see that the increase of neurons leads to more
accurate results, demanding, however, an increase in computational effort.
Considering both average computational time (to obtain longitudinal and
lateral curves) and accuracy of the error-based metrics, MLP {1 1} and RBF
{2} achieved the best results. However, MLP {1 1} is selected due to lower
computational effort.

Table 6.9: Results in terms of R2 and RMSE metrics, and solver average
computational time for all the architectures tested considering experimental
tire data.

Model µx µy Average
{Architecture} R2 RMSE R2 RMSE time (s)

RBF {1} 0.4403 1.6741 0.2978 1.9688 0.0255
RBF {2} 0.9953 0.1512 0.9988 0.0829 0.2310
RBF {3} 0.9968 0.1273 0.9992 0.0679 0.9600
RBF {4} 0.9968 0.1261 0.9992 0.0647 1.1300
RBF {5} 0.9919 0.2013 0.9992 0.0655 4.2050

MLP {1 1} 0.9957 0.1472 0.9991 0.0713 0.0415
MLP {2 2} 0.9968 0.1259 0.9993 0.0639 0.7920
MLP {3 3} 0.9969 0.1238 0.9993 0.0634 1.7550

MLP {1 1 1} 0.9957 0.1474 0.9991 0.0695 0.2670
MLP {2 2 2} 0.9968 0.1249 0.9993 0.0635 1.9750
MLP {3 3 3} 0.9970 0.1246 0.9993 0.0632 3.2150

Pacejka 0.9966 0.1313 0.9992 0.0671 0.2550

Fig. 6.8 demonstrates the longitudinal and lateral friction coefficient
curves obtained from the best RBF and MLP architectures as well as the
Pacejka model. One can see that the proposed method can capture the
nonlinearities presented in tire data.
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Figure 6.8: Comparison between experimental data and tire models considering
(a) longitudinal and (b) lateral friction curves.

6.3.2
Path-tracking controller

In this part, the predictive control of a rear-wheel-drive vehicle with
experimental data tire is implemented to corroborate the proposed neural
tire approach’s effectiveness. Two different trajectories are considered: double
lane change and lane changes. The prediction is solved by the vehicle model
with the neural tire, and the simulation is done considering the vehicle using
experimental tire data. The latter uses look-up tables with slip and friction
data as input and output.

For the predictive controllers, the horizon is set from 5 to 15, and the
simulation sampling interval is set to 0.1 seconds. Also, the weighting matrices
are set equal for both MPC approaches after some trial and error.

Q =


2, 500 0 0

0 200 0
0 0 1, 500

 ;S =
 1, 000 0

0 1

× 103 . (6-4)

The vehicle (with weight distribution 50/50) parameters are listed in
Table 6.10. In addition, constraints of -0.9 < δ < 0.9 [rad] and -1,200 < T <

1,200 [N.m] are applied to the steering angle and the rear-driven wheels,
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respectively, representing typical Formula SAE vehicle operation zones. Finally,
an initial velocity of 24 m/s is given to the vehicle.

Table 6.10: Vehicle parameters - experimental case.
Symbol Definition Value
m Vehicle mass 270 kg
Iz Inertia moment about yaw axis 120 kg.m2

Iωf /ωr Inertial moment of the wheel 0.3 kg.m2

lt Wheelbase 1.6 m
rd Radius of the tire 0.20 m
isw Steering transmission ratio 10

6.3.2.1
Double lane change

The plant with experimental tire data is motivated to perform a double
lane change maneuver with a constant and referenced speed of 25 m/s from an
initial velocity of 24 m/s. The metric results in terms of lateral tracking error
and computational efforts can be seen in Table 6.11.

Table 6.11: RMS and maximum error under different lengths of horizon and
control strategies for double lane change considering experimental tire data.

MPC Horizon RMSE [Y ] |Ymax| Average solver
approach length (m) (m) time (s)

Pacejka
5 0.3157 0.6100 0.5588
10 0.3119 0.5944 1.0134
15 0.3125 0.5904 1.5668

Neural
5 0.3161 0.6139 0.4404
10 0.3121 0.5986 0.8027
15 0.3132 0.5955 1.1817

Metric results for a horizon of 5 presented the best computational
performance compared to the horizon set to 10 and 15. It is interesting to
note that MPC-Pacejka presented a similar performance in terms of error
metrics compared to the MPC-Neural. However, in terms of computational
time, MPC-Neural decreased the effort by 20% for horizons equal to 5 and
10, respectively, and 25% for a horizon equal to 15. The main reason is the
simplified architecture of the MLP network (MLP {1 1}), which needs less
computational effort.

From Fig. 6.9.a, one can see the desired trajectory and result of the
proposed MPC-Neural. One also can note from Figs. 6.9.b-c, the followed
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velocity and the lateral offset during the vehicle tracking. In particular, the
maximum lateral offset achieved is 0.61 m.

Figs. 6.10.a-b illustrate the control inputs to the steering wheels and
rear-driven wheels, respectively. The evolution of the lateral and longitudinal
friction coefficients is shown in Figs. 6.10.c-d, respectively. The rear longitudi-
nal friction is high initially due to the torque acting on the rear-driven wheels.
However, as the vehicle moves, the longitudinal friction tends to decrease. On
the other hand, lateral friction increases only when a steering angle is given to
the wheels, as expected.

6.3.2.2
Lane changes

In this scenario, the vehicle is supposed to track a sequence of lane change
maneuvers with a velocity of 25 m/s. The metric results in terms of lateral
tracking error and computational efforts can be seen in Table 6.12.

Table 6.12: RMS and maximum error under different lengths of the horizon
and control strategies for lane changes considering experimental tire data.

MPC Horizon RMSE [Y ] |Ymax| Average solver
approach length (m) (m) time (s)

Pacejka
5 0.2654 0.7317 0.5465
10 0.2599 0.7052 0.9766
15 0.2609 0.7085 1.6573

Neural
5 0.2661 0.7373 0.4382
10 0.2603 0.7101 0.7757
15 0.2612 0.7136 1.3855

The metric results show that RMSE and lateral offset are similar for
both MPC approaches, approximately 0.71m. The main difference is that using
MPC-Neural produced a computational effort reduction of 15% considering a
horizon of 15 and 20% for horizon lengths of 5 and 10. Figs. 6.11 and 6.12
present the results for both approaches when the predictive horizon is set to
5.

Figs. 6.11.a-b show the trajectory and velocity tracking performance.
The maximum lateral offset, approximately 0.71 m, can be seen in Fig. 6.11.c.
Moreover, the reference velocity achieved a minimum offset in Fig. 6.11.d.

The control inputs are plotted in Figs. 6.12.a-b. It is observed that a
high torque increases the rear longitudinal friction coefficient. However, as
the simulation time elapses, the longitudinal friction tends to decrease, as
seen in Fig. 6.12.d. Moreover, towed front wheels remain with a low level of
longitudinal friction coefficient due to the absence of driven torque. On the
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Figure 6.9: Results for double lane change simulation considering experimental
tire data. (a) Trajectory. (b) Velocity. (c) Trajectory offset. (d) Velocity offset.
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Figure 6.11: Results for lane changes simulation considering experimental tire
data. (a) Trajectory. (b) Velocity. (c) Trajectory offset. (d) Velocity offset.
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Figure 6.12: Results for lane changes simulation considering experimental tire
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Longitudinal friction coefficient.
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other hand, from Fig. 6.12.c, one can see that the lateral friction coefficient
curve and the steering angle curve share the same trend, with the values
increasing during the maneuver.

It can be seen from Fig. 6.13 that the total processing time for both ma-
neuvers considering the horizon prediction set to 5. MPC-Neural performed
even faster than the traditional MPC-Pacejka. The computational time de-
creases due to reducing the number of neurons in the data-driven tire model,
in this case, MLP {1 1}.
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Figure 6.13: Total processing time through simulation with experimental tire
data for (a) double lane-change and (b) lane changes.

6.4
Overall discussion and impacts

The simulated and experimental results presented in Section 6.2 and
Section 6.3 give an insight into data-driven tire models applied to predictive
control during trajectory tracking tasks. This approach allows for capturing
nonlinear tire characteristics combined with a predictive control strategy
during different maneuvers. As will be discussed next, the method presented
herein gives advantages to current practice. It enables the construction of
data-driven models for tires to arbitrary precision. Besides, the proposed
methodology performs better computationally when used in prediction for
MPC, which is essential in the scope of embedded solutions for control laws.
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Simulated and experimental data were used to approximate tire curves,
precisely longitudinal and lateral friction coefficients. The former data was
obtained from the Pacejka model, and the latter was obtained from an ex-
perimental tire test. Data-driven models were derived using artificial neural
networks, particularly MLP and RBF networks. In this case, Section 6.2.1
shows that the MLP {2 2} provided the best fit of data for both friction co-
efficients with reduced average computational time (considering both friction
coefficients). Once the best architecture fits the simulated data, a predictive
controller based on a vehicle with the selected neural tire is designed. A com-
parison with the exact vehicle using the Pacejka formula is shown in Section
6.2.2. The vehicle models with neural and Pacejka tires are used to predict
the future states of the vehicle over the finite time window (MPC scheme).
At the same time, the simulation occurs in a vehicle with simulated tire data.
The results show that the predictions agree with trajectory, velocity, and con-
trol inputs (steering angle and torque). Besides, computational time reduction
is observed using the predictive control with neural tire models. Thus, the
data-driven models proposed herein are better for predictive models in MPC
concerning computational use. Further improvements in computational time
and trajectory tracking can be obtained using more complex models than the
presented strategy. This approach is essential in embedded real-time applica-
tions and is crucial to optimize hardware use for MPC [132].

Regarding the results with experimental tire data, in Section 6.3.1, metric
results and average simulation time to obtain friction coefficients indicate that
the MLP {1 1} provided the best fit of experimental data. Then, an MPC
controller based on a vehicle with neural tires is designed to control a vehicle
with experimental tire data. One can see in Section 6.3.2 the good agreement
between the reference trajectory and velocity throughout the simulations.
The proposed methodology for neural-tire approximation with MPC herein
presented gives good results even when real-world noise-corrupted data is used.
The performance of the path-tracking controllers in terms of path-tracking is
further verified by reported results in the literature (Table 6.13) regarding
tracking control at high speed [27, 68, 133, 134].

Data-driven models give an alternative way to verify and analyze non-
linear aspects in tire modeling, which is lacking in existing tire models mainly
because these models are well-suited for each application. Moreover, the re-
sults presented have implications considering data-driven modeling for MPC.
The procedure grants computational time reduction, as observed in the tests
performed. Furthermore, it showed that the proposed approach could provide
good trajectory and velocity tracking under real-world scenarios when mea-
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Table 6.13: RMS and maximum error under different control strategies and
the proposed MPC approach.

Reference Control RMSE [Y ] |Ymax|
strategy (m) (m)

[68] MPC - 0.40 - 0.50
[133] MPC 0.20 - 0.60 0.76 - 1.76
[27] Game theory-based - 0.46 - 0.71
[134] MPC 0.031 - 0.142 0.40 - 0.47

Proposed MPC 0.15 - 0.32 0.36 - 0.73

sured data is applied. This approach indicates that, under high-speed driving
situations, data-driven modeling for efficient predictive control can correctly
replace physically-inspired derived models for tires. It is interesting to note,
though, that the neural model is applied only to focus on the tire-road in-
teraction, which is highly uncertain. Different models exist for each specific
road condition [135, 136]. Such procedure is in line with most recent works for
physically-inspired machine learning modeling [106].

Although the stability of the closed-loop system may be affected by the
approximation error of the neural tire model, its behavior presents similarity
when traditional approaches for tire curve approximation are also applied to
closed-loop systems, as seen in [110]. Moreover, one of the shortcomings of
the proposed approach is that the sudden change in the parameters may
decrease the MPC performance. This problem could be solved by applying
an observer/online training [18, 137]. However, the method presented herein
builds on other physical models, increasing knowledge about the predictive
modeling approach. In addition, this method helps to obtain a better overall
data-driven model, as the machine learning models can focus on specific aspects
of the system, that is, the tire-road interaction.

6.5
Summary

The trajectory tracking controller is an essential subsystem of au-
tonomous vehicles that maintains the vehicle on an established trajectory.
Several methodologies have been proposed throughout recent years. Predic-
tive controller based on models has been widely used since it allows for dealing
with constraints and uncertainties regarding the system. However, the effec-
tiveness of the MPC approach relies on a reliable vehicle model used for future
forecasts. Simplified dynamic models can ensure accuracy for specific situations
with low computational cost; however, the MPC controller’s performance can
suffer due to nonlinear aspects. On the other hand, a nonlinear dynamic model
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may lead to an unsuitable real-time application of MPC. Thus, data-driven ap-
proaches are a potential solution with a satisfactory trade-off between accuracy
and computational cost. Data-driven models are applied to approximate simu-
lated and experimental tire data for efficient predictive control. The proposed
approach has the potential to 1) approximate simulated and experimental tire
data with arbitrary precision, reducing the effect of unmodelled aspects, 2) be
used effectively with MPC to provide nonlinear control laws by providing ac-
curate trajectory predictions, 3) be more efficient than traditional approaches
in terms of computational time.

Here, Radial basis functions and Multilayer Perceptron architectures are
compared by the different numbers of neurons, average simulation time, and
error-based metrics. Results indicate that the MLP network performed better
during the experiments than the RBF architecture for tire data prediction.
In addition, the application of data-driven models with predictive control to
provide nonlinear control laws was also established. Thus, MPC controllers
based on dynamic vehicle models with neural tires are designed for path-
tracking. Results indicate that using neural network architectures as prediction
inference provided a computational time reduction of 10% to and 25% without
accuracy losses. Results also indicate that the error regarding the MPC
controllers in terms of lateral position is similar to that presented in recent
literature with Ymax varying from 0.36 m to 0.73 m. It is noteworthy that the
error is considered satisfactory, considering the vehicle’s longitudinal velocity.
Tests with a reduced velocity can decrease the trajectory error.
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7
Lateral model identification using multi-ARX models for effi-
cient model predictive control

Model Predictive Control proved effective for path-tracking control be-
cause it can use multiple constraints and variables with reasonable computa-
tional cost. The efficiency of this controller in terms of accuracy and compu-
tational efforts depends on the vehicle model applied to predict future states.
This prediction model should be capable of capturing nonlinear aspects present
in longitudinal and lateral vehicle dynamics without increasing computational
costs. A potential solution is applying a data-driven approach that should
represent an available dataset, not requiring high knowledge about the sys-
tem. Thus, this contribution deals with data-driven vehicle modeling to effi-
ciently enhance autonomous trajectory tracking control. A Multi-ARX-MPC
(MARX-MPC) using different identified vehicle models is developed for this
aim. A novel cost function weights the data-driven models to design the MPC
control law. Comparative tests with the classical linear and nonlinear MPC
controllers indicate that the data-driven approach can offer reliable results in
terms of error-based metrics. Besides, the outcomes show that the proposed
MARX-MPC can perform trajectory tracking on roads with continuous and
noncontinuous reference positions for different speeds. Finally, compared with
the conventional MPC controllers, the proposed architecture has decreased the
computational effort by up to 88% with accuracy.

7.1
Proposed approach

This section focuses on the proposed MARX-MPC approach in which
data-driven vehicle models are used to derive the MPC control law for the
trajectory tracking of AGVs. First, the simulated testbed is presented, and
then, the ARX approach to identify lateral vehicle dynamics is reported.
Finally, the proposed MARX-MPC for trajectory tracking is discussed.

DBD
PUC-Rio - Certificação Digital Nº 1912774/CA



Chapter 7. Lateral model identification using multi-ARX models for efficient
model predictive control 90

7.1.1
Simulated vehicle

A simulated testbed using MATLAB®/Simulink environment is devel-
oped to evaluate the performance of the proposed MARX-MPC controller.
The simulated vehicle has 11 DoF, including three spatial DoF (longitudinal,
lateral, and yaw) and four wheels with 2 DoF (longitudinal and lateral behav-
ior of the wheels) each. Moreover, the vehicle model includes subsystems such
as the steering wheel, engine, front-wheel driveline, suspension, and wheels
with hydraulic brakes. The simulated vehicle is similar to that presented in
[18]. The driver is modeled as a speed-tracking controller based on a Sched-
uled PI controller generating normalized acceleration and braking commands
between 0 and 1. In addition, it is essential to point out that this virtual plant
is sufficiently complex to be implemented with the MPC approach.

Figure 7.1: Complex AGV model used as controlled plant.

7.1.2
Dynamic vehicle model

Let some notation be recalled. Consider the single-track vehicle model
presented by Eqs. (3-1)-(3-8) in Section 3.1. This contribution simplifies the
vehicle model using only lateral dynamics with linear and nonlinear tire
modeling using the Pacejka formulation. Thus, the modified vehicle model
can be determined by the following

mÿ = 2Fyf + 2Fyr −mvxψ̇ , (7-1a)

Izψ̈ = 2lfFyf − 2lrFyr , (7-1b)

Ẋ = ẋcosψ − ẏsinψ , (7-1c)

Ẏ = ẋsinψ + ẏcosψ , (7-1d)

where m and Iz are the mass and moment of inertia at the CG, respectively;
lf and lr are the distance between the front and rear axles to CG. Moreover,
Fyf and Fyr are the lateral forces on the front and rear wheels, respectively.
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The forces can be modeled by the linear and nonlinear tire models presented
in Sections 3.1.1 and 3.1.2. The vehicle motion can be described in the vehicle
(x and y) and global frames (X and Y ). In addition, ψ is the vehicle’s and
global frames’ yaw angle.

7.1.3
Data-driven vehicle model

The accuracy of the identification procedure depends on the measured
signals during data acquisition. Thus, a typical signal easily reproduced in
a computer for lateral dynamics identification is the sinusoidal signal [138–
140]. Sinusoidal signals are used as input signals to represent the vehicle’s
steering angle and lateral positions throughout time as output signals. Based
on this, three different sinusoidal signals are selected considering different
amplitudes, 0.15, 0.08, and 0.05 m, with the same frequency (π/2) according
to the longitudinal vehicle velocity, 10, 15, and 20 m/s, respectively.

The simulated tests were performed using a sampling frequency of 100 Hz
in a MATLAB®/Simulink environment using the complex model described in
Section 7.1.1. The regressors matrix can be found using the approach presented
by Eq. (4-9). The algorithm allowed the variation of na and nb parameters
and the training and validation data percentage to find the best model based
on error-based metrics (RMSE and R2). For brevity, the focus is given only
on the validation data set. In addition, the models are simulated in free-run
simulation, in which actual input data is used to produce the predicted data.
Thus, the measured data is used only in the initial condition. Hence, the FR
simulation accumulates the prediction errors and shows the model validation
more easily.

Table 7.1: Estimated coefficients and error-based metrics between actual and
predicted signals, considering training and validation for FR for different
longitudinal velocities.

Coefficients Error-based metrics
Velocity â1 â2 b̂1 b̂2 Training Validation

(× 10−2) (× 10−2) R2 RMSE R2 RMSE
10 -2.0 1.0 -8.216 8.857 0.999 1.8532 0.9998 0.638
15 -2.0 1.0 -14.466 15.248 0.997 2.153 0.999 0.959
20 -2.0 1.0 -24.780 25.821 0.996 2.315 0.994 1.231

For the three identified models, the best results, in terms of error-based
metrics for FR: RMSE and R2 (Table 7.1), were detected when the training
data corresponded to between 10-15% of the data set, and the validation set, in
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Figure 7.2: Validation results for each data-driven ARX model considering FR
simulation for a) 10 m/s, b) 15 m/s, c) 20 m/s.

turn, corresponded to 85-90% of the entire set. These results justify high values
for error metrics corresponding to training. Besides, for the three cases, the
results indicate na = nb = 2. Table 7.1 also shows the estimated coefficients
for the different sinusoidal signals used for identification.

Fig. 7.2 shows the performance comparison of these three vehicle models
considering FR metrics for each longitudinal velocity (10, 15, and 20 m/s).
It can be seen that the outputs from the identified models present similar
behaviors to the measured lateral positions, considering the validation data.
In addition, one can see the raincloud plots considering the error between
predicted and real data. One can note that the identification presented by the
models ARX-10 (ARX for the longitudinal velocity of 10 m/s) and ARX-20
can explain the data more accurately than ARX-15, as seen by the normal
distribution with a mean of next to zero.
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7.1.4
MARX-MPC for efficient trajectory tracking

Predictive controllers are herein designed to implement trajectory track-
ing. From the previous section, it can be seen that the estimated coefficients
change as a function of the vehicle’s velocity. However, a valid identified model
for different velocities and vehicle behaviors is required. Therefore, it is pro-
posed a weight cost function that weights each identified model based on the
vehicle’s velocity. The vehicle is driven at a speed between 10-20 m/s. Thus,
to balance the results produced by identified models, it is also proposed a
triangular supervisor function (shown in Fig. 7.3).
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Figure 7.3: Weight factors according to longitudinal vehicle velocity.

Once the weight cost function is set, one may use it to derive the
optimized control actions of the proposed MARX-MPC to control the complex
model described in Section 7.1.1. The proposed MARX-MPC aims to enhance
computational efficiency and verify the robustness of data-driven models to
derive control laws. Only the lateral position and the steering angle are used
from the controlled plant to derive the MPC cost function. Therefore, the cost
function can be expressed as

JN(δk,k+N−1, yk+1,k+N−1) =
k+N−1∑

i=k

∥ ŷi − yi ∥2
Q +

k+N−1∑
i=k+1

∥ ∆δi ∥2
S (7-2)
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Figure 7.4: Proposed framework in which the MARX-MPC receives predicted
and reference positions and vehicle’s velocity to define the cost function. The
steering angle is sent to the complex controlled plant, also composed of a
velocity controller.

Figure 7.5: Proposed framework composed of vehicle model, MPC with refer-
ence trajectory, and reference velocity inside the Simulink platform.

where ŷ is the predicted lateral position, y is the lateral reference position given
to the vehicle, Q is a weight that gives the importance of lateral positions to
be followed by the AGV, and S is a weight that gives importance for the input
(steering).

Path-tracking control also needs to ensure comfort and safety handling
for the vehicle’s occupants. Then, in the second term of the cost function, a S
parameter is applied regarding the steering angle. This parameter indicates
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the importance of the control actions to ensure smooth vehicle handling.
Specifically for the proposed MARX-MPC, the term that deals with the
predicted lateral position in the cost function can be determined as follows

ŷi = w1vxŷ
1′

i + w2vxŷ
2′

i + · · · + wnvxŷ
n′

i (7-3)
where the ŷi is the global lateral position predicted at each interaction,
w1,2···n weighs the importance of the identified ARX models ŷ1′,2′···n′ based on
the vehicle’s velocity. Although three ARX models are chosen, the proposed
approach allows one to extend to a wider speed range if using additional models
depending on the specific application. Finally, Fig. 7.4 shows a general overview
of the proposed approach, and Fig. 7.5 presents the proposed approach inside
the Simulink platform.

For the implementation of the MPC controllers, the prediction and
control horizons are set with a fixed value of N = 10 since both aspects
directly affect the computational methodology effort. Moreover, this allows
a fair comparison between conventional MPCs and the proposed approach,
excluding horizon and prediction length aspects. Tables 7.2 and 7.3 show the
list of parameters regarding the simulated vehicle and the MPC controllers.

Table 7.2: Vehicle parameters.
Definition Symbol Value

Vehicle mass m 2000 (kg)
Yaw moment of inertia Iz 4000 (kg.m2)

Distance from CG to the front axle lf 1.4 (m)
Distance from CG to the rear axle lr 1.6 (m)

Wheelbase − 3.0 (m)
Track width − 1.4 (m)

Table 7.3: Parameters of the MPC controllers.
Definition Symbol Value

Prediction horizon N 10
Weight cost for lateral position Q 100
Weight cost for steering angle S 100

MPC step size TMP C 0.05 (s)
Simulation step size Ts 0.001 (s)
Steering constraint δ [-20,20] (deg)

7.2
Results

The proposed approach is tested in a MATLAB®/Simulink simulation
environment. The simulations are performed on a laptop with Windows 10
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OS endowed with an Intel i5-7300HQ CPU and 16 GB RAM. Besides, the
nonlinear programming (NLP) problems are solved using the Ipopt software
package [124] with the open-source tool - CasAdi [125]. Linear and nonlinear
systems are solved with CVodes from the SUNDIALS Suite [127].

7.2.1
ARX-MPC performance

The performance of the ARX–MPC based on each identified model
according to the vehicle’s velocity is initially evaluated. Different road profiles
are considered since the trajectory has an essential effect on the vehicle’s
handling [141]. In this contribution, it is assumed that the trajectory planner
provides a path with different curvatures to be traveled by the vehicle. Fig. 7.6
shows the vehicle’s performance regarding trajectory tracking using the data-
driven ARX-MPC for reference velocities of 10, 15, and 20 m/s. Moreover, the
steering angle (control input) for each velocity is also shown in Fig. 7.6. One
can see that the results are close to the reference trajectory, corroborated by
the error metrics in Table 7.4. The upper and lower limits for the steering angle
are restricted to [-20,20] deg to maintain comfort and safety. Then, as expected
for predictive control, one can note that the restriction is respected during the
trajectory tracking. Imposing actuation limits on the control is an advantage
for model-based predictive control to maintain stability in previously defined
satisfactory regions.

Table 7.4: Tracking distance errors for different ARX-MPC controllers.
Controllers

Metric error ARX-MPC-10 ARX-MPC-15 ARX-MPC-20
R2 0.9987 0.9985 0.9982

RMSE (m) 0.1560 0.1680 0.1795

Finally, a comparison of ARX-MPC solver time for the proposed ap-
proaches is shown in Fig. 7.7. Here, the solver time is computed at each time
interval. The MPC solver time is similar among all three approaches, with a
value close to 0.01 s in a normal distribution.

7.2.2
MARX-MPC performance

The performance of the proposed MARX–MPC approach is evaluated by
driving the simulated vehicle to finish a segmented path. Therefore, a longer
trajectory with different curvatures is designed to evaluate whether the vehicle
can operate at low and high velocities with different magnitudes of steering
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Figure 7.6: Trajectory tracking performance using ARX-MPC approach con-
sidering identified models concerning: a) 10 m/s, b) 15 m/s and c) 20 m/s.
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Figure 7.7: Solver time for each predictive control based on ARX models: ARX-
MPC-10, ARX-MPC-15, and ARX-MPC-20.
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angle. The chosen trajectory has three different segments, and each section is
designed to have a specific curvature. Segment-1 has higher amplitudes at a
lower frequency than segment-2. Segment-3, on the other hand, has the main
characteristic of being a reference trajectory with abrupt trajectory change.

The proposed MARX-MPC approach is compared to the conventional
MPCs based on dynamic models. Thus, two different predictive controllers
are designed based on models presented in recent literature (see [28]). Here,
predictive controllers based on a linear and nonlinear dynamic model with
Pacejka tire modeling are referred to as “LMPC” and “NMPC”, respectively.
Fig. 7.8 shows the proposed architecture results compared to these conventional
predictive controllers. In Fig.7.8.a, a comparison of the trajectory tracking
performed by the conventional and proposed MPCs is presented.

Figure 7.8: Comparisons of proposed MARX-MPC with conventional
MPCs.(a) Trajectory produced by the predictive controllers. (b) Solver time
for each MPC controller and (c) normal distribution of solver time.

Figs. 7.8.b-c show that the proposed architecture can reduce the compu-
tational time of the MPC control by up to 63% concerning the LMPC and up
to 88% concerning the NMPC (see Tables 7.5 and 7.6). These results indicate
that the proposed approach is promising for real-time applications with tra-
jectory deviation consistent with current models. Fig. 7.8.c shows the normal
distribution of solver time for the presented architectures and highlights the
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computational advantage of the proposed architecture. Here, the solver time
for each predictive controller is recorded at each time interval.
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Figure 7.9: (a) Longitudinal velocity through the trajectory, and (b) Weight
factors regarding MARX-MPC models – 10, 15, and 20 m/s.

Figure 7.10: (a) Front lateral slip, and (b) rear lateral slip over time for each
MPC architecture. (c) Lateral position error and (d) steering angle over time
for each of the MPC architectures.
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Fig. 7.8.b shows the solver time intervals for each architecture. The
NMPC presented a high computational time consumption during vehicle ma-
neuvers. Therefore, the solver’s average time increases due to those instants.
The interesting point is that the sudden change in trajectory (segment-3) in-
creases computational performance in LMPC and NMPC controllers. However,
for the proposed MARX-MPC, the computational time is reduced and almost
insensitive, highlighting the computational efficiency of the proposed method-
ology. Fig. 7.9 shows the reference velocity through the trajectory and the
weights through time associated with the ARX models of 10, 15, and 20 m/s.
One can see the robustness of the proposal in the face of different speed profiles.

The computational cost affecting the performance of the NMPC con-
troller is due to the increase of the front and rear lateral slip, as shown in Figs.
7.10.a-b. The plant controlled by the MARX-MPC also presented an accentu-
ated level of slip. However, the computational impact is reduced. Due to the
vehicle maneuvering movements lagging by the prediction distance, relevant
lateral errors can be seen in segments 1 and 3 (Fig. 7.10.c). It is necessary to
have a fair prediction horizon value for the required trajectories. A high hori-
zon causes the vehicle to anticipate the trajectory to be followed. However, a
significant lag may occur between the predicted and actual trajectory. On the
other hand, a very short horizon makes it difficult for the vehicle to follow a
sudden trajectory change, as seen in segment-3.

As seen, the lateral slip tends to increase at the maneuvering points.
Therefore, a significant computational calculation is required for the nonlinear
tire equation in the NMPC control. On the other hand, the proposed MARX-
MPC model becomes insensitive to maneuvers of different complexities empha-
sizing its robustness. Tables 7.5 and 7.6 report the RMS errors, the average
solver time, and the percentage reduction using the proposed approach for
each one of the architectures during each segment, corroborating the graphical
results presented. The NMPC has the slightest average error during the first
and second trajectory segments. However, the proposed approach achieved the
slightest error through the third segment. In addition, compared to the NMPC,
the proposed approach could reduce the solver time by up to 88%.

The proposed approach could reduce lateral error by up to 41% and
solver time by up to 75% compared to the LMPC approach. An important
point to note is that the values presented for the MARX-MPC are compatible
with recent works [18, 72] for a similar range of longitudinal velocity.
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7.3
Overall discussion and impacts

The results presented in the previous sections provide a broader view of
identified vehicle models applied to predictive control during the trajectory
tracking problem. The main objective of this contribution is to design a data-
driven MPC framework that can effectively utilize a combination of simplified
identified vehicle models to capture nonlinear effects that individual modeling
cannot do satisfactorily. The proposed methodology also allows capturing
nonlinear characteristics of the powertrain and tires to be combined with
predictive control strategies during different maneuvers. Next, it is argued that
the proposed method advantages current control practices. The method allows
the construction of vehicle models based on data with satisfactory accuracy
concerning the error-based metrics, with similar results in recent literature
(0.05-0.50 m) [18, 26, 72]. In addition, the proposed methodology, when used
to predict the MPC control, has better computational performance (reduction
between 60% and 90%) compared to conventional models used in the literature
(linear and nonlinear model) [108, 142, 143]. The proposed methodology still
proved insensitive to the increase of lateral slip. This result shows the potential
use of the methodology in embedded solutions for control laws.

Once the best architecture is found to fit the simulated data for each
longitudinal speed (10, 15, and 20 m/s), a controller is designed based on a
weight cost function from the identified model, which is a function of vehicle
speed. The performance of the MARX-MPC control is compared with LMPC
and NMPC literature models. Furthermore, a reduction in computational time
is observed using the proposed control even with the increase of identified
models in the cost function. Thus, the data-driven models proposed here are
better for predictive models in MPC in terms of computational effort. Other
computational time and trajectory tracking improvements can be obtained
using more complex models than the presented strategy.

In general, data-driven vehicle models offer an alternative way to verify
and analyze nonlinear aspects that conventional models cannot do properly.
Furthermore, the results presented provide implications regarding data-based
modeling for MPC. The procedure reduces computational time while maintain-
ing satisfactory trajectory tracking, as observed in tests performed (Figs. 7.8
and 7.10). In addition, this approach indicates that data-based modeling for
efficient predictive control can correctly replace physically inspired models for
vehicles in medium and high-speed driving situations. Such a procedure agrees
with more recent works that approach the identification of vehicle dynamics
[3, 37, 48, 98]. The proposed data-driven approach is highly beneficial when
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formulating a complex mathematical model of the vehicle. Vehicles come in
different shapes and sizes and have some degree of variation. Thus, designing
an analytical model for each vehicle is difficult and time-consuming. In most
cases, analytical simplification can introduce uncertainties due to unmodeled
dynamics. On the other hand, the method presented herein builds on other
physics-based models, enhancing the knowledge regarding predictive modeling
methods.

7.4
Summary

Trajectory tracking is essential to autonomous ground vehicles since it
reduces accidents and improves passenger comfort. Thus, Model predictive
control (MPC) has proved to be an effective solution for path-tracking. The
essential aspect of MPC control is the prediction model. A simplified dynamic
model can achieve reduced computational cost; however, the trajectory error
and uncertainties regarding the system affect its results. On the other hand, a
nonlinear vehicle model can improve the trajectory error to the detriment of
computational effort.

The present contribution proposes a framework for enhancing path-
tracking in terms of computational and accuracy performances. It can be
achieved by applying data-driven models to approximate lateral vehicle dy-
namics and using them as prediction models for efficient predictive control.
Specifically, three different ARX models are identified, considering the vehi-
cle’s steering angle and lateral position as input and output, respectively. Then,
a supervisor that weights the importance of the identified models is designed
to guarantee an efficient predicted model. The cost function can be designed
for the MARX-MPC controller using the result derived from the supervisor.

The performance of the proposed controller has been evaluated in a vir-
tual environment with a trajectory segmented in different curvatures, consider-
ing a non-constant velocity profile. Moreover, the performance of the proposed
approach has been compared to conventional approaches, specifically LMPC
and NMPC controllers. Results indicate that using identified architectures as
prediction inference provided a computational time reduction by up to 88%,
with accuracy comparable to the conventional MPC approaches.
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8
Hybrid physics-based and black-box data-driven nonlinear
identification of vehicle dynamics

Due to the nonlinear interactions, vehicle modeling remains challenging,
mainly under racing conditions. Accurate and feasible physics-based vehicle
modeling requires previous knowledge about the vehicle. On the other hand,
data-driven algorithms may be used to represent measured data. However,
any model is subject to discrepancies due to simplifications or numerical
approximations. Thus, to cope with these problems, this proposed contribution
deals with a hybrid approach, combining data-driven approaches with black-
box modeling of the discrepancies. This approach is chosen to improve the
accuracy of vehicle modeling by proposing a discrepancy model to capture
mismatches between vehicle models and measured data. The methodology
is tested with a physics-based model often used for model-based control, a
state-space model recently reported, and a purely black-box model when the
proposed method showed significant improvement in predictive capability. The
dataset comprises a driving section in racing conditions with the vehicle at
handling limits. The results demonstrate that the hybrid approach improves
vehicle modeling, reducing the model’s mismatches by up to 28% in terms
of RMSE. The proposed approach may lead to significant implications for
control applications applied to autonomous vehicles, specifically through racing
conditions where the vehicle’s limits become critical. That is the condition that
the traditional approaches fail and our method becomes more relevant.

8.1
Proposed approach

This section introduces the proposed approach regarding identifying
physics-based, state-space, and black-box vehicle models. Moreover, the math-
ematical formulation of the proposed hybrid approach is also stated.

8.1.1
Identification of physics-based models

An optimization problem estimated the unknown parameters in the
physics-based model through the least-squares approach. The procedure is
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given by the following:

– Estimate the parameters of the longitudinal dynamics ke, kd, and kr;

– Estimate the parameters of the lateral dynamics Cf , Cr, and Iz.

The procedure adopted in this work is an optimization problem with the
cost function defined as a normalized mean-square between measured data and
predicted data:

J(θ) =
Nt∑
i=1

(y(tk) − ŷ(tk, θ))T (y(tk) − ŷ(tk, θ)) , (8-1)

where y(tk), and ŷ(tk) are the output data and the predicted data at time tk,
given the vector of the parameters θ. For the longitudinal dynamics, y = [vx]T ,
and for the lateral dynamics, y = [vy, r]T . In addition, Nt is the length of
the measurement data vector. Particularly for the lateral dynamics model
(bicycle model), the longitudinal velocity present in Eqs. (3-19)-(3-20) is not
considered a constant value but the measured longitudinal velocity through
time. Therefore, the bicycle model is considered in a coupling way in which
the longitudinal dynamics directly affect the lateral dynamics.

The identification is solved using the Ipopt software package [124] with
the open-source software - CasAdi [125], which is a symbolic framework
commonly used for optimization problems. Moreover, the ODE system is
solved with CVodes from the SUNDIALS Suite [127], used for fast and precise
numerical solutions.

8.1.2
Identification of state-space model

Considering vehicle identification in [43], the procedure was successfully
implemented. The second-order (nd = 2) state-space parameters were esti-
mated using the PEM method [114], and the initialization occurred using the
N4SID algorithm. In addition, the “ssest” function that combines the N4SID
state-space initialization with the PEM estimation is also applied. Finally, in
this contribution, the output is given by yd = [vx r]T , and ud = [P δ], to
compare with the linear approaches.

8.1.3
Black-box vehicle modeling

Following the method described in Section 4.2, a NARX black-box model
is implemented considering yd = [vx r]T , and ud = [P δ], in order to compare
with the physics-based and state-space approaches. Besides, the maximum lags
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(na and nb) and artificial neural network architecture were chosen after trial
and error.

8.1.4
Hybrid model

The present study aims to use vehicle model approaches with discrepancy
models using a hybrid approach to enhance accuracy. One of the main
advantages is the possibility of using simplified model techniques to model the
vehicle. The general idea is to combine engineer insights with aspects missed
by vehicle modeling. Therefore, physics-based, state-space data-driven, and
black-box vehicle models are used as a mean function. In addition, NARX
models were used as discrepancy models by the following equation:

yd(k) = ym︸︷︷︸
vehicle model

+F [ye(k − 1), ..., ye(k − ne), u(k − 1), ..., u(k − nb)]︸ ︷︷ ︸
discrepancy model

(8-2)

where yd is the output of the proposed approach. The vehicle models are
represented by the mean function (ym), which is a function of the inputs
u(k) and states x(k) for the physics-based model and state-space data-driven
approaches. On the other, for black-box vehicle models, the mean function
(ym) is a function given by F [y(k − 1), ..., y(k − na), u(k − 1), ..., u(k − nb)],
i.e., the inputs u(k) and outputs y(k). The discrepancy term is a function of
the system inputs u(k) and itself ye(k). Here, the maximum lags (na, nb, and
ne) and artificial neural network architectures are chosen after some trial and
error. To facilitate the understanding and comparison between the methods,
Table 8.1 shows the acronym used to distinguish the methods and their results.
Finally, Fig. 8.1 shows a general overview of the proposed approach.

Table 8.1: Acronym description of the models and references used.
Acronym Description Reference

M1 Bicycle coupled model [83]
M2 Longitudinal model [43]
M3 State-space model [37]
M4 Black-box model proposed

M1-H Hybrid bicycle coupled model proposed
M2-H Hybrid longitudinal model proposed
M3-H Hybrid state-space model proposed
M4-H Hybrid black-box model proposed
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Figure 8.1: General overview of the proposed approach: Once the identified
models (M1; M2; M3; M4) are obtained, they produce discrepancy data to be
modeled by the NARX black-box approach. Next, the hybrid approach (M1-
H; M2-H; M3-H; M4-H) comprises the output of the identified vehicle models
summed with their respective identified mismatch models.

8.2
Experimental data

The experimental data were gathered in an instrumented Ferrari 250 LM
Berlinetta GT during driving sections on The 2014 Targa Sixty-Six event that
took place at the Palm Beach International Raceway in the US (Fig. 8.2). The
road course at the Raceway was a 3.3 km-long track, 10-turn circuit (clockwise
orientation) featuring a 1 km straight. The Revs Program at Stanford [144]
made the data set publicly available.

The latitude/longitudinal data were acquired by a global navigation
satellite system (GNSS)-aided inertial navigation system. The vehicle’s po-
sition on a fixed set of coordinates is obtained by converting the longitudinal
and latitude data using equirectangular approximation. The racing vehicle sig-
nals were sampled and recorded using MoTec hardware (for details, see [105]).
Only a section of the available data was selected, considering longitudinal ve-
locity greater than zero. The data set was divided into training and test split
of 70/30%, respectively. The measured data comprises signals sampled at 100
Hz and 1000 Hz. However, the power spectrum of the relevant measurements
showed that over 90% of the power was concentrated below 10 Hz. Then, in
order to the view to reduce computational time, the data set was resampled
at 20 Hz, similarly as in [37, 43]. Fig. 8.3 shows the measurements during the
racing section.
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Figure 8.2: Driving route at the Palm Beach International Raceway.
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Figure 8.3: Measurements acquired during a racing section at the Palm Beach
International Raceway. (a) Steering angle. (b) Difference between throttle and
brake signals from the pedal in percent. (c) Yaw rate. (d) Longitudinal velocity.
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8.3
Results

For brevity, the focus is given to the test data set. In addition, the models
are derived from free-run simulation, in which actual input data is used to
derive the predicted data. Thus, the measured data is used only in the initial
condition. With this procedure, the predictions accumulate errors, making it
easier to show whether the identified model is valid [94]. The NARX models
with neural networks are tested, varying the order of the model (input and
output lags). Namely, the procedure is performed by varying the number of
lags from 5 to 10. The number of neurons was also tested by varying from 30
to 50 with Exponential Linear Unit (ELU) activation through hidden layers
varying from 2 to 10. Sections 8.3.1 and 8.3.2 present the results for lateral and
longitudinal dynamics, respectively. The values of the optimized parameters
for the state-space (with mean of data samples removed and normalized data)
and physically derived models can be found in Tables 8.4 and 8.5. Finally, the
metrics to be compared are the Fit (F ), RMSE, and variance-accounted-for
metric (VAF).

8.3.1
Lateral dynamics modeling

The results performed by the models, including the proposed approach for
lateral dynamics, can be seen from Fig. 8.4 to 8.6, while Table 8.2 summarizes
their performance metrics.

Table 8.2: Performance metric summary - Lateral Model.
Model Yaw rate % Increase % Reduction

F% VAF% RMSE F VAF RMSE
M1 72.87 93.21 0.054 16.85 5.90 25.97M1-H 85.15 98.72 0.040
M3 80.34 96.14 0.046 10.94 2.80 25.65M3-H 89.14 98.83 0.034
M4 88.53 98.68 0.351 5.42 0.88 23.58M4-H 93.33 99.55 0.027

Although the state-space model (M3) approach can accurately simulate
the yaw rate trend, the proposed approach (M3-H) can outperform it with
an RMSE reduction of 25.65%. The proposed hybrid (M1-H) approach also
outperforms the bicycle model (M1) in terms of accuracy by 25.97% of RMSE
reduction. In addition, considering the black-box approach (M4 and M4-H), a
reduction of 23.58% in RMSE can be achieved.
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Figure 8.4: (a) Comparison of measured and predicted yaw rate using the
proposed approach considering test data. (b) Raincloud considering the error
between the state-space model and its hybrid approach. (c) Raincloud con-
sidering the error between the bicycle model and its hybrid approach. (d)
Raincloud considering the error between the black-box model and its hybrid
approach.
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Figure 8.5: Correlation between the measured and the simulated yaw rate over
the entire test data set. (a) Bicycle model and its (b) hybrid approach. (c)
State-space model and its (d) hybrid approach. (e) Black-box model and its
(f) hybrid approach.

Fig. 8.4 compares the test data and the prediction of the approaches,
particularly in Figs. 8.4.b-d, one can see raincloud plots considering the error
between predicted and measured data. The hybrid approach can enhance the
vehicle model’s accuracy, attenuating the error, as seen by the normal distri-
bution with a mean of next to zero. Besides, the correlation comparisons are
given in Fig. 8.5. The proposed approach can more accurately explain the vari-
ances in the measurements, with a percentage increase of variance accounted
for 5.90%, 2.80%, and 0.88% regarding the bicycle, state-space, and black-box
models, respectively. In addition, a model fit increase of 16.85%, 10.94%, and
5.42% can also be observed using the proposed approach, respectively. The
black-box minor improvement results can be explained by the fact that the
black-box approach (M4) can already represent most of the measured data.

Fig. 8.6 depicts the error between the measured and predicted yaw rate
along the trajectory. It also confirms the same allusions made before that the
hybrid approach considerably improves the results. Additionally, considering
the bicycle, state-space, and black-box models (Figs. 8.6.a, 8.6.d, and 8.6.g),
higher errors during entering and exiting in some curves can be seen. On the
other hand, the proposed approach (Figs. 8.6.b, 8.6.e, and 8.6.h) can reduce
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Figure 8.6: Error between the measured and the simulated yaw rate over the
entire test data set. (a) Physics-based model and its (b) hybrid approach. (c)
Discrepancy model contribution in percent - physics-based model. (d) State-
space model and its (e) hybrid approach. (f) Discrepancy model contribution
in the percent - state-space model. (g) Black-box model and its (h) hybrid
approach. (i) Discrepancy model contribution in percent - black-box model.

the error along the entire trajectory. The points in which error reduction occurs
are the points in which the discrepancy models have greater importance in the
hybrid architectures, as seen in Figs. 8.6.c, 8.6.f, and 8.6.i.

8.3.2
Longitudinal dynamics modeling

The results for the longitudinal model and the hybrid approach can
be seen from Figs. 8.7 to 8.9, while Table 8.3 summarizes their performance
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metrics.
Concerning the longitudinal dynamics, the proposed approach (M3-H)

led to a reduction of 12.68% in the RMSE metric compared with the data-
driven model. Besides, a reduction of 18.55% in the RMSE metric is obtained
using the proposed physics-based model (M2-H) approach. On the other hand,
a reduction of 28.57% can be achieved by the proposed approach considering
a black-box vehicle model (M4 and M4-H). From Fig. 8.7, one can see the
comparison between the measured and predicted longitudinal velocity data.
Figs 8.7.b-d show the raincloud plots considering the error data. The proposed
approach can also increase the vehicle model’s approaches, reducing the error
mainly in the extremes. The correlation comparisons are given in Fig. 8.8.

Table 8.3: Performance metric summary - Longitudinal Model.
Model Longitudinal velocity % Increase % Reduction

F% VAF% RMSE F VAF RMSE
M2 65.49 90.01 0.286 17.44 5.70 18.55M2-H 76.91 95.13 0.233
M3 67.97 91.81 0.275 10.78 2.28 12.68M3-H 75.30 93.91 0.240
M4 75.66 95.72 0.240 15.67 3.31 28.57M4-H 87.52 98.89 0.171

The proposed approach can represent the measurement variances with
higher accuracy. The VAF percentage increases by up to 5.70% using the
proposed approach. Moreover, a percentage increase of 17.44% in model fit can
be achieved using the proposed approach with the vehicle models. The lower
accuracy compared to the lateral dynamic models is given by the transition
between entering and exiting curves which could not be predicted accurately.

From Fig. 8.9, one can observe the error between measured and predicted
longitudinal velocity along the trajectory considering the test data. Consid-
ering the physics-based, state-space, and black-box models (Figs. 8.9.a, 8.9.d,
and 8.9.g), higher errors can be observed when entering and exiting the curves.
Due to the maneuvers at the handling limits, the prediction cannot adequately
capture the longitudinal velocity in zones with the transition between braking
and velocity recovery. On the other hand, the hybrid approach (Figs. 8.9.b,
8.9.e, and 8.9.h) can reduce the discrepancies along the entire trajectory. It
can be seen from Figs. 8.9.c, 8.9.f, and 8.9.i, the contribution given to the
vehicle models using the discrepancy NARX models.

The main contributions occur in zones with a significant reduction of
longitudinal velocity followed by a sudden velocity increase (before and after
long straights). Contributions more outstanding than 90% in those situations
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Figure 8.7: (a) Comparison of measured and predicted longitudinal velocity
using the proposed approach considering test data. (b) Raincloud considering
error between longitudinal physics-based model and its hybrid approach. (c)
Raincloud considering the error between the state-space model and its hybrid
approach. (d) Raincloud considering the error between the black-box model
and its hybrid approach.
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can be observed, and other improvements can also be noted along the entire
racetrack. The simulation results demonstrated that including a discrepancy
model attenuates the model discrepancies.

Figure 8.8: Correlation between the measured and the simulated longitudinal
velocity over the entire test data set. (a) Longitudinal physics-based model and
its (b) hybrid approach. (c) State-space model and its (d) hybrid approach.
(e) Black-box model and its (f) hybrid approach.

Table 8.4: Parameters estimates for the second-order state-space model.

Ad =
[

0.282 0.132
−0.003 0.995

]
Bd =

[
−1.355 0.041
−0.005 9.5656 × 10−4

]

Cd =
[
−0.579 0.821
−0.061 15.337

]

Table 8.5: Parameters estimates for the longitudinal and bicycle coupled
dynamic models.

Longitudinal Bicycle coupled
ke kd kr Iz Cf Cr

61.647 115.872 -0.231 2558 3438 82424
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Figure 8.9: Error between the measured and the simulated longitudinal velocity
over the entire test data set. (a) Physics-based model and its (b) hybrid
approach. (c) Discrepancy model contribution in percent - physics-based
model. (d) State-space model and its (e) hybrid approach. (f) Discrepancy
model contribution in percent - state-space model. (g) Black-box model and
its (h) hybrid approach. (i) Discrepancy model contribution in percent - black-
box model.

8.4
Overall discussion and impacts

The results presented in Section 8.3.1 and Section 8.3.2 give an insight
into learning model discrepancy applied to enhance vehicle modeling. As will
be discussed next, the proposed approach contributes to the current state of
the art and present an important contribution for model-based control [30],
and digital twins applied to simulation and monitoring [106].
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The simulation results demonstrated that the vehicle models could
reproduce the real data (yaw rate) to a certain degree. However, including a
residual learning model component enhances the accuracy by up to 25.97%. In
addition, a percent increase by up to 16.85% of data fit is observed. Regarding
the simulation results concerning longitudinal dynamics, one can observe a
reduction of up to 28.57% in RMSE, considering the hybrid approach applied
to the black-box model. Moreover, a percent increase by up to 17.44% of
data fit can be seen in the results. As the black-box outperformed other
approaches and was further improved by stacking another black-box in series,
the results presented can be further improved. Exhaustive hyperparameter
search, architecture search [145], or another available black-box approach can
be applied to define the more appropriate application. These topics all fall out
of the scope of the present contribution.

The hybrid model gives an alternative way to capture nonlinear aspects
present in race conditions in which driving operation at the vehicle’s limits
becomes critical. In addition, the precision improvement inspires using the
proposed model in control applications such as Model Predictive Control
(MPC) which requires reliable and accurate models. The proposition of better
models in terms of predictive capability is in line with recent works that aim to
identify the vehicle dynamics [3, 37, 48, 98] in medium and high-speed driving
situations. Specifically, the hybrid approach inspires its application in different
dynamic situations such as rotating dynamic analysis [102], trajectory analysis
[59], and structural health monitoring [146]. One of the areas for improvement
of the proposed approach is that the sudden change in the vehicle parameters
or track conditions may decrease the prediction performance. This problem
could be solved by applying online training [18, 98] or considering multiple
surface friction values during experimental tests [3, 81]. However, the proposed
hybrid methodology compensates for unmodeled aspects commonly neglected
by physics-based models, mainly in extreme handling conditions.

8.5
Summary

This contribution proposes a hybrid approach to identify a ground
vehicle’s dynamics. The dynamic system consists of an instrumented vintage
racing car during driving sections on the Palm Beach racetrack [105]. First,
the measured data estimates the unknown parameters of the longitudinal
and lateral dynamic models considering driver inputs and vehicle outputs.
Next, data-driven models are investigated to simulate the racing vehicle’s
longitudinal velocity and yaw rate. Finally, the mismatches between the
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real and predicted data are modeled using a black-box technique. Thus, the
proposed hybrid approach adds the black-box component to different vehicle
models.

The proposed approach applied to vehicle dynamics has the potential to
1) increase the accuracy of predicted data with arbitrary precision, reducing
the effect of neglected modeling aspects, 2) be used effectively to improve the
vehicle modeling through race conditions, 3) be easily reformulated considering
different models complexity depending on the application, including driver
inputs for higher-level control applications. Developments indicated that the
identified models can reproduce the measured data and that adding the
black-box component effectively reduces the model’s mismatches by up to
28% in terms of RMSE. Moreover, the fit percentage increases by up to
17%. Therefore, the results demonstrated the precision improvement of the
predictions.
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9
Conclusion

The present work dealt with machine learning and system identification
methods to enhance vehicle modeling and efficiently perform trajectory track-
ing using model predictive control. As mentioned throughout this thesis, the
effectiveness of the MPC approach is directly affected by accurate models.
Regarding vehicle dynamics, simplified dynamic models may lead to accurate
results with low computational cost in conditions where nonlinear aspects are
neglected. On the other hand, a nonlinear dynamic model may lead to an un-
suitable application. Therefore, data-driven approaches used in this thesis rise
as a potential solution guaranteeing a trade-off between precision and compu-
tational efforts. Explicitly speaking, three different approaches were proposed
in this thesis: (i) ANNs can be applied to approximate nonlinear tire data
with arbitrary precision, and (ii) a combination of ARX models with a new
cost function, both to enhance trajectory tracking with efficiency; (iii) hybrid
approach combining conventional vehicle models from literature with a dis-
crepancy model to enhance the vehicle modeling.

The first formulation focuses on improving MPC using neural tires.
RBF and MLP architectures are proposed and compared regarding tire curve
approximations considering simulated and experimental data. In addition,
the application of neural tires in predictive control is investigated to provide
nonlinear control laws. Being so, the proposed MPC controllers are submitted
to perform trajectory tracking in different scenarios. Results based on error-
based metrics and computational efforts (reduction by up to 25%) ensure the
advantage of the proposed approach compared to literature controllers.

Next, a combination of ARX models is implemented to enhance the MPC
controller efficiently. The main objective of this contribution is to implement
an MPC framework that allows a combination of simplified identified vehicles.
Thus, it is possible to capture nonlinear aspects (including powertrain and
tires) that individual modeling may not be able to do efficiently. The results
show the potential of the proposed approach to provide nonlinear control laws
effectively. It was possible to increase the accuracy (up to 40%) in terms of
error-based metrics while having lesser computational effort (reduction by up
to 88%) than conventional predictive controllers. Particularly, simulated and
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experimental data were used to verify the potential of the proposed methods.
Lastly, regarding the hybrid approach, the results showed the potential

to enhance the prediction of vehicle data reducing the effects of neglected
modeling aspects (accuracy increased by up to 28%). Moreover, the proposed
method can be easily adaptable and reformulated by modifying the vehicle
and the black-box models according to the required application. Particularly
in this case study, the proposed approach may lead to significant implications,
specifically considering racing conditions where the vehicle’s limits become
critical.

Even though this work was focused on the case of RBF and MLP
neural architectures for machine learning and ARX/NARX models for system
identification approaches, due to their characteristics and properties, the
methodologies proposed herein are flexible concerning the definition of the
model. It is possible to change/tune either the ANN architectures or black-box
models. This flexibility may result in better results for specific cases, depending
on the characteristics of the required system. In addition, the predictive
controllers can also be flexible and adjusted depending on the controllable
variables and model configurations.

Overall, the proposed approaches regarding data-driven models applied
to vehicle dynamics are an alternative way to ensure the capturing of nonlin-
ear aspects in public road and race conditions. Moreover, the results presented
herein indicate that the proposed methodologies inspire their use with MPC
controllers, which require accurate and reliable models to ensure the compro-
mise between path-tracking accuracy and computational costs.

9.1
Publications

During the development of the present thesis, the following papers were
published in conference proceedings:

1. SOUSA, L. C.; AYALA, H. V. H. Slip Estimation with Receding-
horizon Strategy for Off-road Vehicles with Nonlinear Tire In-
teractions. In: 28th Mediterranean Conference on Control and Automa-
tion, 2020.

2. SOUSA, L. C.; AYALA, H. V. H. Nonlinear Model Approximation
Methods for Off-road Vehicle Path Tracking with MPC. In:
XXIII Congresso Brasileiro de Automática, 2020.
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3. SOUSA, L. C.; AYALA, H. V. H. Nonlinear Tire Model Ap-
proximation Using Artificial Neural Networks. In: XV Simpósio
Brasileiro de Automação Inteligente, 2021.

4. LAGO, A. W. C.; SOUSA, L. C.; LOPES, F. R.; SOUSA, D. H.
B.; AYALA, H. V. H., MEGGIOLARO, M. A. (2022). Identificação
usando método não linear de um sistema de posicionamento.
In: XXIV Congresso Brasileiro de Automática, 2022.

The following paper was published in the journal IEEE Access:

1. SOUSA, L. C.; AYALA, H. V. H. Nonlinear Tire Model Approxi-
mation Using Machine Learning for Efficient Model Predictive
Control. IEEE Access, 10:107549-107562, 2022.

Moreover, the following two papers are in the final stages of production
for future journal submission:

1. SOUSA, L. C.; AYALA, H. V. H. Lateral model identification using
multi-ARX models for efficient model predictive control. Future
submission to IEEE Transactions on Vehicular Technology.

2. SOUSA, L. C.; AYALA, H. V. H. Hybrid physics-based and black-
box data-driven nonlinear identification of vehicle dynamics.
Future submission to IEEE Transactions on Control Systems Technology.

9.2
Future works

The results of this thesis highlight several points for future improvement
of this work to build more accurate and computationally efficient models. There
is a need to build models to improve vehicle modeling and control. Thus, SYSID
and ML techniques become important to capture nonlinear aspects present in
tire efforts, public roads, and race conditions. In future works, the following
topics will be pursued concerning the procedures for predictive model control
and system identification suggested in this work:

– To consider more vehicle states and restrictions to ensure comfort to the
passengers and the stability of the vehicle, e.g., the slip angle and yaw
rate [31, 73];

– To implement different cost function architectures to enhance path-
tracking control as the switched cost functions, in which a switching
criterion is used to shift between different vehicle models [18, 28].
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– To apply online estimation by means of recursive algorithms [147] and
Neural Network-based learned dynamic model [18] to increase the relia-
bility of the vehicle identified model;

– To apply online estimation by means of recursive algorithms [147] and
Neural Network-based learned dynamic model [18] to increase the relia-
bility of the vehicle identified model;

– To consider external disturbances affecting the system and uncertainties
regarding the vehicle properties [148, 149] to ensure stability in control
applications;

– To test the machine learning algorithms in the testbed platform in order
to verify the implementation viability, effectiveness, and robustness in
real-time;

– To use smarter initialization techniques and different solvers. The trajec-
tory optimization problem is formulated using an NLP with discretized
variables and constraints. It is an easy way to implement computation-
ally, and several numerical solvers are available to solve the optimiza-
tion problem. However, the NLP procedure suffers from issues related
to gradient-based approaches, such as 1) the sensibility regarding the
changes in initial guess and 2) highly prone to local minima;

The following can be cited in the scope of the hybrid approach using
black-box identification. A more precise vehicle model that includes nonlin-
ear aspects, including tire aspects [18, 68], and motor/brake characteristics
[37, 133], can be established. In addition, accurate vehicle models derived from
black-box architectures [43, 44] can also be used as the main function to be
applied to Eq. (8-2). The latter is in line with the most recent research for
physically-inspired machine learning modeling [106], which will significantly
impact vehicle handling modeling for autonomous vehicle applications. An-
other possibility concerning vehicle models derived from NARX models is es-
tablishing a similar procedure adopted in Section 7.1.3 by varying the NARX
parameters to find the best case for the combination of na, nb, and ne based
on error-based metrics. The procedure should be tested using different data
sets from other racetracks also available in reference [105] aiming for reliability
and robustness. Considering control applications, adopting hybrid frameworks
as an approximation from the vehicle models to derive efficient and accurate
control laws could permit real-time implementation. Recent works use ANNs
with MPC [3, 18, 81]. Additional topics for future consideration include ap-
plying the proposed approach with model predictive control considering the
driver’s commands input [150].
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A
Case studies

The present appendix is devoted to introducing the case studies used in
the context of system identification. As the present thesis is concerned with
the overall procedure in the scope of system identification, the description of
the case studies, and the exposition of the results are separated to make the
text more fluid.

A.1
A Flexible robotic arm example

The system identification methodology has been acquiring great impor-
tance in the robotics, since the parameters involved in robot dynamics depend
of the environment in which they are located, such as traffic on rigid or de-
formable soils, gravity, ambient temperature, among others [151].
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Figure A.1: Input (upper) and output (lower) for the flexible robotic arm
example.

Thus, a reliable model of the various components of the dynamics of a
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robot must be defined. The present study case is related to a robotic arm
installed in an electric motor, having the torque applied to the structure as
the input of the system and the acceleration in the flexible arm as the output
data (Fig. A.1). The data was obtained from the DaISy database [152] with
real measurements carried out by the university of KU Leuven in Belgium.

A.2
Narendra and Pathasarathy’s example

One of the first papers presented with the application of ANNs to
system identification was the one proposed by [153]. The authors proposed
the identification of the following system

y(t) = F [y(t− 1), y(t− 2), y(t− 3), u(t− 1), u(t− 2)] . (A-1)

with
F (x1, x2, x3, x4, x5) = x1x2x3x5(x3 − 1) + x4

1 + x2
2 + x2

3
. (A-2)

Considering the estimation phase, similar to that presented by [41], the
PRBS input signal comprises 800 samples between the range [−1,1] with a
length of 4 samples. In addition, each window is multiplied by uniformly
distributed random values in the range [0, 1]. The estimation data is shown in
Fig. A.2
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Figure A.2: Input (upper) and output (lower) for the Narendra and
Parthasarathy’s example (estimation phase).
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Considering the validation data (Fig. A.3), the input and output signals,
with 800 samples, are obtained from Eq. A-3 [153] as follows

u(t) =


sin

(2πt
250

)
, if t ≤ 500

0.8 · sin
(2πt

250

)
+ 0.2 · sin

(2πt
25

)
, if t > 500

(A-3)
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Figure A.3: Input (upper) and output (lower) for the Narendra and
Parthasarathy’s example (validation phase).

A.3
Cornering force example

The present case study comprises a dataset obtained from the Cooper
Tires technical data resources, particularly the 2017 INDY Lights force-
moment data [154]. Here, data regarding self-aligning torque and cornering
force as a function of the slip angle are established.

The data used specifically for this case study relies on the cornering force
considering that a load over the tire equals 1,471 N and a camber angle equals
0 deg. In addition, the data were dimensionless to facilitate the procedure. Fig.
A.4 presents the dimensionless data.
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Figure A.4: Dimensionless cornering force data.

A.4
Electro-mechanical positioning system (EMPS) example

The Electro-Mechanical Positioning System (EMPS) is a standard drive
system configuration for the prismatic joint of robots or machine tools. The
present case study comprises a dataset obtained from the study developed by
the reference [155].

The EMPS system is driven by a proportional-derivative (PD) controller.
A dSPACE digital control system records all measurements with a sampling
frequency of 1kHz for approximately 25 s. On the other hand, the joint
position is recorded by another encoder with a resolution of 12,500 counts per
revolution. Since the encoder works in quadrature count mode, its resolution is
about 50,000 counts per revolution and ensures a high quality of the measured
data.

From Newton’s law, the EMPS system can be modeled as follows

τidm(t) = Mq̈(t) + Ff q̇(t) + Fcsign(q̇(t) + offset , (A-4)
where q, q̇, and q̈ are the joint position, velocity and acceleration, respectively;
τidm is the joint force/torque; M is the inertia of the arm; F c and F v

are respectively the Coulomb and viscous friction; offset is an offset of
measurements regarding τidm. The available data are the motor’s position and
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Figure A.5: Measurements acquired during EMPS experiments. (a) Force, (b)
position, and (c) velocity.

voltage, reference position, and time. Particularly, for this case study, from the
position data is possible to derive velocity and acceleration data. On the other
hand, the motor voltage (ν) can be linked to τidm by the following equation
[155]

τidm(t) = gτν , (A-5)
where gτ is the drive gain of the EMPS. Fig. A.5 shows the data used in this
case study.

A.5
Inverted pendulum example

The present case study relies on the classic swing-up case study of an
inverted pendulum. An inverted pendulum is a pendulum type that has its
CG above its pivot point. It is a dynamic system considered unstable, which
will fall over without support.

Fig. A.6 presents a simplified scheme for a balance system consisting of
an inverted pendulum on a cart. In order to model this dynamic system, state
variables are set representing the position and velocity of the base, p and ṗ,
as well as the angle and angular rate of the system over the base, θ and θ̇.
Moreover, u represents the horizontal force (F ) applied at the base. Finally,
the motion equations regarding the dynamic pendulum system is given by the
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following [156]

Figure A.6: Inverted pendulum example.

(M +m)p̈−mlcosθθ̈ + cṗ+mlsinθθ̇2 = u , (A-6)

−mlcosθp̈+ (J +ml2)θ̈ + γθ̇ −mglsinθ = 0 , (A-7)

where M is the mass of the base, m and J are the mass and moment of inertia
of the system to be balanced, respectively; l is the distance from the base to
the CG of the system, c and γ are coefficients regarding viscous friction, and
g is the acceleration due to gravity.
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