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Abstract

Reys, Luciana dos Santos Netto dos; Silva, Eduardo Costa da (Advisor);
Leite, Antonio Candea (Co-Advisor). Intelligent biomass estimation
in pastures using RGB-based vegetation indices from UAV
imagery . Rio de Janeiro, 2022. 142p. Dissertação de Mestrado –
Departamento de Engenharia Elétrica, Pontifícia Universidade Católica
do Rio de Janeiro.

The correct management of pastures in agricultural regions plays a
fundamental role in the production itself, in the prevention of plant biomass
waste and the release of greenhouse gases (GHG). In addition, it is necessary
to avoid inappropriate movement of the herd between pastures, as this is a
time-consuming process and can be stressful for the animal. The success of this
management requires an efficient assessment of the plant resources. The studies
developed for this purpose are directly related to the amount estimation of
biomass in a specific region of the pasture, because, in practice, it is not carried
out accurately, due to the difficulty of measurement throughout the field.
This work aims to develop a low-cost biomass estimation methodology, based
on regression models that correlate the most relevant input features for the
application with the actual density of the plantation, measured in g/m2. For the
features, the height of the forage grass was measured and the vegetation indexes
based on RGB were calculated from images of unmanned aerial vehicles (UAV).
Linear, nonlinear regression (MNLR), artificial neural networks (ANN) based
on multi-layer perceptron (MLP) and the combination of all models generated
(stacking ensemble) were the methodologies tested in order to achieve the
best correlation. Satisfactory results were achieved using models of neural
networks with two layers and using stacking ensemble methodology, reaching a
RMSE of 31.76 g/m2, MAPE of 13.35% and R-Squared of 0.9. Therefore, the
proposed methodology may become a promising and affordable solution for
plant biomass estimation toward efficient and sustainable herd management.

Keywords
Pasture Biomass; Regression Models; Artificial Intelligence; Neural

Networks; RGB-based Vegetation Indices.
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Resumo

Reys, Luciana dos Santos Netto dos; Silva, Eduardo Costa da; Leite,
Antonio Candea. Estimador inteligente de biomassa em pastos
usando índices de vegetação a partir de imagens capturadas
por VANTs. Rio de Janeiro, 2022. 142p. Dissertação de Mestrado –
Departamento de Engenharia Elétrica, Pontifícia Universidade Católica
do Rio de Janeiro.

O gerenciamento correto das pastagens em regiões agropecuárias tem
papel fundamental na própria produção, na prevenção ao desperdício da
biomassa vegetal e a liberação de gases de efeito estufa (GEE). Além disso,
é necessário evitar o movimento inapropriado do rebanho entre pastos, pois
este é um processo demorado e pode ser estressante para o animal. O sucesso
desta gestão requer uma avaliação eficiente dos recursos da plantação. Os
estudos desenvolvidos com esta finalidade tem relação direta com a estimativa
da quantidade de biomassa em uma região específica da pastagem, pois, na
prática, ela não é realizada de forma precisa, devido à dificuldade de medição
em toda a área delimitada. Este trabalho tem como objetivo desenvolver
uma metodologia de estimativa de biomassa de baixo custo, baseada em
modelos de regressão que correlacionem os atributos de entrada mais relevantes
para a aplicação com o real peso da plantação, medido em g/m2. Para os
atributos, foi medida a altura da grama forrageira e calculados os índices
de vegetação baseados em RGB a partir de imagens de veículos aéreos não
tripulados (VANTs). Como metodologia, utilizou-se regressões lineares, não
lineares, redes neurais artificiais baseados em perceptrons de múltiplas camadas
e a combinação de todos os modelos gerados (stacking ensemble). Foram
alcançados resultados satisfatórios utilizando modelos de redes neurais com
ainda duas camadas e com a metodologia de empilhamento de modelos,
alcançando um RMSE de 31.76 g/m2, MAPE de 13.35% e R2 de 0.9. Portanto,
a metodologia proposta pode se tornar uma solução promissora e acessível para
a estimativa de biomassa vegetal para uma gestão eficiente e sustentável do
rebanho.

Palavras-chave
Biomassa de pasto; Modelos de regressão; Inteligência artificial; Redes

neurais; Índices de vegetação baseados em RGB.

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Table of contents

1 Introduction 21
1.1 Motivation 22
1.2 State of the Art 24
1.3 Goals 25
1.4 Text Structure 26

2 Materials and methods 28
2.1 Data Acquisition 28
2.2 Analyzed Inputs 35
2.2.1 Red, Green and Blue Channels (RGB) 36
2.2.2 Vegetation Indices (VI) 38
2.2.3 Plant Height (PH) 40
2.2.4 Altitude of Drone Flight (DF) 40
2.2.5 Green Intensity (GI) 41
2.2.6 Solar Radiation (SR) 43
2.3 Analyzed Outputs 43

3 Methodology 46
3.1 Linear Regression Algorithm 47
3.2 Nonlinear Regression Algorithm 48
3.3 MLP Regression Algorithm 49
3.4 Stacking Ensemble Algorithm 52
3.5 Performance Metrics 53

4 Results and Discussion 54
4.1 Linear Regression 54
4.1.1 Separate inputs 55
4.1.1.1 RGB-based 55
4.1.1.2 Features 57
4.1.2 Combined inputs 59
4.1.2.1 Combinations of R, G and B 59
4.1.2.2 RGB-based and PH 61
4.1.2.3 RGB-based and DF 64
4.1.2.4 RGB-based and GI 68
4.1.2.5 RGB-based and SR 71
4.1.3 Comparative Results 75
4.2 Nonlinear Regression 77
4.2.1 Separate inputs 77
4.2.1.1 RGB-based 77
4.2.1.2 Features 80
4.2.2 Combined inputs 82
4.2.2.1 Combinations of R, G and B 82
4.2.2.2 RGB-based and PH 84
4.2.2.3 RGB-based and DF 87

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



4.2.2.4 RGB-based and GI 91
4.2.2.5 RGB-based and SR 94
4.2.3 Comparative Results 98
4.3 MLP Regression 100
4.3.1 Layer Sweep for Separate Inputs 100
4.3.1.1 RGB-based 101
4.3.1.2 Features 103
4.3.2 Layer Sweep for Combined inputs 105
4.3.2.1 Combinations of R, G and B 105
4.3.2.2 RGB-based and PH 107
4.3.2.3 RGB-based and DF 110
4.3.2.4 RGB-based and GI 114
4.3.2.5 RGB-based and SR 118
4.3.3 Statistical analysis of the best MLP configurations 122
4.4 Stacking Regression 127
4.4.1 Layer Sweep 128
4.4.2 Statistical analysis of the best configurations for Stacking 130
4.5 Comparative results 132

5 Conclusion and Future Work 134
5.1 Future Works 136

6 Bibliography 138

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



List of figures

Figure 1.1 Methods of measuring the height of the pasture, using
a ruler or a plate meter. 22

Figure 1.2 Drones doing tasks in the field. 23

Figure 2.1 Location of the study area for biomass estimation. 28
Figure 2.2 Top view of the forage captured by the UAV at

different heights: (a) 5 m; (b) 10 m; (c) 15 m; (d) 20 m; (e) 30 m;
and (f) 50 m. 29

Figure 2.3 Drone flying over a hill, where h1 > h2 > h3. 30
Figure 2.4 Front view of the drone flying at different heights. 31
Figure 2.5 Similarity of triangles to calculate GSD parameter. 32
Figure 2.6 Processed images at different heights: (a) 5 m; (b) 10 m;

(c) 15 m; (d) 20 m; (e) 30 m; and (f) 50 m. 34
Figure 2.7 Processed images at different heights respecting its

proportion: (a) 5 m; (b) 10 m; (c) 15 m; (d) 20 m; (e) 30 m; and
(f) 50 m. 35

Figure 2.8 Example of Original Picture. 36
Figure 2.9 Representation of the image using arrays of channels

separately: (a) Red,; (b) Green; and (c) Blue. 37
Figure 2.10 Histogram of the image shown in Fig. 2.8. 41
Figure 2.12 Comparison between indirect and direct light images. 42
Figure 2.13 Histogram of Green Biomass. 45

Figure 3.1 Block Diagram of the work process. 46
Figure 3.2 Complete Work Diagram. 47
Figure 3.3 Block Diagram of the Stacking Ensemble Method. 53

Figure 4.1 Best Linear Regression Performance for the RGB-
based as Separate Inputs: (a) Red, (b) Green, (c) Blue, (d)
RGBVI, (e) GLI, (f) VARI, (g) NGRDI, (h) ExG, (i) ExGR. 57

Figure 4.2 Best Linear Regression Performance for the features
as Separate Inputs: (a) PH, (b) DF, (c) GI and (d) SR. 58

Figure 4.3 Best Linear Regression Performance for Combined
Inputs between R, G and B: (a) R and G, (b) R and B, (c) G
and B, and (d) R, G and B 60

Figure 4.4 Best Linear Regression Performance using as inputs
combinations of the RGB channels and VIs with the plant
height (PH): (a) R and PH, (b) G and PH, (c) B and PH, (d)
R, G and PH, (e) R, B and PH, (f) G, B and PH, (g) R, G, B
and PH, (h) RGBVI and PH, (i) GLI and PH, (j) VARI and
PH, (k) NGRDI and PH, (l) ExG and PH, and (m) ExGR and
PH. 63

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Figure 4.5 Best Linear Regression Performance using as inputs
combinations of the RGB channels and VIs with the altitude
of the drone flight (DF): (a) R and DF, (b) G and DF, (c) B
and DF, (d) R, G and DF, (e) R, B and DF, (f) G, B and DF,
(g) R, G, B and DF, (h) RGBVI and DF, (i) GLI and DF, (j)
VARI and DF, (k) NGRDI and DF, (l) ExG and DF, and (m)
ExGR and DF. 67

Figure 4.6 Best Linear Regression Performance using as inputs
combinations of the RGB channels and VIs with the green
intensity (GI): (a) R and GI, (b) G and GI, (c) B and GI, (d)
R, G and GI, (e) R, B and GI, (f) G, B and GI, (g) R, G, B
and GI, (h) RGBVI and GI, (i) GLI and GI, (j) VARI and GI,
(k) NGRDI and GI, (l) ExG and GI, and (m) ExGR and GI. 70

Figure 4.7 Best Linear Regression Performance using as inputs
combinations of the RGB channels and VIs with the solar
radiation (SR): (a) R and SR, (b) G and SR, (c) B and SR,
(d) R, G and SR, (e) R, B and SR, (f) G, B and SR, (g) R,
G, B and SR, (h) RGBVI and SR, (i) GLI and SR, (j) VARI
and SR, (k) NGRDI and SR, (l) ExG and SR, and (m) ExGR
and SR. 74

Figure 4.8 Best Nonlinear Regression Performance for the RGB-
based as Separate Inputs: (a) Red, (b) Green, (c) Blue, (d)
RGBVI, (e) GLI, (f) VARI, (g) NGRDI, (h) ExG, (i) ExGR,
(j) PH, (k) DF, (l) GI and (m) SR 79

Figure 4.9 Best Nonlinear Regression Performance for the fea-
tures as Separate Inputs: (a) PH, (b) DF, (c) GI and (d) SR 81

Figure 4.10 Best Nonlinear Regression Performance for Combined
Inputs between R, G and B: (a) R and G, (b) R and B, (c) G
and B, and (d) R, G and B 83

Figure 4.11 Best Nonlinear Regression Performance using as inputs
combinations of the RGB channels and VIs with the plant
height (PH): (a) R and PH, (b) G and PH, (c) B and PH, (d)
R, G and PH, (e) R, B and PH, (f) G, B and PH, (g) R, G, B
and PH, (h) RGBVI and PH, (i) GLI and PH, (j) VARI and
PH, (k) NGRDI and PH, (l) ExG and PH, and (m) ExGR and
PH. 86

Figure 4.12 Best Nonlinear Regression Performance using as inputs
combinations of the RGB channels and VIs with the altitude
of the drone flight (DF): (a) R and DF, (b) G and DF, (c) B
and DF, (d) R, G and DF, (e) R, B and DF, (f) G, B and DF,
(g) R, G, B and DF, (h) RGBVI and DF, (i) GLI and DF, (j)
VARI and DF, (k) NGRDI and DF, (l) ExG and DF, and (m)
ExGR and DF. 90

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Figure 4.13 Best Nonlinear Regression Performance using as inputs
combinations of the RGB channels and VIs with the green
intensity (GI): (a) R and GI, (b) G and GI, (c) B and GI, (d)
R, G and GI, (e) R, B and GI, (f) G, B and GI, (g) R, G, B
and GI, (h) RGBVI and GI, (i) GLI and GI, (j) VARI and GI,
(k) NGRDI and GI, (l) ExG and GI, and (m) ExGR and GI. 93

Figure 4.14 Best Nonlinear Regression Performance using as inputs
combinations of the RGB channels and VIs with the solar
radiation (SR): (a) R and SR, (b) G and SR, (c) B and SR,
(d) R, G and SR, (e) R, B and SR, (f) G, B and SR, (g) R,
G, B and SR, (h) RGBVI and SR, (i) GLI and SR, (j) VARI
and SR, (k) NGRDI and SR, (l) ExG and SR, and (m) ExGR
and SR. 97

Figure 4.15 Best performance, using Layer Sweep in MLP for the
RGB-based as Separate Inputs: (a) Red, (b) Green, (c) Blue,
(d) RGBVI, (e) GLI, (f) NGRDI, (h) ExG, (i) ExGR. 102

Figure 4.16 Best performance, using Layer Sweep in MLP for
Separate Inputs: (a) PH, (b) DF, (c) GI, (d) SR. 104

Figure 4.17 Best performance, using MLP regression with Layer
Sweep, for Combined Inputs between R, G and B: (a) R and
G, (b) R and B, (c) G and B, and (d) R, G and B. 106

Figure 4.18 Best Performance MLP with Layer Sweep, using as
inputs combinations of the RGB channels and VIs with the
plant height (PH): (a) R and PH, (b) G and PH, (c) B and
PH, (d) R, G and PH, (e) R, B and PH, (f) G, B and PH,
(g) R, G, B and PH, (h) RGBVI and PH, (i) GLI and PH, (j)
VARI and PH, (k) NGRDI and PH, (l) ExG and PH, and (m)
ExGR and PH. 109

Figure 4.19 Best Performance MLP with Layer Sweep, using as
inputs combinations of the RGB channels and VIs with the
altitude of drone flight (DF): (a) R and DF, (b) G and DF,
(c) B and DF, (d) R, G and DF, (e) R, B and DF, (f) G, B
and DF, (g) R, G, B and DF, (h) RGBVI and DF, (i) GLI
and DF, (j) VARI and DF, (k) NGRDI and DF, (l) ExG and
DF, and (m) ExGR and DF. 113

Figure 4.20 Best Performance MLP with Layer Sweep, using as
inputs combinations of the RGB channels and VIs with the
pixel’s intensity of green (GI): (a) R and GI, (b) G and GI,
(c) B and GI, (d) R, G and GI, (e) R, B and GI, (f) G, B and
GI, (g) R, G, B and GI, (h) RGBVI and GI, (i) GLI and GI,
(j) VARI and GI, (k) NGRDI and GI, (l) ExG and GI, and
(m) ExGR and GI. 117

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Figure 4.21 Best Performance MLP with Layer Sweep, using as
inputs combinations of the RGB channels and VIs with the
solar radiation (SR): (a) R and SR, (b) G and SR, (c) B and
SR, (d) R, G and SR, (e) R, B and SR, (f) G, B and SR, (g) R,
G, B and SR, (h) RGBVI and SR, (i) GLI and SR, (j) VARI
and SR, (k) NGRDI and SR, (l) ExG and SR, and (m) ExGR
and SR. 121

Figure 4.22 Best Performance MLP after 30 runs for each of the
best cases identified in the Layer Sweep subsection, using as
inputs: (a) NGRDI, (b) SR, (c) R, G and B, (d) G, B and PH,
(e) R, G, B and PH, (f) VARI and PH, (g) R, G and DF, (h)
R, G, B and DF, (i) ExGR and DF, (j) R, G, B and GI, (k)
VARI and GI, (l) NGRDI and GI, (m) R, G and SR, (n) ExG
and SR, (o) ExGR and SR. 125

Figure 4.23 Performance of the 3 Best Stacking Ensemble models
with Layer Sweep, using as inputs the outputs of the Linear,
Nonlinear and MLP Regressions. 129

Figure 4.24 Best Performance Stacking Ensemble models among
the 30 runs executed for each of the 3 best cases identified in
the Layer Sweep subsection. 131

Figure 5.1 Field divided in different spots, of 1 squared meter each.136

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



List of tables

Table 2.1 GSDw results. 33
Table 2.2 Number of Images Captured by the UAV. 34
Table 2.3 Upper and Lower Bounds of the Dataset. 37
Table 2.4 Vegetation Indices Equations. 39
Table 2.5 Upper and Lower Bounds of the Vegetation Indices. 40
Table 2.6 Upper and Lower Bounds of Plant Height, measured in

cm. 40
Table 2.7 Upper and Lower Bounds of Green Channel Intensity. 43
Table 2.8 Upper and Lower Bounds of Solar Radiation. 43
Table 2.9 List of possible outputs. 44
Table 2.10 Analyzed Output Data (in g/m2). 44

Table 3.1 Varied Hyperparameters. 51
Table 3.2 Fixed Hyperparameters. 51

Table 4.1 Analysis of RMSE performance for the RGB-based as
separate inputs using Linear Regression 55

Table 4.2 Results for the RGB-based as separate inputs using
Linear Regression 57

Table 4.3 Analysis of RMSE performance for the features as
separate inputs, using Linear Regression 58

Table 4.4 Results for the features as separate inputs using Linear
Regression 59

Table 4.5 Analysis of RMSE performance for different combina-
tions of the RGB channels 60

Table 4.6 Results for combined R, G and B using Linear Regression 60
Table 4.7 Analysis of RMSE performance using Linear Regres-

sion, for combinations of the RGB channels and VIs with PH. 61
Table 4.8 Results of different performance metrics for the devel-

oped Linear Regression models, using as inputs combinations
of the RGB channels and VIs with the plant height (PH). 64

Table 4.9 Analysis of RMSE performance using Linear Regres-
sion, for combinations of the RGB channels and VIs with DF. 65

Table 4.10 Results of different performance metrics for the devel-
oped Linear Regression models, using as inputs combinations
of the RGB channels and VIs with the altitude of the drone
flight (DF). 67

Table 4.11 Analysis of RMSE performance using Linear Regres-
sion, for combinations of the RGB channels and VIs with GI. 68

Table 4.12 Results of different performance metrics for the devel-
oped Linear Regression models, using as inputs combinations
of the RGB channels and VIs with the green intensity (GI). 71

Table 4.13 Analysis of RMSE performance using Linear Regres-
sion, for combinations of the RGB channels and VIs with SR. 72

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Table 4.14 Results of different performance metrics for the devel-
oped Linear Regression models, using as inputs combinations
of the RGB channels and VIs with the solar radiation (SR). 74

Table 4.15 Best results for Linear Regression. 75
Table 4.16 Analysis of RMSE performance for the RGB-based as

separate inputs using Nonlinear Regression. 78
Table 4.17 Results for the RGB-based as separate inputs using

Nonlinear Regression. 80
Table 4.18 Analysis of RMSE performance for the features as

separate inputs, using Nonlinear Regression. 80
Table 4.19 Results for the features as separate inputs, using

Nonlinear Regression. 81
Table 4.20 Analysis of RMSE performance for different combina-

tions of the RGB channels, using Nonlinear Regression. 82
Table 4.21 Results for combined R, G and B using Nonlinear

Regression 83
Table 4.22 Analysis of RMSE performance using Nonlinear Re-

gression, for combinations of the RGB channels and VIs with
PH. 84

Table 4.23 Results of different performance metrics for the devel-
oped Nonlinear Regression models, using as inputs combina-
tions of the RGB channels and VIs with the plant height (PH). 87

Table 4.24 Analysis of RMSE performance using Nonlinear Re-
gression, for combinations of the RGB channels and VIs with
DF. 88

Table 4.25 Results of different performance metrics for the devel-
oped Nonlinear Regression models, using as inputs combina-
tions of the RGB channels and VIs with the altitude of the
drone flight (DF). 90

Table 4.26 Analysis of RMSE performance using Nonlinear Re-
gression, for combinations of the RGB channels and VIs with
GI. 91

Table 4.27 Results of different performance metrics for the devel-
oped Nonlinear Regression models, using as inputs combina-
tions of the RGB channels and VIs with the green intensity
(GI). 94

Table 4.28 Analysis of RMSE performance using Nonlinear Re-
gression, for combinations of the RGB channels and VIs with
SR. 95

Table 4.29 Results of different performance metrics for the devel-
oped Nonlinear Regression models, using as inputs combina-
tions of the RGB channels and VIs with the solar radiation
(SR). 97

Table 4.30 Best results for Nonlinear Regression. 98
Table 4.31 Analysis of RMSE performance for the RGB-based as

separate inputs, using Layer Sweep in MLP Regression. 101
Table 4.32 Results for the RGB-based as separate inputs using

MLP Regression with Layer Sweep. 103

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Table 4.33 Analysis of RMSE performance for the features as
separate inputs, using Layer Sweep in MLP Regression. 103

Table 4.34 Results for the features as separate inputs, using MLP
Regression with Layer Sweep. 104

Table 4.35 Analysis of RMSE performance for different combina-
tions of the RGB channels, using MLP Regression with Layer
Sweep. 105

Table 4.36 Results for different combinations of the RGB channels,
using MLP Regression with Layer Sweep. 106

Table 4.37 Analysis of RMSE performance using MLP Regression
with Layer Sweep, for combinations of the RGB channels and
VIs with PH. 107

Table 4.38 Results of different performance metrics for the MLP
Regression model’s associated with the best RMSEs obtained
with Layer Sweep, using as inputs combinations of the RGB
channels and VIs with the plant height (PH). 110

Table 4.39 Analysis of RMSE performance using MLP Regression
with Layer Sweep, for combinations of the RGB channels and
VIs with DF. 111

Table 4.40 Results of different performance metrics for the devel-
oped MLP Regression model’s associated with the best RM-
SEs obtained with Layer Sweep, using as inputs combinations
of the RGB channels and VIs with the altitude of drone flight
(DF). 114

Table 4.41 Analysis of RMSE performance using MLP Regression
with Layer Sweep, for combinations of the RGB channels and
VIs with GI. 115

Table 4.42 Results of different performance metrics for the devel-
oped MLP Regression model’s associated with the best RM-
SEs obtained with Layer Sweep, using as inputs combinations
of the RGB channels and VIs with the pixel’s intensity of green
(GI). 118

Table 4.43 Analysis of RMSE performance using MLP Regression
with Layer Sweep, for combinations of the RGB channels and
VIs with SR. 119

Table 4.44 Results of different performance metrics for the devel-
oped MLP Regression model’s associated with the best RM-
SEs obtained with Layer Sweep, using as inputs combinations
of the RGB channels and VIs with the solar radiation (SR). 121

Table 4.45 Configurations of the MLP Regression used for the 30
runs analysis. 122

Table 4.46 Analysis of RMSE performance using MLP Regression,
after running 30 times each configuration. 123

Table 4.47 Results of different performance metrics for the devel-
oped MLP Regression model’s associated with the best RM-
SEs, considering the results from the 30 runs executed for each
one of the input’s configurations analyzed. 126

Table 4.48 Algorithms used as inputs of the Stacking model. 127

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Table 4.49 Analysis of RMSE performance using Stacking Ensem-
ble Regression, after Layer Sweep. 128

Table 4.50 Top 3 developed Stacking Ensemble Regression models,
considering the RMSEs obtained with Layer Sweep. 129

Table 4.51 Configurations of the 3 best results in Layer Sweep. 130
Table 4.52 Analysis of 3 best RMSE performance using Stacking

Ensemble Regressions, after running 30 times each configuration.130
Table 4.53 Results of different performance metrics for the devel-

oped Stacking ensemble Regression model’s associated with
the best RMSEs, considering the results from the 30 runs ex-
ecuted for each one of the 3 selected configurations. 131

Table 4.54 Best results of the Analyzed Regression Methods. 132

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



List of Abreviations

ANN - Artificial Neural Networks

AU - Animal Unit

B - Blue

BNF - Biological Nitrogen Fixation

CMOS - Complementary metal-oxide-semiconductor

CNN - Convolutional Neural Networks

CO2 - Carbon dioxide

CSM - Crop Surface Models

DL - Deep Learning

ELM - Extreme Learning Machine

Embrapa - Empresa Brasileira de Pesquisa Agropecuária (Brazilian Agricul-

tural Research Corporation)

EVI - Enhanced Vegetation Index

ExG - Excess of Green

ExGR - Excess of Green minus Excess of Red

ExR - Excess of Red

G - Green

GDP - Gross Domestic Product

GHG - Greenhouse Gases

GLI - Green Leaf Index

GSD - Ground Sample Distance

IA - Artificial Intelligence

LiDAR - Light Detection And Ranging

MAPE - Mean Absolute Percentage Error

MLP - Multi-Layer Perceptron

MLR - Multiple Linear Regression

MNLR - Multiple Non-linear Regression

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



N2 - Nitrogen

NDVI - Normalized Difference Vegetation Index

NGRDI - Normalized Green-Red Difference Index

NN - Neural Networks

PA - Precision Agriculture

PH - Plant Height

R - Red

RF - Random Forest

RGBVI - Red, Green, Blue Vegetation Index

RMSE - Root Mean Squared Error

RNN - Recurrent Neural Network

SSR - Sum of Squares Regression

SST - Sum of Squares Total

SVR - Support Vector Regression

UAV - Unmanned aerial vehicle

VARI - Visible Atmospherically Resistant Index

VI - Vegetation Index

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Winner is not the one who always wins, but
the one who never stops fighting.

Unknown author.

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



1
Introduction

Agricultural activities such as livestock and cattle raising in open fields
have been the essence of food production by humans [1] from the very beginning
of civilization and domestication of animals. In this context, agriculture has
always been a very relevant sector in Brazil, as it was responsible for populating
the countryside together with sugar cane and coffee production [2]. Farming
was one of the first economic activities in Brazil, representing more than
20% of the national GDP (Gross Domestic Product) [3]. The development of
Brazilian agriculture has also contributed to the mechanization of crops, which
consequently, boosted the machinery industry, such as those needed for land
preparation, harvesting, slaughtering and others. Climatic and soil conditions
are the main factors that favored farming and cattle-raising in the countryside,
since there was also a significant perspective of consumption in the domestic
market.

A high forage yield is required to attend animal’s demand, hence a
forage genus which is rainfed and susceptible to seasonal soil water stresses
is essential to guarantee the productivity in Brazil. For this reason and due to
its high tolerance to low fertility soils, the genus Brachiaria comprises 85% of
all planted forage area in Brazil [4].

As population grows indefinitely, the urgency for providing more food is
inevitable. Therefore, livestock systems evolved drastically during thousands
of years, causing an alarming raise in the production of methane and damaging
the ozone layer [5]. The optimization of sustainable livestock production
became an imperative subject of study to avoid this trend, despite all challenges
it may face, such as population growth, climate change, and farmers’ lack of
awareness. One way to reduce the massive production of methane in herd
production is by adding N fertilizers or N2 fixation into the soil of Brachiaria
pastures. Although studies have shown that CO2 emission is significantly
reduced and Brachiaria can grow vigorously for a few years with Nitrogen
fertilizers, the simple addition of nitrogen to the soil can be really expensive
and also aggressive [6]. Another methane mitigation method is to apply feed
supplements to the herd, which can also be too expensive and time-consuming.
On the other hand, the introduction of legumes into the grasses as a forage
consortium provides technically viable and cost-effective pasture alternatives.
If legumes are planted in the right amount, these plants play the same role
as Nitrogen fertilizers, but more natural and organically [7]. There are several
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different ways and species to implement forage legumes, but an important
factor is to keep the rate between Brachiaria and legume approximately still
during a determined season. In this case, it is important to estimate the total
forage of a pasture in order to determine the rate between the types of plant
species in a delimited region.

The actual estimate of biomass to feed the herd has always been an issue
in agro-industry development. In big farms, the herd shifting between pastures
can be laborious and stressing to the animals, as their adaptability to new
environments takes time. During the past years, there have been an increased
demand for automatic techniques to measure biomass with high accuracy in
a more practical and easier way [8]. The optimal management of the herd in
pastures can lead to the correct maintenance of population and productivity
of the species, contributing to compliance with the proper amount of nutrients
to the animals [9].

1.1
Motivation

There are some known methods of measuring biomass in the field. The
most usual are the ruler and the plate meter (Figure 1.1). The ruler is used to
measure the average height of the plant in some spots in the field and a simple
calculation is made to estimate the total biomass. On the other hand, the plate
meter works by measuring the density of the pasture in the area covered by
the plate with a specific weight. Since most farmers evaluate the amount of
biomass using these methods in just few small delimited areas, the estimation
of the total biomass becomes inaccurate as it is laborious and extremely time
consuming to be done across the entire field.

(a) Ruler (b) Plate Meter

Figure 1.1: Methods of measuring the height of the pasture, using a ruler or a plate
meter.
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Taking this into account, agronomy urges to introduce in the field a low-
cost technique to assist farmers to measure the biomass accurately and without
exposing themselves weekly into varied spots across the field.

As stated by [10], an unmanned aerial vehicle (UAV) is a system capable
of sustained flight with or without direct human control and able to perform a
specific task. These aircraft are popularly known as drones and have become
increasingly popular in recent decades, as technologies used for their assembly
and remote control are more user-friendly [11]. Besides, equipment and software
costs reduction made drones more accessible and hence increased considerably
their market share.

Applications vary between military use, surveillance, meteorological in-
vestigations [12], or even, personal purposes, which considerably widen up their
use and lowered their cost. In addition, the application of these aerial vehicles
in agriculture is a branch that has gained strength in the last decade, due to
the growing need to optimize production resources (Figure 1.2). The automa-
tion of crops ensures greater productivity and assertiveness to agribusiness, as
the incorporation of technology allows farmers to make quicker and more reli-
able decisions [13]. The work in the crops was normally a manual task, often
considered laborious and low-accurate, contributing to the raising of Preci-
sion Agriculture (PA) [14], which has been contributing to improve the quality
and productivity of plant and animal production, with cost reduction and less
environmental impact.

Figure 1.2: Drones doing tasks in the field.

In this context, considering that drones are able to collect several forms
of data and therefore provide strategic information to farmers [13], they can
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play an important role in acquiring data for biomass estimation.
Also, the accurate determination of the dry mass of the grass is essential

to properly calculate the total available forage and, consequently, the number
of animals that should occupy a given region of the pasture, formally known
as “Stocking Rate” [15]. This calculation assists in the management of pasture
and in estimating the demand for forage. It is often expressed in AUs/unit
area (AU means Animal Unit and represents 450 kg of live weight).

In addition, a pasture can be a mixture of grass and legumes in order to
transfer fixed nitrogen (N) to associated grasses. This process, called Biological
Nitrogen Fixation (BNF), aims to increase productivity and/or minimize
effects of nutrient limitations, low soil moisture, soil acidity, pests and diseases
[16]. The optimal rate between legumes and grass lies between 2% and 26%
of legumes in the pasture [16], so that, besides estimating the overall biomass,
monitoring the amount of legumes in each field is also important to evaluate
soil’s health and hence livestock agriculture production.

1.2
State of the Art

Considering the methods used to reach the expected results, numerous
studies have worked with regression models to estimate biomass of grass forage
[17, 18, 19, 20, 21, 22, 23] or other types of crops, as wheat [24] and forests
[8, 25]. Regression models are also used in agriculture business to estimate the
amount of nitrogen accumulated in the crop [26, 27].

These studies have used linear and nonlinear regression models [19, 21,
22, 26], machine learning models as Random Forest (RF) [18, 20], Support
Vector Regression (SVR) and Extreme Learning Machine (ELM) [24], neural
networks, as Multi-Layer Perceptron (MLP) [25, 28], and deep learning meth-
ods, as Convolutional Neural Networks (CNNs) [17]. These estimation models
use different types of data as inputs, such as from optical or reflectance sen-
sors [21, 28], processed data from satellites (remote sensing) [19, 20] or imagery
from unmanned aerial vehicles (UAVs) or drones [17, 24].

Considering papers with estimation of pasture biomass as the main goal,
it is possible to compare the results obtained by [17, 18, 22] with our work.
Our work aims at minimizing the RMSE (root mean squared error), but, R-
Squared will be used for comparison purposes, as it is the only metric shown
in all related works identified in literature.

The work described in [17] presents a study of biomass estimation
using RGB-based images captured by a drone, reaching a R-Squared of
0.88. However, the methodology used is based on CNN (convolutional neural
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networks). The main disadvantage for this method is the necessity of a large
amount of data to build the training data set, which is not the case for our
study.

The author in [22] compared the estimation of biomass between RGB-
based VIs and NDVI (Normalized Difference Vegetation Index) from the N-
Sensor measurements, which use non-visible bands in their formulation. The
authors developed a linear regression model that reached a R-Squared of 0.65,
using NDVI as input. The linear regression models using VARI and NGRDI
also presented good results (0.63 and 0.62, respectively), so they were further
investigated in our work. The results obtained in [22] did not reach satisfactory
R-Squared, as the models were not so complex, but it represents an indication
that other works should explore more the RGB-based VIs, instead of only
NDVI, as NDVI cameras are more expensive and simple RGB cameras can
reach similar results, depending on the application environment.

Another interesting work [18] used UAV imagery to compose the data
set. Their photogrammetry and image processing were more complex as it
used cameras with higher quality and hyperspectral images. The model was
computed using a Random Forest from Machine Learning methodologies of
regression. With all of these high cost technological resources, it reached a
high R-Squared of 0.9.

Several solutions can be adopted to accomplish a more accurate esti-
mation of the total forage available for the animals, with the use of multiple
sensors, multi-spectral cameras and high-performance neural networks. How-
ever, this work aims to reach the same result with the simplest solutions.

1.3
Goals

In this work, we aim to develop a biomass estimation methodology based
on images acquired by a simple RGB camera embedded on the DJI Spark
drone, a low-cost unmanned aerial vehicle (UAV). The obtained images are pre-
processed to extract some relevant features for the local biomass determination,
such as their pixel channels, vegetation indices and the light intensity using
the picture histogram. More specifically, beyond the Red, Green and Blue
Channels themselves, the RGB images were also used to compute the following
RGB-based Vegetation Indices (VIs): RGBVI (Red, Green and Blue Vegetation
Index) [29], GLI (Green Leaf Index) [30], VARI (Visible Atmospherically
Resistant Index) [31], NGRDI (Normalized Green-Red Difference Index) [32],
ExG (Excess of Green) [33] and ExGR (Excess of Green minus Excess of Red)
[34].
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Each spot captured by the drone’s camera had its plant height measured
by a ruler, aiming at using this feature as an input of the developed regression
models. Moreover, the drone flight altitude of each image captured was also
stored to be used as input of the models. In order to deliver more relevant data
to the models, aiming at improving their results, two other features were also
acquired due to their potential importance for the regression models. They
were the intensity of green light on image’s histogram and solar radiation,
measured externally by a weather station.

The fresh matter was destructively collected in the experimental field and
measured in g/m2 to compose the data set. In this work, only Green Biomass
(legumes and grass) was analyzed and tested. The inputs and outputs will be
further discussed in Chapter 2.

Once the data set is acquired, different regression algorithms were
implemented and optimized aiming at identifying their best configurations for
this problem, by analyzing the performance results of each configuration.

As a baseline, linear and non-linear regression algorithms were used
to establish a correlation between biomass and inputs based on the RGB-
channels, vegetation indices and other relevant features. Furthermore, a regres-
sion method based on artificial neural networks (ANNs) was also developed,
aiming at higher accuracy. Moreover, a stacking method was proposed to im-
prove the achieved performance metrics by using the best configurations of
the linear, nonlinear and ANN regressions. Besides, we evaluated how different
sets of input combinations affect the ANN accuracy, in order to identify the
most relevant inputs to biomass estimation.

Therefore, this work focuses on the development of an intelligent biomass
estimator, based on the comparison of regression models, including a super-
vised neural network, using the back-propagation method based on MLP.

1.4
Text Structure

This document is structured as follows. This Chapter presented a brief
introduction to the study, the motivation of estimating biomass in crop fields,
the state of the art considering the regression methods and the goals of this
work.

In Chapter 2, we present the materials that were relevant to our problem,
which contemplates the data acquisition regarding the images captured by the
drone and the measured matter in the field. It also presents the methods used
to analyze and test different inputs for the developed regression models.
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In Chapter 3, we present the theoretic formulation and the implemented
algorithms used to process the regression and obtain the results.

In Chapter 4 we show the obtained results and the evaluation of each
one. Then, a comparative section discusses the best results and advantages of
each proposed method.

Finally, in Chapter 5 we present our conclusion, based on the results
presented in Chapter 4, and suggest future works, that can represent a relevant
progress to this project.
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2
Materials and methods

In this chapter, we present the main aspects of the materials and methods
used in this work. Firstly, we describe the process of data acquisition and
how the information was treated to build the data set for the problem. Then,
the section of the analyzed inputs explains the combined methods that were
studied and used in this work to obtain several options of possible relevant
inputs to the developed algorithms, described in Chapter 3.

2.1
Data Acquisition

The study area used in this work is located at Embrapa Agrobiologia, the
Brazilian Agricultural Research Corporation, in Seropédica, Rio de Janeiro,
Brazil (Figure 2.1). At the test field (Figure 2.1 c), there are two different
species of forage: Brachiaria grass (Brachiaria brizantha cv Marandu) and
the Legume (Macrotyloma axillare cv Java).

(a) Rio de Janeiro (b) Seropédica, RJ

(c) Test field

Figure 2.1: Location of the study area for biomass estimation.
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Once a month, in the period of 10 months consecutively, agronomists and
engineers of Embrapa destructively collected the fresh matter in spots on the
experimental field and measured the weight of the mass to compose the data
set used in this work.

In each day of measurement, around 12 spots were chosen randomly in
the forage and marked on the ground with a red plastic frame of one square
meter, as shown in Fig. 2.2.

(a) 5 m of altitude (b) 10 m of altitude

(c) 15 m of altitude (d) 20 m of altitude

(e) 30 m of altitude (f) 50 m of altitude

Figure 2.2: Top view of the forage captured by the UAV at different heights: (a)
5 m; (b) 10 m; (c) 15 m; (d) 20 m; (e) 30 m; and (f) 50 m.

For each spot marked on the ground, the controller positioned the drone
above the red square area, with its camera pointing to the ground, and took
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pictures from 5 to 50 meters high, aiming at analyzing the trade off between
a reasonable resolution and a safe flight height. Notice that this procedure
generates different pictures representing the same amount of biomass. We
built the data set taking pictures at different heights aiming at contributing to
develop a model more robust to drone’s specific fighting altitude. Furthermore,
in farms with uneven terrains, although the drone is flying in a direct line,
different heights from the ground will be seen by its camera, as illustrated on
Fig. 2.3. Some drones can adjust the difference of height automatically, but this
method also enables the farmer to fly with the drone at any suitable height
within this range.

Figure 2.3: Drone flying over a hill, where h1 > h2 > h3.

Although images captured at 5m height lead to the best resolution, this
is not a suitable height as it requires more flight time to cover the entire field
and it is not pleasant for the herd, if they are in the field at the same moment
that images are captured. Also, some farms have high voltage lines crossing
the fields, establishing another safety issue for the drone flight. Depending on
its voltage, these lines can reach 30 meters of height [35].

Therefore, in this work, the images were captured in the experimental
field with a DJI Spark drone using an embedded RGB camera with 12 MP
resolution (3968 × 2976 pixels), in the following heights: (i) 5 m; (ii) 10 m; (iii)
15 m; (iv) 20 m; (v) 30 m; and (vi) 50 m, as shown in Figure 2.4.

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Chapter 2. Materials and methods 31

Figure 2.4: Front view of the drone flying at different heights.

To obtain the desired images, the following process was repeated at each
spot:

1. Drone is positioned on the ground;

2. Drone flies at 5 m high;

3. Controller takes a picture;

4. Drone flies at 10 m high;

5. Controller takes a picture;

6. Drone flies at 15 m high;

7. Controller takes a picture;

8. Drone flies at 20 m high;

9. Controller takes a picture;

10. Drone flies at 30 m high;

11. Controller takes a picture;

12. Drone flies at 50 m high;

13. Controller takes a picture;

14. Biomass is collected from the red square area on the ground;

15. The procedure is repeated at another random spot in the field.
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The higher achieved altitude was 50 meters as the picture resolution
decreases as the drone flies higher. A simple calculation in order to analyze
the resolution for each picture taken at different heights is the GSD (Ground
Sample Distance), a parameter that represents the size of the image pixels.
Using the principle of similar triangles, GSD makes a ratio between the size
of the pixel in the image and the focal distance of the camera, and multiplies
it by the distance from the ground, as illustrated in Figure 2.5 and shown in
Equation 2-1.

Figure 2.5: Similarity of triangles to calculate GSD parameter.

GSDh = H ∗ Sh

f ∗ Ih

GSDw = H ∗ Sw

f ∗ Iw

,

(2-1)

where H is the flight height in cm, f is the focal length of the camera in mm,
Sh is the sensor height in mm, Sw is the sensor width in mm, Ih is the image
height and Iw is the image width, both in pixels. GSDh and GSDw refer to the
height and the width parameters of GSD, respectively, in cm/px.

As stated by DJI® [36], the focal length of the DJI Spark drone camera
is 25 mm and its sensor is a 1/2.3′′ CMOS, with 6.16 × 4.55 mm. Therefore, the
GSD for this camera is given by:
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GSDh = H ∗ 4.55
25 ∗ 2976 = 6.11559 × 10−5 H

GSDw = H ∗ 6.16
25 ∗ 3968 = 6.20968 × 10−5 H

(2-2)

The pixel’s projection are not always perfectly squared, so the worst case
scenario (greatest value between GSDh and GSDw) will be used to estimate
image resolution. By Eq. 2-2, it is possible to see that we will use GSDw, in
our case.

The corresponding GSD values, in cm/px, for each height are described
in Table 2.1 below:

Table 2.1: GSDw results.

5 m 10 m 15 m 20 m 30 m 50 m
0.031 0.062 0.093 0.124 0.186 0.310

Even at 50 meters, the GSD of our system (0.31 cm/px) achieved a good
ratio compared to other similar works, as 0.5 cm/px used by [17].

All measurements were performed once a month during 10 months,
always between 9 am and 11 am, more precisely: (i) 17 November 2020; (ii) 19
January 2021; (iii) 8 February 2021; (iv) 23 March 2021; (v) 6 April 2021; (vi)
7 May 2021; (vii) 8 June 2021; (viii) 5 July 2021; (iv) 8 August 2021; and (x)
3 September 2021.

The flight altitudes used to capture images at each month were as follows:
(i) November 2020 and January 2021, images were taken at two different
heights (5 and 10 meters); (ii) March, April and May 2021, images were taken
at six different heights (5, 10, 15, 20, 30 and 50 meters); (iii) June, July,
August and September 2021, images were taken at five different heights (5,
10, 15, 20 and 30 meters). In the first two months, only two heights of images
were acquired by the drone because it was, by the time, a test period of the
resources and the possibilities. After the first evaluations, we observed that the
minimum resolution allowed the drone to go higher and that would be safer
considering the voltage lines and the stress of the animals. Also, this could
mean more data to the regression models and a robustness for the variation of
flights in the input. Pictures at 50 meters of height were not captured at the
last 4 months because the obtained results until then showed that the image
resolution at this height was not satisfactory.

The number of images captured in each month is shown in Tab. 2.2,
summing-up 570 images in total.
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Table 2.2: Number of Images Captured by the UAV.

Month Spots Different heights Number of images
November 2020 12 2 24
January 2021 12 2 24
February 2021 12 6 72
March 2021 13 6 78
April 2021 12 6 72
May 2021 10 6 60
June 2021 12 5 60
July 2021 12 5 60
August 2021 12 5 60
September 2021 12 5 60
Total 119 570

After capturing all images, the areas marked with the red square were
cropped to obtain the desired picture that represents the measured biomass,
as exemplified by Figure 2.6.

(a) 5 m picture (b) 10 m picture (c) 15 m picture

(d) 20 m picture (e) 30 m picture (f) 50 m picture

Figure 2.6: Processed images at different heights: (a) 5 m; (b) 10 m; (c) 15 m; (d)
20 m; (e) 30 m; and (f) 50 m.

Another representation of the images is show in Fig. 2.7, respecting the
proportion and the resolution after cropping them.

The biomass measurements considered for this work are the sum of both
Brachiaria and Legume weights. Besides, without loss of generality, the weight
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(a) 5 m picture (b) 10 m picture

(c) 15 m pic-
ture

(d) 20 m
picture

(e)
30 m
picture

(f)
50 m
pic-
ture

Figure 2.7: Processed images at different heights respecting its proportion: (a) 5 m;
(b) 10 m; (c) 15 m; (d) 20 m; (e) 30 m; and (f) 50 m.

of straw was not considered in the total biomass measurements. This will be
further stressed on Section 2.3.

2.2
Analyzed Inputs

It was observed that, for different months and intensities of light, the
amount of biomass had a better R-Squared when direct sunlight was exposed
in the field. Rainy and cloudy days made the color of the images less vivid and
so more difficult to properly estimate biomass. Hence, histogram of green light
intensity was used to determine weights for pictures with higher brightness
and contrast.

Two other factors were also used to help with the biomass estimation.
The first one is the height of the vegetation, that was measured in each spot
where biomass was collected. The height information can deliver the sense of
third dimension as the weight of the biomass is related with its volume. So, it is
an important factor to be considered to estimate the correct amount of biomass
[29]. The second one is related to an external sensor of solar radiation, measured
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every hour at the weather station nearby the crop field (approximately 700 m
from the field). The value of the radiation was also used and tested in the
models to determine the vivacity and intensity of light.

Moreover, other external factors like temperature, humidity and precipi-
tation level could also aid to estimate local biomass, as stated in [37]. However,
they would only play an important role if they were measured at least one week
earlier to the collection of pasture material, as it takes time for the rain and
the environment temperature to affect the growing pasture. These measure-
ments were obtained by consulting the weather station located nearby, but the
herd were consuming the pasture during the period between the measurement
and the pasture collection. So, the only possible moment to collect information
would be during the pasture extraction, using images. In addition to the fact
that using other sensors in the field could not deliver a relevant data for the
regression, it would increase project’s cost. Consequently, the installation of
external sensors in the field was not considered in this work.

Nonetheless, this section presents the system inputs that can contribute
to the biomass estimation of the mixed pasture analysis, including the Red,
Green and Blue Channels of pixels (RGB), different RGB-based vegetation
indices (VI), plant height (PH) measurements, altitude of the drone flight,
intensity of the green light and solar radiation.

2.2.1
Red, Green and Blue Channels (RGB)

All images in this work are composed by three matrices of color channels
that altogether form the colored image, as the example shown in Fig. 2.8. These
channels are the primary colors: red, green and blue.

Figure 2.8: Example of Original Picture.
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The arrays are matrices with the size of the squared cropped image used
in the input, so that the size varies for different distances from the camera to
the ground. The red square used to mark the spots on the ground has 1 m2

and so the related image have approximately the dimension of 1 m2 divided
by the respective GSD values defined in Tab. 2.1, for each drone height. Figure
2.9 shows the representation of Fig. 2.8 by the arrays in red, green and blue
channels, respectively. Notice that each separate channel forms a gray scale
image. Each pixel varies the intensity of gray to define the image. The range
is in between 0-255, where 0 represents the black color and 255 the white.

(a) Array of Red Channel (b) Array of Green Channel (c) Array of Blue Channel

Figure 2.9: Representation of the image using arrays of channels separately: (a)
Red,; (b) Green; and (c) Blue.

The next step taken to create a value as an input was the calculation of
the mean value of the selected image’s pixels. Each array will generate a value,
representing the mean intensity of the red (R), green (G) and blue (B) channels
of each image of the data set. These values will be used in the regression to
correlate with the biomass.

Therefore, since the data set has 570 images, 570 values were produced
to each color channel. Tab. 2.3 shows the upper and lower bounds, average,
standard deviation and a ratio between standard deviation and average value,
for each color channel.

Table 2.3: Upper and Lower Bounds of the Dataset.

Data Min. Max. Avg. Std. Dev. Ratio
R 61.858 165.196 126.152 17.898 0.142
G 82.911 166.302 138.66 16.316 0.118
B 43.666 111.742 81.781 12.408 0.152
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2.2.2
Vegetation Indices (VI)

Considering the red, green and blue arrays explained in the section above,
it is possible to define some equations using their values in order to emphasize a
desired characteristic present in the images. These equations, called Vegetation
Indices (VI), are largely used in Agricultural Research.

The most used VIs nowadays are the NDVI (Normalized Difference
Vegetation Index) and the EVI (Enhanced Vegetation Index). The NDVI
quantifies the growth of vegetation. It can range between -1 and +1. The higher
the NDVI value is, the greater is crop’s force of growth [38]. On the other hand,
the EVI was designed to optimize the presence of vegetation, increasing the
sensitivity in regions with high concentrations of biomass. It is also used to
improve the vegetation monitoring by coupling the canopy bottom signal and
reducing the influence of the atmosphere [39].

However, both of these Vegetation Indices use infrared values in their
formulation, which is a non visible spectrum and can not be reached by a
normal RGB camera, as the one used in this project. Only hyper or multi
spectral cameras can inform the infrared and other spectrum arrays, but they
are considerably more expensive, so that they were not used in the present
work, since it focuses in the development of a low cost system.

Since these Vegetation Indices are not possible to access with RGB
cameras, other VIs were tested in this work, considering only R, G and B data.
Please, see Tab. 2.4 for the description of the analyzed vegetation indices and
their associated references. All of them analyze and reinforce the importance
of the green information in the image.
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Table 2.4: Vegetation Indices Equations.

VI Name Equation Reference

RGBVI Red, Green and Blue
Vegetation Index

G2 −RB

G2 +RB
[29]

GLI Green Leaf Index 2G−R −B

2G+R +B
[30]

VARI Visible Atmospherically
Resistant Index

G−R

G+R −B
[31]

NGRDI Normalized Green-Red
Difference Index

G−R

G+R
[32]

ExG Excess of Green 2g − r − b [33]

ExGR Excess of Green minus Ex-
cess of Red 2g − 0.4r [34]

where
r=R∗

∆ , g=G∗

∆ , b=B∗

∆ ,

with ∆=(R∗ +G∗ +B∗) and

R∗=R/255 , G∗=G/255 , B∗=B/255 .

A vegetation index (VI) was associated to each image, by calculating the
VI of each pixel inside the red square located in the field and then computing
the average value of these pixels. The obtained VIs were used as inputs of
the regression models developed. In this case, there were six different possible
inputs to analyze: RGBVI, GLI, VARI, NGRDI, ExG and ExGR.

Therefore, since the data set has 570 images, 570 values were produced
to each VI. Tab. 2.5 shows the upper and lower bounds, average, standard
deviation, and a ratio between standard deviation and average value, for each
VI analyzed.
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Table 2.5: Upper and Lower Bounds of the Vegetation Indices.

Data Min. Max. Avg. Std. Dev. Ratio Count
RGBVI 0.04 0.595 0.347 0.134 0.386 570
GLI −0.006 0.336 0.166 0.078 0.471 570
VARI −0.163 0.292 0.074 0.101 1.368 570
NGRDI −0.124 0.236 0.057 0.075 1.321 570
ExG 0 0.535 0.244 0.121 0.494 570
ExR 0.227 0.385 0.296 0.029 0.098 570
ExGR −0.384 0.286 −0.052 0.133 −2.565 570

2.2.3
Plant Height (PH)

Another important information of the forage for biomass estimation is
the plant height. It gives the third dimension information that can not be
captured by a top view image. Commonly, it is measured using the method
of multi-temporal crop surface models (CSMs) derived from 3D point clouds
[29].

In this work, the plant height was measured by inferring the average
height of plants within the red square area and this information will be used
as an input for the evaluated regression algorithms. It was manually measured
with a ruler in the delimited area and also used as a neural network input. It
is important to mention that the ruler was used to measure the plant height
data used to build the data set used in this work, but the idea is to take these
measurements by embedding an optical sensor to the drone in the final system
to determine the plant height and avoid the laborious work in the field.

Table 2.6 shows the upper and lower bounds, average, standard devia-
tion, a ratio between standard deviation and average value, and total count of
data. Notice that, we do not have the measurements of PH in the first month
(November 2020), so that we have only 107 PH measurements, rather than 119
(Tab. 2.2).

Table 2.6: Upper and Lower Bounds of Plant Height, measured in cm.

Data Min. Max. Avg. Std. Dev. Ratio Count
PH 12 43.2 27.138 5.861 0.216 107

2.2.4
Altitude of Drone Flight (DF)

Images closer to the ground have higher resolution delivering more
valuable information to the network. The altitude of the drone can be easily
accessed by the embedded electronics, so that this information was also used
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as input aiming at compensating distortions associated with lower image
resolutions at higher altitudes.

Considering that our data set is composed by images captured at 6
different heights, the DF input assumes the following discrete values: 5 m,
10 m, 15 m, 20 m, 30 m and 50 m.

2.2.5
Green Intensity (GI)

An important component of an image is its histogram. It informs the
intensity of each channel separately and makes it possible to analyze if the
majority of pixels is nearer 0 (black) or 255 (white). Figure 2.10 shows the
complete histogram of the image shown in Fig. 2.8, as an example.

(a) Histogram of Red (b) Histogram of Green (c) Histogram of Blue

Figure 2.10: Histogram of the image shown in Fig. 2.8.

It was observed experimentally that images with direct light have better
R-Squared with biomass estimation than indirect light. So, in order to separate
and give weights to images in sunny days (direct light) and in cloudy/rainy
days (indirect light), the Green Histogram was used. It was observed that the
maximum peaks of the pixel frequency in green histogram under direct light
occur for lower pixel intensities than in indirect light. In order to give this
information to the developed regression models, it was created the GI input
which is directly proportional to the pixel intensity (PI) of the maximum pixel
frequency (PF) in green histogram, as stated in Eq. (2-3). It is possible to
observe in Fig. 2.12 the difference in the histogram when modifying the original
image from one of direct light to another with indirect light.
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GIinput = PI(max(PF )) (2-3)

(a) Original Direct Light Image (b) Green Histogram of Direct Light Image

(c) Original Indirect Light Image (d) Green Histogram of Indirect Light Image

Figure 2.12: Comparison between indirect and direct light images.
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Tab. 2.7 shows the upper and lower bounds, average, standard deviation,
a ratio between standard deviation and average value, and total count of data
for the GI.

Table 2.7: Upper and Lower Bounds of Green Channel Intensity.

Data Min. Max. Avg. Std. Dev. Ratio Count
GI 18 205 134.861 41.167 0.305 570

2.2.6
Solar Radiation (SR)

In order to contribute with the aspects observed in subsection above,
measurements of the Solar Radiation were captured by a pyranometer, assem-
bled in a weather station located nearby the measurement field. Pyranometers
are sensors that combine direct and diffuse components of the solar irradiance,
widely used by meteorologists, climatologists, atmospheric scientists, and re-
newable energy researchers [40].

The solar radiation data is hourly measured in the station mainly between
9 am and 6 pm, depending on sunlight. The values used were the ones captured
at approximately 10 am at the dates where the data set images were captured.
The unity used for SR is kJ/m2.

Table 2.8 shows the upper and lower bounds, average, standard devia-
tion, a ratio between standard deviation and average value, and total count of
data.

Table 2.8: Upper and Lower Bounds of Solar Radiation.

Data Min. Max. Avg. Std. Dev. Ratio Count
SR 8 524.13 143.235 170.695 1.192 119

2.3
Analyzed Outputs

The outputs in this work refer to the measured biomass, measured by
agronomists at Embrapa Agrobiologia. The process of destructive collection in
the experimental field was carefully done with appropriate tools and revision
of data.

The spots were randomly positioned in the field, each month, and plant
was cropped above 15 cm from the ground, because the material below this
height is not consumed by the herd. All collected plant in the squared area
were maintained separated between Grass (Brachiaria brizantha), Legume
(Macrotyloma axillare) and Straw in order to have separate information about
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each of them. The weight of the fresh matter was measured with a scale and
annotated in g/m2. However, the weight of the fresh matter does not represent
the reality as the plants, mainly the Legume, retain water in its composition.
Thus, it should not be considered as the final data.

Therefore, in sequence, the process of drying the matter is executed by
placing the fresh material in air-forced drying oven at 65ºC and the final dry
matter weight is also annotated. All information that could be used in the
project is listed in Tab. 2.9.

Table 2.9: List of possible outputs.

Fresh Matter Dry Matter
Legume Legume

Original data Grass Grass
Straw Straw

Green Biomass Green Biomass
(Grass + Legume) (Grass + Legume)

Variations Total Biomass Total Biomass
(Grass + Legume + Straw) (Grass + Legume + Straw)

% Legume % Legume
% Grass % Grass

Table 2.10 shows the upper and lower bounds, average, standard devia-
tion, a ratio between standard deviation and average value, and total count of
data.

Table 2.10: Analyzed Output Data (in g/m2).

Data Min. Max. Avg. Std. Dev. Ratio Count
Legume 0 256.368 96.229 57.326 0.596 119
Grass 13.156 474.142 110.35 85.375 0.774 119
Straw 0.001 236.989 81.815 62.341 0.762 119

Green Bio 36.301 581.604 206.579 108.289 0.524 119
Total Bio 41.467 723.988 288.394 139.725 0.484 119
% Legume 0 83.925 36.951 20.37 0.551 119
% Grass 10.442 73.342 35.99 13.802 0.384 119
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For this work, all regression data used the dry matter of the Green
Biomass as an output. Figure 2.13 shows the histogram of the Green Biomass
data set built for this work. Note that the majority (89%) of the measured
biomass lies in between 50 and 350 g/m2. This happens because when the
pasture is too high, it loses quality. Thus, the number of animals in the pasture
is regulated so that the pasture is neither too low (overgrazing) nor too high.

Figure 2.13: Histogram of Green Biomass.
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3
Methodology

In this chapter, all developed algorithms for biomass estimation are
presented with the formulation necessary to generate the results. All regression
algorithms were optimized aiming at minimizing their root mean square errors.
The data set used to training the regression models was pre-processed and the
algorithms were developed using natural functions from Statistics and Machine
Learning Toolbox or Neural Networks Toolbox (NNToolbox) in MATLAB
R2020b (The MathWorks, Inc.). The hardware setup is composed by an
Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz and 8 GB of RAM. The
process established for the work is represented in Fig. 3.1.

Figure 3.1: Block Diagram of the work process.

There are three different types of data measured in the field: (i) the
images captured by the drone at different flight altitudes and different spots of
measurement; (ii) the value of dry biomass at each spot (ground truth); (iii)
the average plant height at each spot.

After acquiring the images, all of them were cropped so that only the
area inside the red square marker, that indicates the desired spot on the field,
is used to generate all the analyzed inputs. In the algorithms, it was possible
to choose which inputs to test, among the ones listed in 2.2. They sum 13
different inputs, that could be used alone or combined with others.

The ground truth set of data was constructed from the collected dry
matter, described in 2.3. More specifically, in this work, all tests and results
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were achieved by using the dry matter of Green Biomass (Grass + Legume) as
output for the developed regression models. Moreover, a selection process of
which images of the data set would be effectively used to train the regression
models was implemented, aiming at testing if images with poor resolution
(higher flight altitudes) could be degrading the results when used.

Considering the complexity of the work, Fig. 3.2 shows a block diagram
representing everything that was developed to reach the desirable results.

Figure 3.2: Complete Work Diagram.

After acquiring, cleaning and processing the data, it was submitted firstly
to three different regression methodologies: (i) linear regression; (ii) nonlinear
regression; (iii) MLP regression. Their models were developed in algorithms,
using Matlab, and they were evaluated separately. Then they were analyzed
for their best results, considering the inputs used. These best results were
submitted to another model, based on stacking ensemble methodology, which is
developed using a new neural network and the vectors of estimated biomass of
each previous regression as inputs. They will be further explained and discussed
in this section.

Later in section, we briefly present the performance metrics used in this
work for comparison and analysis purposes.

3.1
Linear Regression Algorithm

Here, we implement a simple linear regression model, using all captured
data, aiming to evaluate the natural correlation of the inputs (independent
variables) with the measured biomass (dependent variable). If more than one
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input was used, it is considered a MLR (Multiple Linear Regression). In the
algorithm, 80% of the data set was randomly chosen for training and the
remaining 20% for testing. The algorithm was executed 30 times and the best
results were annotated, in order to analyze how the performance metrics would
respond to variations in the model coefficients induced by different training and
test sets.

The linear regression is described by the following Eq. (3-1):

y
L

= β0 + β1 x1 + β2 x2 + β3 x3 . . . , (3-1)

where β0, β1, β2, β3, · · · are the linear coefficients, y
L
is the biomass estimated

by the linear regression and x1 , x2 , x3 , · · · are the chosen inputs. All values are
assumed to be positive parameters.

3.2
Nonlinear Regression Algorithm

In this scenario, a nonlinear regression model is implemented, using
minimum squared errors technique as performance metrics, aiming to evaluate
which is the better correlation of the inputs with the measured biomass. As
stated by [29], the relationships between the biomass and VIs or Plant Height
(PH) are often nonlinear. So, a multiple nonlinear regression (MNLR) model
is proposed, using a quadratic regression model, with up to 5 different input
variables and their corresponding number of coefficients, as shown in equation
(3-2).

#αn = 1
2 n (n+ 1) (3-2)

where #αn is the number of coefficients and n is the number of inputs used.
The developed nonlinear regression models are described by the following

equations (3-3), (3-4), (3-5), (3-6) and (3-7), according to the number of input
variables (n) chosen in the algorithm:

• n = 1:

yNL = α0 + α1 x
2
1 + α2 x1 , (3-3)

• n = 2:

yNL = α0 + α1 x
2
1 + α2 x

2
2 + α3 x1 x2 +

α4 x1 + α5 x2 , (3-4)
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• n = 3:

yNL = α0 + α1 x
2
1 + +α2 x

2
2 + α3 x

2
3 + α4 x1 x2 +

α5 x1 x3 + α6 x2 x3 + α7 x1 + α8 x2 + α9 x3 , (3-5)

• n = 4:

yNL = α0 + α1 x
2
1 + +α2 x

2
2 + α3 x

2
3 + α4 x

2
4 + α5 x1 x2 +

α6 x1 x3 + α7 x1 x4 + α8 x2 x3 + α9 x2 x4 + α10 x3 x4 +
α11 x1 + α12 x2 + α13 x3 + α14 x4 , (3-6)

• n = 5:

yNL = α0 + α1 x
2
1 + α2 x

2
2 + α3 x

2
3 + α4 x

2
4 + α5 x

2
5 +

α6 x1 x2 + α7 x1 x3 + α8 x1 x4 + α9 x1 x5 +
α10 x2 x3 + α11 x2 x4 + α12 x2 x5 +
α13 x3 x4 + α14 x3 x5 + α15 x4 x5 +
α16 x1 + α17 x2 + α18 x3 + α19 x4 + α20 x5 , (3-7)

where α0, α1, α2, α3, · · · are the MNLR coefficients, yNL is the resulting biomass
and x1 , x2 , x3 , · · · are the chosen inputs. All values are assumed to be positive
parameters.

The upper bound of input variables was set to 5 different possible inputs
to limit the total variables in the model and compare results with other
regression methods that could overfit using more input variables, considering
the total amount of data.

As developed for the Linear Regression, training and test sets were
defined randomly: 80% for training and 20% for testing. Furthermore, each
evaluated regression model was executed 30 times and the best results were
annotated, to analyze how the performance metrics would respond to variations
in the model coefficients induced by different training and test sets.

3.3
MLP Regression Algorithm

A coherent next step to increase complexity on the model and find a
more efficient parameter learning procedure than regressions with established
forms of equations is to develop an Artificial Neural Network (ANN).

Artificial Neural Networks are part of Artificial Intelligence (IA) method-
ologies that simulate the working of neurons in the human brain, using compu-
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tational nodes as the neurons and connections between them as synapses. The
main function of the neuron is to receive the information by a synapse, make
a decision and pass it forward as it conveys. The simulation of this synaptic
decision is computed with weights on the connections between the nodes in
the ANN.

Another important aspect of the human brain is its capacity of learning.
It receives backward information stimulated by the rest of the human body
or by external environment in the form of electrical impulses and redefine the
synaptic decision, which can be of excitation or inhibition. This is called the
error-correction learning rule. In this case, the ANN allows the error back-
propagation algorithm in order to simulate the capacity of learning from the
human brain. It works in two ways: first, in a forward pass, the inputs are
applied into the nodes throughout the net, layer by layer, and the weights
are computed until the final response reached by the network. Then, the real
response, called target or ground truth, is used to calculate the difference
between these two responses and produce the error signal. In a backward pass,
the error travels back throughout the network in the sense of returning to the
first layer, adjusting all the weights in the way it passes in order to modify the
final response towards the desired target. Hence, the error is back propagated
against the direction of the connections every time there is a forward pass and
the network is learning with it [41]. This process is repeated in a determined
number of times, called epochs, or until it reaches the minimum tolerance of
error.

Even though synapses are simple units of interactions between the
neurons, the human brains are efficient structures because they have a large
number of neurons and synapses. It is estimated the order of 10 billion neurons
and 60 trillion synapses or connections in a human brain [41]. It means that, as
long as the number of nodes and connections increases, more complex decisions
can be done by the neural network as the ability of learning is enhanced. This is
the definition of Deep Learning and used in methods as Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN) and others. They will
not be used in this work as the total amount of data in our data set is not
compatible with these methods, so this work will be restricted to a Shallow
Learning of an Artificial Neural Network.

Perceptron is the name of the first model for learning in a supervised
manner, proposed by Rosenblatt in 1958 [41]. It is composed by a single neuron
and it was able to perform tasks that were linearly separable. It means that
it can only separate patterns that lie in different sides of a hyperplane. Yet,
supervised learning consists in models of neural networks which already have a
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target to be followed. Considering these concepts and expanding Rosenblatt’s
Perceptron theory to the proposed work, the generalization of a single layer
perceptron is the Multi-Layer Feedforward Network, commonly referred as
Multi-Layer Perceptron (MLP). It allows to create hidden layers on the network
and to introduce nonlinearities in the model, increasing the complexity without
the necessity of determining the whole equation and coefficients manually. As
more layers are included in the model, the resulting region for each pattern
becomes increasingly complex.

The ability to learn the complex relationship between features and target
from the neural network is also due to the presence of activation functions
in each layer. Rosenblatt’s single neuron solve linearly separable patterns for
classification and it is activated by a nonlinear function, differentiable, in order
to maintain the characteristics of the inputs and separate the patterns into
different classes. This principle is used in all kinds of neural networks until
today. There are several researches looking for optimized activation functions
to boost network performance [42]. Usually, logarithmic or hyperbolic tangent
functions are used as activation functions in most neural networks but it
actually depends on the problem to be solved. Moreover, in general, a linear
function is used to activate the output layer for regression analysis.

In this work, we developed an artificial neural network, based on a Multi-
Layer Perceptron (MLP) regression algorithm with backpropagation error.
Aiming at optimizing the performance metrics of the developed MLPs, some
hyperparameters of the neural network for each type of input evaluated were
adjusted in the tests, as highlighted in Tab. 3.1. On the other hand, the fixed
hyperparameters used in the designed neural network are listed in Tab. 3.2.

Table 3.1: Varied Hyperparameters.

Hyperparameters Variation
Epochs 5000 - 10000 - 50000
Early Stop 500 - 1000 - 5000
Neurons per layer 4 - 6 - 8 - 10 - 12 - 14 - 16 - 18 - 20

Table 3.2: Fixed Hyperparameters.

Hyperparameters Value
Number of Hidden Layers 2
Activation Function (hidden layers) log
Activation Function (output layer) linear

The back propagation algorithm used in this work is the gradient descent
with momentum (α=0.97) and adaptive rate (η=0.01). The tolerance of the
gradient was set to 1 × 10−6 to reach better results. The data set is randomly
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divided into three parts to avoid overfitting and model selection bias: 70% for
training set, 20% for validation set and 10% for testing set. Besides, all data
used as inputs/outputs were linearly normalized between 0 and 1, so that all
values are in the same range, avoiding biasing. This normalization was applied
even for the VIs, that already vary mostly in this range. When data set is ready,
the first step is to train several networks doing a Layer Sweep, where all possible
combination of number of neuron per layers are used. They were set from 4 to
20 neurons for both layers, in steps of 2. Besides, the number of epochs and
early stops were varied for each combination. They were set to three different
combinations: (i) Epochs: 5000, Early Stop: 500; (i) Epochs: 10000, Early Stop:
1000; (i) Epochs: 50000, Early Stop: 5000. This was implemented so that we
could analyze generalization for each input combination. These configurations
sums up to 243 trainings. The results were stored and then analyzed.

In a second step, the three best configurations for each type of combina-
tion of input were trained again for 30 times in a row. Then, the model delivers
the final performance results for this method.

3.4
Stacking Ensemble Algorithm

The Stacking Ensemble method consists in combining several models
altogether to make a prediction. Just as classification problem, it can also
be used in a regression, which is the case of our work. Researches in this
type of approach have been increasing in the past years as good results have
been achieved. Robustness and accuracy are the main benefits reported when
using a Stack Ensemble method compared to single models. Although most of
works define techniques related to classification problems and they are often
not applicable to regression, there are many options to apply this method to
regression problems [43].

Therefore, this work implements Stacking Ensemble Method as a fourth
model, aiming to increase the performance and achieve better results. It
combines the first 3 methods (Linear Regression, Nonlinear Regression and
MLP ANN), using their outputs as the input vector, as shown in Fig. 3.3.

In this work, the implementation of Stacking Ensemble consisted in a
new neural network, using only 3 inputs: the best results for the previous
methods, considering the lowest RMSE value reached by each one of them.
The method used here was the same for the MLP Regression, described in
3.3. The fixed hyperparameters were the same as Tab. 3.2 and the varied one
as Tab. 3.1. First a Layer Sweep was implemented using the three predefined
inputs. Then, the best 3 configurations were submitted to 30 runs in order to
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Figure 3.3: Block Diagram of the Stacking Ensemble Method.

guarantee the reliability of the final metrics, statistically speaking.
In this case, Stacking Ensemble can be interpreted as a potential im-

provement for the MLP results, since it is expected that the Artificial Neural
Network reaches better results than simple regressions methods, considering it
fits more complex correlations between inputs and the output.

3.5
Performance Metrics

The performance of the regression algorithms is evaluated by the Coef-
ficient of Determination (R-Squared) and two different types of error metrics:
root-mean-square error (RMSE) and mean-absolute percentage error (MAPE).
All results were considered as the best ones when the lowest RMSE values were
achieved.

RMSE =

√√√√ 1
N

N∑
n=1

(yn − ŷn)2 , (3-8)

MAPE = 1
N

N∑
n=1

yn − ŷn

ŷ
, (3-9)

R2 = 1 − SSR
SST , (3-10)

where SSR=∑N
n=1 y−ŷ2, SST=∑N

n=1 y−ŷ2, ŷ is the measured biomass (ground
truth), ŷ the mean value of measured biomass, y the predicted biomass and N
the size of the data set.
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4
Results and Discussion

In this section, we describe experimental results for biomass estimation
obtained after running each algorithm 30 times. According to the central
limit theorem, if the sample size is 30, the studentized sampling distribution
approximates the standard normal distribution and assumptions about the
population distribution are meaningless since the sampling distribution is
considered normal [44]. Also, it presents a comparison of the results achieved
by the different regression models analyzed. The outputs are the total biomass,
within the 1 m2 red square present on each image.

First, we present the linear regression results, then nonlinear regression,
MLP regression and finally the stacked ensemble algorithm. For each method-
ology, two subsections are presented, showing first the results where the inputs
are tested separately in order to analyze the influence of the 13 different inputs
in the output. To facilitate the performance comparison, we generate graphs
with the target (measured biomass) in the horizontal axis and the achieved
output (predicted biomass) in the vertical axis. All graphs presented in the
work are based on the test set defined randomly in the algorithm.

Afterwards, in the second subsection, we combined some inputs which
could boost the relationship between the inputs and the target. It is foreseen
that the plant height can have a significant effect on the determination of a
biomass from vegetation indices [29]. Hence, it was combined with all the inputs
to check the validity of this hypothesis. The other inputs, that are neither
vegetation indices nor the channels of pixels, were combined with best results
of separate vegetation indices to enhance the result’s accuracy. Moreover,
configurations with all channels (R, G and B) as inputs were tested to see
if they altogether can perform better than separately. Finally, combinations
between the vegetation indices where also evaluated aiming at achieving higher
R-Squared and lower RMSE and MAPE.

4.1
Linear Regression

In this section, it will be presented all the results and their related
discussion for the tested inputs. Firstly they will be evaluated separately,
in order to analyze the influence of each of them in the estimated biomass.
This will give a perception of the most promising inputs that could be tested
together, aiming at higher performance.
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Then, in another subsection, they will be tested in different combinations
after analyzing the performance of each of them separately. In both subsections,
it will be presented a table summarizing the data analysis of the RMSE in each
of the 30 runs, as average value, standard deviation, lower and upper bounds.
The second table presents the best RMSE found among the 30 runs and their
corresponding MAPE and R-Squared. Furthermore, the plots associated to the
best RMSE for each analyzed input will be shown in the related images.

4.1.1
Separate inputs

The influence of each one of the inputs, described in Chapter 2, in the
estimated outputs can be an important factor to choose how to combine
them aiming to increase performance. Hence, they are tested separately in
this subsection, first analyzing the VIs and channels and then, the features.

4.1.1.1
RGB-based

Table 4.1 shows the results of the RMSE analysis for the VIs and channels
as separate and unique inputs.

Table 4.1: Analysis of RMSE performance for the RGB-based as separate inputs
using Linear Regression

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R 102.46 6.57 90.09 119.36
G 111.70 6.78 101.37 126.99
B 103.32 7.93 86.01 118.67
RGBVI 97.61 4.98 83.96 107.09
GLI 95.83 7.13 85.76 110.07
VARI 93.31 8.34 78.41 106.23
NGRDI 93.33 8.17 79.74 108.71
ExG 97.45 5.21 90.80 108.23
ExGR 94.02 7.48 79.96 112.84

The best linear fitting performance metrics for each of the VIs is shown in
Table 4.2, together with their respective MAPE and R-Squared. On the other
hand, Fig. 4.1 shows the plots associated to the best RMSE obtained for each
input, among the thirty results generated for each one of them.

The RMSE was chosen as the main performance metrics, as the least
mean square (LMS) algorithm was used to set the coefficients of the linear
regression model, aiming at minimizing the mean squared error.
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(a) Red (b) Green

(c) Blue (d) RGBVI

(e) GLI (f) VARI

(g) NGRDI (h) ExG
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(i) ExGR

Figure 4.1: Best Linear Regression Performance for the RGB-based as Separate
Inputs: (a) Red, (b) Green, (c) Blue, (d) RGBVI, (e) GLI, (f) VARI, (g) NGRDI,
(h) ExG, (i) ExGR.

Table 4.2: Results for the RGB-based as separate inputs using Linear Regression

Best RMSE MAPE
Input (g/m2) (%) R2

R 90.09 50.36 0.20
G 101.37 56.68 0.05
B 86.00 53.64 0.21
RGBVI 83.96 43.97 0.32
GLI 85.76 43.44 0.34
VARI 78.41 47.02 0.39
NGRDI 79.74 49.18 0.38
ExG 90.80 49.49 0.28
ExGR 79.96 44.67 0.37

Although GLI vegetation index presents the best MAPE, it is possible to
observe that the performance achieved by the VARI have the higher R-Squared
and the lower RMSE in Linear Regression, when running the algorithm for
each one of the RGB-based inputs separately. NGRDI and ExGR can also be
considered among the best results as they have the second and third lowest
RMSE. It is noticeable that the R, G and B inputs have high RMSE values
and do not correlate so well with the output. They will be further analyzed
when combined to observe if the results can be improved.

4.1.1.2
Features

Table 4.3 shows the RMSE analysis of the features used as inputs alone.
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Table 4.3: Analysis of RMSE performance for the features as separate inputs, using
Linear Regression

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
PH 111.05 6.87 99.63 127.19
DF 110.43 6.52 96.08 125.91
GI 110.58 4.92 100.41 122.52
SR 111.31 6.70 97.05 121.16

Figure 4.2 shows the plots associated to the best RMSE obtained for each
feature input, among the thirty results generated for each one of them. Also,
the best linear fitting performance metrics for each of the features is shown in
Table 4.4, together with their respective MAPE and R-Squared.

(a) PH (b) DF

(c) GI (d) SR

Figure 4.2: Best Linear Regression Performance for the features as Separate Inputs:
(a) PH, (b) DF, (c) GI and (d) SR.
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Table 4.4: Results for the features as separate inputs using Linear Regression

Best RMSE MAPE
Input (g/m2) (%) R2

PH 99.63 62.74 0.05
DF 96.08 53.07 -0.01
GI 100.41 50.66 -0.01
SR 97.05 53.23 0.01

As expected, it is noticeable that DF, GI and SR alone do not have any
significant relationship with the output whatsoever. These features will only
be relevant when combined with the channels or the VIs. The plant height
itself does not have a good direct correlation with the output, but it can also
be a promising feature to combine with others.

4.1.2
Combined inputs

In this subsection, combinations of R, G and B will be made to test how
the model responds to each one of them. Moreover, the inputs generated from
the channels of the pixel’s image and the VIs will be combined with the plant
height (PH), altitude of drone’s flight (DF), intensity of green light (GI) and
solar radiation (SR). They will be tested here as a boosting factor for the
model’s performance and to further comparison with the neural network that
will receive these parameters as inputs for the same purpose.

4.1.2.1
Combinations of R, G and B

Notice that R (red), G (green) and B (blue) don’t correlate so well with
the outputs, when tested separately. Hereafter, they will be combined among
themselves and tested to observe which association is better to be used from
now on. The RMSE analysis is shown in Tab. 4.5. The metric results are shown
in Tab. 4.6 and in Fig. 4.3.
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Table 4.5: Analysis of RMSE performance for different combinations of the RGB
channels

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and G 92.15 5.29 81.59 102.07
R and B 106.72 6.59 91.88 118.55
G and B 96.26 7.24 80.69 111.07
R, G and B 92.25 7.29 79.90 105.32

(a) R and G (b) R and B

(c) G and B (d) R, G and B

Figure 4.3: Best Linear Regression Performance for Combined Inputs between R,
G and B: (a) R and G, (b) R and B, (c) G and B, and (d) R, G and B

Table 4.6: Results for combined R, G and B using Linear Regression

Best RMSE MAPE
Input (g/m2) (%) R2

R and G 81.59 45.56 0.41
R and B 91.88 52.23 0.12
G and B 80.69 41.91 0.15
R, G and B 79.90 38.17 0.43
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The best combination of R, G and B occurs when the three are used as
inputs of the linear regression altogether. Notice that case reaches even higher
R-Squared than VARI (0.39). The inputs R and G also show a good RMSE
and R-Squared, when compared to the other combinations. This is probably
due to the importance of the contrast between the red and the green colors in
the image and how it can reflect in the measured biomass. The red color can be
inferred as a representation of the straw biomass whereas the green represents
the grass and legume, which are the biomass we are trying to estimate in this
work. In addition, this is also observed when NGRDI does not present the blue
color in its equation (see Tab. 2.4).

4.1.2.2
RGB-based and PH

Table 4.7 shows the analysis of RMSE data in the 30 runs executed for
each one of the inputs combined with the plant height. The table shows the
average value, standard deviation, lower and upper bounds.

Table 4.7: Analysis of RMSE performance using Linear Regression, for combina-
tions of the RGB channels and VIs with PH.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and PH 102.26 6.89 89.41 117.06
G and PH 109.01 7.81 93.88 121.98
B and PH 103.13 7.26 89.16 120.91
R, G and PH 89.33 8.35 72.64 103.96
R, B and PH 99.68 11.30 80.43 125.44
G, B and PH 92.32 4.68 83.47 104.75
R, G, B and PH 85.25 7.34 68.96 96.82
RGBVI and PH 94.36 8.52 78.71 117.52
GLI and PH 93.00 5.82 79.89 102.37
VARI and PH 89.75 6.69 72.00 99.83
NGRDI and PH 91.69 7.44 71.34 104.74
ExG and PH 92.83 6.99 76.41 105.42
ExGR and PH 92.38 7.29 76.70 105.83

Figure 4.4 shows the plots of the predicted biomass as a function of the
measured biomass, considering as inputs combinations of the RGB channels
and VIs with the plant height (PH) feature. The curves plot in Fig. 4.4
represent the best RMSE obtained for each input combination, among the
30 runs performed for each of them. Table 4.8 shows the comparative results
of the performance metrics for each case.

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Chapter 4. Results and Discussion 62

(a) Red and PH (b) Green and PH

(c) Blue and PH (d) R, G and PH

(e) R, B and PH (f) G, B and PH

(g) R, G, B and PH (h) RGBVI and PH
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(i) GLI and PH (j) VARI and PH

(k) NGRDI and PH (l) ExG and PH

(m) ExGR and PH

Figure 4.4: Best Linear Regression Performance using as inputs combinations of
the RGB channels and VIs with the plant height (PH): (a) R and PH, (b) G and
PH, (c) B and PH, (d) R, G and PH, (e) R, B and PH, (f) G, B and PH, (g) R, G,
B and PH, (h) RGBVI and PH, (i) GLI and PH, (j) VARI and PH, (k) NGRDI and
PH, (l) ExG and PH, and (m) ExGR and PH.
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Table 4.8: Results of different performance metrics for the developed Linear
Regression models, using as inputs combinations of the RGB channels and VIs with
the plant height (PH).

Best RMSE MAPE
Input (g/m2) (%) R2

R and PH 89.41 55.21 0.29
G and PH 93.88 46.15 0.03
B and PH 89.16 52.47 0.24
R, G and PH 72.64 36.72 0.45
R, B and PH 80.43 47.49 0.24
G, B and PH 83.47 45.64 0.25
R, G, B and PH 68.96 35.02 0.51
RGBVI and PH 78.71 45.04 0.45
GLI and PH 79.89 31.18 0.41
VARI and PH 72.00 31.44 0.43
NGRDI and PH 71.34 33.60 0.46
ExG and PH 76.41 40.85 0.45
ExGR and PH 76.70 42.09 0.52

It is possible to observe in Tab. 4.8 that the RMSE achieved by combining
PH with the R, G and B channels alone, or even combinations between two of
these channels, is higher than the one achieved by combining the VIs with PH.
However, the best RMSE value was achieved by using all RGB channels as
inputs together with PH. On the other hand, the best R-Squared metric was
obtained using ExGR and PH as inputs. Nevertheless, notice that it is only
slightly higher than the one found with R, G and B and plant height, both
being over 0.5.

Moreover, the linear regression with GLI and PH as inputs presents the
lower MAPE of all. It is important to note that R, G and B together, NGRDI
and VARI have been presenting the best results until now (lower RMSEs).
When simulated along with PH, they reach better performance, but it is still
not satisfactory to estimate biomass accurately.

4.1.2.3
RGB-based and DF

The next tests were done combining RGB channels and VIs with the
altitude of the drone flight. First, the RMSE analysis is shown in Tab. 4.9.
The plots of the best results among the 30 runs performed for each inputs
combination can be seen on Fig. 4.5 and the comparative results of the
performance metrics for each case are shown in Tab. 4.10.
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Table 4.9: Analysis of RMSE performance using Linear Regression, for combina-
tions of the RGB channels and VIs with DF.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and DF 101.78 9.00 75.88 117.35
G and DF 111.96 5.43 98.03 122.80
B and DF 103.48 6.67 88.47 118.19
R, G and DF 92.17 7.22 77.32 106.62
R, B and DF 101.01 6.30 89.98 115.45
G, B and DF 97.19 5.18 88.28 109.22
R, G, B and DF 90.49 6.09 80.58 100.49
RGBVI and DF 97.51 6.60 85.96 112.38
GLI and DF 95.83 7.66 80.14 113.00
VARI and DF 90.62 7.45 72.89 106.09
NGRDI and DF 93.77 8.29 81.22 113.48
ExG and DF 94.70 7.92 79.47 111.86
ExGR and DF 97.76 7.37 83.60 108.49

(a) Red and DF (b) Green and DF

(c) Blue and DF (d) R, G and DF
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(e) R, B and DF (f) G, B and DF

(g) R, G, B and DF (h) RGBVI and DF

(i) GLI and DF (j) VARI and DF

(k) NGRDI and DF (l) ExG and DF
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(m) ExGR and DF

Figure 4.5: Best Linear Regression Performance using as inputs combinations of
the RGB channels and VIs with the altitude of the drone flight (DF): (a) R and DF,
(b) G and DF, (c) B and DF, (d) R, G and DF, (e) R, B and DF, (f) G, B and DF,
(g) R, G, B and DF, (h) RGBVI and DF, (i) GLI and DF, (j) VARI and DF, (k)
NGRDI and DF, (l) ExG and DF, and (m) ExGR and DF.

Table 4.10: Results of different performance metrics for the developed Linear
Regression models, using as inputs combinations of the RGB channels and VIs with
the altitude of the drone flight (DF).

Best RMSE MAPE
Input (g/m2) (%) R2

R and DF 75.88 40.16 0.24
G and DF 98.03 65.02 0.06
B and DF 88.47 51.86 0.18
R, G and DF 77.32 39.79 0.38
R, B and DF 89.98 54.23 0.17
G, B and DF 88.28 40.41 0.34
R, G, B and DF 80.58 39.88 0.41
RGBVI and DF 85.96 52.49 0.41
GLI and DF 80.14 44.33 0.38
VARI and DF 72.89 37.24 0.47
NGRDI and DF 81.22 49.81 0.24
ExG and DF 79.47 39.07 0.40
ExGR and DF 83.60 45.39 0.35

In this test, the best results in terms of RMSE, MAPE and R-Squared
were obtained using VARI and DF as inputs. However, comparing these results
with the previous ones, that evaluated combinations of the RGB channels and
VIs with the PH, it is noticeable that the PH contributes more significantly
to the enhancement of the performance metrics than the DF. Notice that the
performance of all inputs combinations presented in Tab. 4.10 are worst than
the ones shown in Tab. 4.8.

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Chapter 4. Results and Discussion 68

4.1.2.4
RGB-based and GI

The next tests were done combining the RGB channels and the VIs with
intensity of green on the histogram (GI). The RMSE analysis is shown in
Tab. 4.11.

Table 4.11: Analysis of RMSE performance using Linear Regression, for combina-
tions of the RGB channels and VIs with GI.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and GI 101.05 8.51 81.23 118.64
G and GI 108.16 5.47 97.90 118.99
B and GI 102.31 6.96 88.09 115.56
R, G and GI 90.46 7.22 72.73 104.17
R, B and GI 101.56 7.44 84.73 116.31
G, B and GI 98.86 6.23 85.08 112.31
R, G, B and GI 92.29 7.14 79.00 106.40
RGBVI and GI 95.65 7.03 82.75 109.29
GLI and GI 95.30 7.34 79.06 109.27
VARI and GI 92.83 10.07 75.97 117.63
NGRDI and GI 93.61 8.29 77.59 110.55
ExG and GI 96.48 7.16 82.15 113.06
ExGR and GI 91.92 9.54 71.01 111.66

The plots of the best results among the 30 runs performed for each
input combination can be seen on Fig. 4.6 and the comparative results of the
performance metrics for each case are shown in Tab. 4.12.

(a) Red and GI (b) Green and GI
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(c) Blue and GI (d) R, G and GI

(e) R, B and GI (f) G, B and GI

(g) R, G, B and GI (h) RGBVI and GI

(i) GLI and GI (j) VARI and GI
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(k) NGRDI and GI (l) ExG and GI

(m) ExGR and GI

Figure 4.6: Best Linear Regression Performance using as inputs combinations of
the RGB channels and VIs with the green intensity (GI): (a) R and GI, (b) G and
GI, (c) B and GI, (d) R, G and GI, (e) R, B and GI, (f) G, B and GI, (g) R, G, B
and GI, (h) RGBVI and GI, (i) GLI and GI, (j) VARI and GI, (k) NGRDI and GI,
(l) ExG and GI, and (m) ExGR and GI.

The obtained results show different combination of inputs leading to the
best performances, depending on the considered performance metrics. The
combination of the GI with ExGR showed the best RMSE, with RGBVI the
best MAPE and with R and G the best R-Squared. In this test, the best
input combinations are more diverse than the ones found before. Moreover, it
is noticeable that they do not reach RMSE values as low as the ones found
with the inputs combined with the plant height. Surprisingly, the best MAPE
obtained here is better than all others, obtained in the previous tests. However,
it is important to highlight that our algorithm search for the coefficients that
minimize the RMSE, so that it does not ensure the minimization of MAPE
or maximization of R-Squared. Probably, the randomly chosen test set that
computed the performance metrics of model with RGBVI and GI as inputs
have higher biomass values than the one used for the model with ExGR and
GI as inputs, for example. Hence, this could have contributed to the lower
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Table 4.12: Results of different performance metrics for the developed Linear
Regression models, using as inputs combinations of the RGB channels and VIs with
the green intensity (GI).

Best RMSE MAPE
Input (g/m2) (%) R2

R and GI 81.23 50.39 0.27
G and GI 97.90 70.84 0.04
B and GI 88.09 57.96 0.05
R, G and GI 72.73 36.23 0.43
R, B and GI 84.73 51.60 0.28
G, B and GI 85.08 49.32 0.33
R, G, B and GI 79.00 42.71 0.42
RGBVI and GI 82.75 30.54 0.29
GLI and GI 79.06 35.56 0.33
VARI and GI 75.97 38.19 0.38
NGRDI and GI 77.59 38.07 0.39
ExG and GI 82.15 41.77 0.34
ExGR and GI 71.01 36.96 0.40

MAPE values obtained with the RGBVI and GI inputs in spite of the lower
RMSE of the model implemented with ExGR and GI as inputs.

4.1.2.5
RGB-based and SR

The next tests were done combining the RGB channels and the VIs with
solar radiation (SR). The analysis of RMSE is shown in Tab. 4.13. The plots
of the best results among the 30 runs performed for each inputs combination
can be seen on Fig. 4.7 and the comparative results of the performance metrics
for each case are shown in Tab. 4.14.
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Table 4.13: Analysis of RMSE performance using Linear Regression, for combina-
tions of the RGB channels and VIs with SR.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and SR 102.34 5.66 89.45 114.05
G and SR 110.84 7.30 97.82 130.29
B and SR 97.98 5.85 87.37 110.40
R, G and SR 88.57 7.65 72.47 100.41
R, B and SR 98.63 6.14 85.01 109.00
G, B and SR 91.87 5.75 78.27 101.65
R, G, B and SR 85.27 6.09 74.58 100.31
RGBVI and SR 90.75 5.38 79.06 101.26
GLI and SR 85.10 6.82 70.75 96.24
VARI and SR 86.27 7.06 73.95 99.74
NGRDI and SR 87.40 8.33 71.25 100.33
ExG and SR 89.71 5.54 77.58 99.22
ExGR and SR 88.87 6.39 76.42 106.31

(a) Red and SR (b) Green and SR

(c) Blue and SR (d) R, G and SR
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(e) R, B and SR (f) G, B and SR

(g) R, G, B and SR (h) RGBVI and SR

(i) GLI and SR (j) VARI and SR

(k) NGRDI and SR (l) ExG and SR
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(m) ExGR and SR

Figure 4.7: Best Linear Regression Performance using as inputs combinations of
the RGB channels and VIs with the solar radiation (SR): (a) R and SR, (b) G and
SR, (c) B and SR, (d) R, G and SR, (e) R, B and SR, (f) G, B and SR, (g) R, G,
B and SR, (h) RGBVI and SR, (i) GLI and SR, (j) VARI and SR, (k) NGRDI and
SR, (l) ExG and SR, and (m) ExGR and SR.

Table 4.14: Results of different performance metrics for the developed Linear
Regression models, using as inputs combinations of the RGB channels and VIs with
the solar radiation (SR).

Best RMSE MAPE
Input (g/m2) (%) R2

R and SR 89.45 48.69 0.22
G and SR 97.82 48.68 0.01
B and SR 87.37 41.41 0.31
R, G and SR 72.47 40.81 0.49
R, B and SR 85.01 45.69 0.27
G, B and SR 78.27 40.72 0.36
R, G, B and SR 74.58 31.60 0.51
RGBVI and SR 79.06 37.98 0.37
GLI and SR 70.75 37.61 0.56
VARI and SR 73.95 48.97 0.48
NGRDI and SR 71.25 35.01 0.42
ExG and SR 77.58 43.39 0.42
ExGR and SR 76.42 38.93 0.38

Among the analyzed combinations of the SR with RGB channels and
VIs, the best RMSE and R-Squared were achieved using SR and GLI as
inputs of the linear regression model. Furthermore, it is noteworthy that this
input configuration leads to the highest R-Squared among all cases previously
evaluated in this subsection. On the other hand, the minimum MAPE was
obtained using R, G, B and SR as inputs. In addition, the results obtained for
all the VIs and also for the R, G and B channels together showed, in general,
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smaller errors and higher R-Squared than the other input’s configurations
previously evaluated. This is an important factor to observe in future tests, as
solar radiation is a promising feature to improve results when combined with
RGB-based inputs.

4.1.3
Comparative Results

Gathering the three best results obtained for each one of the tested
input’s combinations, except for the combination of the channels that had only
one result collected, we built Tab. 4.15. The cases considered as best results
are those with the lowest RMSEs in each one of the tables presented in this
section, which are: (i) Separate Inputs for the RGB-based; (ii) Separate Inputs
for the features; (iii) Combination of channels; (iv) Combined Inputs between
VIs and channels with PH; (v) Combined Inputs between VIs and channels
with DF; (vi) Combined Inputs between VIs and channels with GI; and (vii)
Combined Inputs between VIs and channels with SR. The marked results on
the table show the three best RMSE values in blue and the best associated
MAPE and R-Squared in red.

Table 4.15: Best results for Linear Regression.

Best RMSE MAPE
Input (g/m2) (%) R2

VARI 78.41 47.02 0.39
NGRDI 79.74 49.18 0.38
ExGR 79.96 44.67 0.37
DF 96.08 53.07 -0.01
R, G and B 79.90 38.17 0.43
R, G, B and PH 68.96 35.02 0.51
VARI and PH 72.00 31.44 0.43
NGRDI and PH 71.34 33.60 0.46
R and DF 75.88 40.16 0.24
R, G and DF 77.32 39.79 0.38
VARI and DF 72.89 37.24 0.47
R, G and GI 72.73 36.23 0.43
VARI and GI 75.97 38.19 0.38
ExGR and GI 71.01 36.96 0.40
R, G and SR 72.47 40.81 0.49
GLI and SR 70.75 37.61 0.56
NGRDI and SR 71.25 35.01 0.42

The obtained results indicate that, among the RGB channels combi-
nations and the VIs, the best performances were achieved with R, G and B
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together, VARI, NGRDI and ExGR. When comparing with other features com-
bined with the RGB channels and VIs, the ones that contributes the most to
performance enhancements are plant height and solar radiation. Indeed, they
reach the best results in this section.

It is possible to assume by now that these inputs are more capable of
delivering better results than others. This will be further stressed in the next
sections, that deal with the development of the Nonlinear Regression and the
Neural Network Regression. In MLP, the second-hand inputs (PH, DF, GI and
SR) will be tested with more combinations, as these features can contribute
to the network accuracy.

Finally, note that the results achieved by the linear regression are not
satisfactory regarding the metrics of evaluation. The best RMSE (68.96 g/m2)
and the best R2 (0.56) doesn’t guarantee a good relationship between the input
and output, so this regression can not be considered as a reliable method to
estimate biomass on a pasture for this work.
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4.2
Nonlinear Regression

This section presents the best fitting plots and performance metrics
achieved by the MNLR regression models, after running the algorithm 30 times
for each tested configuration. First, the inputs were analyzed separately to
evaluate the influence of each one of them in the output, and then, they were
combined aiming at boosting the performance metrics, similarly to what was
done for the Linear Regression. As a comparison analysis, a table depicting the
average, standard deviation, lower and upper bounds of RMSE is presented
for each input or input combination analyzed. The corresponding MAPE and
R-Squared associated to the minimum RMSE achieved for each analyzed input
configuration are shown in a second table. Graphs with the target (measured
biomass) in the horizontal axis and the achieved output (predicted biomass)
in the vertical axis are also presented for the case that lead to the minimum
RMSE, among the 30 runs performed for each input configuration.

4.2.1
Separate inputs

This subsection presents the analysis of the nonlinear regression models
tested with separate inputs, firstly with the RGB-based ones and then with
features. As the inputs in this subsection were computed separately, the
equation used to perform the MNLR regression is Eq. (3-3).

4.2.1.1
RGB-based

Figure 4.8 shows the fitting plot of the measured biomass by the
predicted biomass, associated to the best RMSE achieved for each input
configuration. Moreover, Tab. 4.16 shows the RMSE analysis and Tab. 4.17
the respective performance metrics.
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Table 4.16: Analysis of RMSE performance for the RGB-based as separate inputs
using Nonlinear Regression.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R 105.40 9.08 85.20 125.11
G 107.31 6.59 93.78 120.28
B 105.74 7.41 89.31 123.63
RGBVI 97.39 6.89 82.11 108.78
GLI 93.97 6.51 81.94 107.36
VARI 92.42 7.99 79.77 109.57
NGRDI 94.10 6.51 80.81 109.72
ExG 95.92 7.32 83.36 108.77
ExGR 94.18 6.99 79.68 105.60

(a) Red (b) Green

(c) Blue (d) RGBVI
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(e) GLI (f) VARI

(g) NGRDI (h) ExG

(i) ExGR

Figure 4.8: Best Nonlinear Regression Performance for the RGB-based as Separate
Inputs: (a) Red, (b) Green, (c) Blue, (d) RGBVI, (e) GLI, (f) VARI, (g) NGRDI,
(h) ExG, (i) ExGR, (j) PH, (k) DF, (l) GI and (m) SR
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Table 4.17: Results for the RGB-based as separate inputs using Nonlinear Regres-
sion.

Best RMSE MAPE
Input (g/m2) (%) R2

R 85.20 52.46 0.19
G 93.78 57.04 0.14
B 89.31 54.94 0.18
RGBVI 82.11 36.37 0.32
GLI 81.94 36.34 0.27
VARI 79.77 43.18 0.36
NGRDI 80.81 43.14 0.28
ExG 83.36 43.95 0.35
ExGR 79.68 37.06 0.38

Notice that, by observing Tab. 4.17, with the nonlinear regression, the
best result considering the lower RMSE is found using VARI as an input. The
same evaluation was done in the Linear Regression when tested the RGB-
based inputs separately. GLI and ExGR show the best MAPE and R-Squared,
respectively. However, none of them reach acceptable performance metrics
alone, as the higher R-Squared, found with ExGR input, is only 0.38 and
the best linear regression reached a R-Squared of 0.56.

4.2.1.2
Features

Figure 4.9 shows the fitting plot of the measured biomass by the
predicted biomass, associated to the best RMSE achieved for each input
configuration. Moreover, Tab. 4.18 shows the RMSE analysis and Tab. 4.19
the respective performance metrics.

Table 4.18: Analysis of RMSE performance for the features as separate inputs,
using Nonlinear Regression.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
PH 110.61 6.13 101.26 126.28
DF 113.47 8.12 99.16 134.41
GI 112.10 6.05 96.47 122.78
SR 111.76 5.71 99.23 120.66
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(a) PH (b) DF

(c) GI (d) SR

Figure 4.9: Best Nonlinear Regression Performance for the features as Separate
Inputs: (a) PH, (b) DF, (c) GI and (d) SR

Table 4.19: Results for the features as separate inputs, using Nonlinear Regression.

Best RMSE MAPE
Input (g/m2) (%) R2

PH 101.26 70.32 0.10
DF 99.16 64.73 0.01
GI 96.47 63.92 -0.05
SR 99.23 54.45 0.00

For the nonlinear regression’s results with the features as unique inputs,
we can observe that they do not correlate well with the output, even after
increasing the degree of the equation, when comparing with linear regression.
They will be further analyzed in MLP Regression as it can generalize suffi-
ciently for these inputs.
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4.2.2
Combined inputs

As done in the development process of the linear regression model, com-
binations of the R, G and B channels as inputs will be tested to investigate
if they reach better metrics. Moreover, in this subsection, different combina-
tions of the inputs based on RGB and features were made in order to analyze
the response of the nonlinear regression model, when increasing the number of
coefficients and independent variables in the equation.

4.2.2.1
Combinations of R, G and B

Once again, it is noticeable that R (red), G (green) and B (blue) don’t
correlate so well with the outputs, when tested separately. Hereafter, they will
be combined among themselves and tested to observe these associations from
now on. The RMSE analysis is shown in Tab. 4.20. The metric results are
shown in Tab. 4.21 and in Fig. 4.10.

Table 4.20: Analysis of RMSE performance for different combinations of the RGB
channels, using Nonlinear Regression.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R, G 90.47 5.86 81.47 105.48
R, B 101.70 9.44 81.27 120.82
G, B 94.52 6.56 83.84 112.85
R, G, B 89.26 6.81 79.28 105.99

(a) R and G (b) R and B
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(c) G and B (d) R, G and B

Figure 4.10: Best Nonlinear Regression Performance for Combined Inputs between
R, G and B: (a) R and G, (b) R and B, (c) G and B, and (d) R, G and B

Table 4.21: Results for combined R, G and B using Nonlinear Regression

Best RMSE MAPE
Input (g/m2) (%) R2

R and G 81.47 46.25 0.29
R and B 81.27 49.81 0.27
G and B 83.84 47.98 0.39
R, G and B 79.28 41.83 0.37

As observed for the linear regression model, the results of the nonlinear
regression also indicate that the RMSE can be reduced by combining the
RGB channels. In particular, among the analyzed cases, the best RMSE is
achieved by using all RGB channels as inputs of the nonlinear model. On the
other hand, comparing this study with the equivalent test performed for the
linear model (Tab. 4.20), it can be noticed that the nonlinear model did not
considerably improve the performance metrics, since for some of the same input
configurations the linear model presented a better performance. Therefore, the
dependency of the estimated biomass (output) with the RGB channels (inputs)
do not seem to significantly benefits from a more complex nonlinear model.
Moreover, nonlinear regression does not achieve R-Squared as high as the linear
regression.

The next subsections presents the results of MNLR when using two or
more features as inputs, aiming to analyze if the performance metrics can be
improved by adding more information to the model’s input.
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4.2.2.2
RGB-based and PH

Table 4.22 shows the analysis of RMSE data in the 30 runs executed for
each one of the inputs combined with the plant height. The table shows the
average value, standard deviation, lower and upper bounds.

Table 4.22: Analysis of RMSE performance using Nonlinear Regression, for com-
binations of the RGB channels and VIs with PH.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and PH 100.37 7.83 84.30 110.90
G and PH 101.92 7.19 88.48 113.21
B and PH 101.37 8.16 88.83 120.30
R, G and PH 83.04 6.31 67.27 94.55
R, B and PH 94.98 8.29 79.41 108.78
G, B and PH 85.46 6.90 72.74 101.95
R, G, B and PH 81.50 5.68 73.99 95.04
RGBVI and PH 92.53 8.10 71.73 105.11
GLI and PH 93.14 6.60 79.13 107.87
VARI and PH 86.11 6.66 73.93 102.97
NGRDI and PH 88.46 7.51 74.14 101.48
ExG and PH 90.21 8.06 75.87 106.55
ExGR and PH 89.97 7.87 73.75 103.04

Figure 4.11 shows the plots of the predicted biomass as a function of the
measured biomass, considering as inputs combinations of the RGB channels
and VIs with the plant height (PH) feature. The curves plot in Fig. 4.11
represent the best RMSE obtained for each input combination, among the
30 runs performed for each of them. On the other hand, Tab. 4.23 shows the
MAPE and S-Squared associated to the best RMSE obtained for each input
combination.
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(a) Red and PH (b) Green and PH

(c) Blue and PH (d) R, G and PH

(e) R, B and PH (f) G, B and PH

(g) R, G, B and PH (h) RGBVI and PH
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(i) GLI and PH (j) VARI and PH

(k) NGRDI and PH (l) ExG and PH

(m) ExGR and PH

Figure 4.11: Best Nonlinear Regression Performance using as inputs combinations
of the RGB channels and VIs with the plant height (PH): (a) R and PH, (b) G and
PH, (c) B and PH, (d) R, G and PH, (e) R, B and PH, (f) G, B and PH, (g) R, G,
B and PH, (h) RGBVI and PH, (i) GLI and PH, (j) VARI and PH, (k) NGRDI and
PH, (l) ExG and PH, and (m) ExGR and PH.
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Table 4.23: Results of different performance metrics for the developed Nonlinear
Regression models, using as inputs combinations of the RGB channels and VIs with
the plant height (PH).

Best RMSE MAPE
Input (g/m2) (%) R2

R and PH 84.30 38.78 0.31
G and PH 88.48 59.53 0.07
B and PH 88.83 57.19 0.23
R, G and PH 67.27 38.64 0.50
R, B and PH 79.41 44.03 0.32
G, B and PH 72.74 39.87 0.34
R, G, B and PH 73.99 38.10 0.49
RGBVI and PH 71.73 30.70 0.44
GLI and PH 79.13 35.78 0.39
VARI and PH 73.93 39.84 0.53
NGRDI and PH 74.14 39.94 0.40
ExG and PH 75.87 35.33 0.48
ExGR and PH 73.75 36.44 0.51

Notice that the performance metrics shown in Tab. 4.23 indicate that
the best RMSE result is found using R and G as inputs along with the PH, as
highlighted in Fig. 4.11. The hypothesis for this fact was stressed in 4.1.2.1 and
it can be applicable for both results. Nonetheless, surprisingly, the third best
RMSE result was found for the G and B input along with PH, which contradicts
the referred hypothesis. In this case, the analysis with PH indicates that blue
color can have an important influence in the result as well. Among the VIs,
RGBVI and VARI, which include blue color in their definitions, presented the
lowest MAPEs and the highest R-Squared, respectively.

4.2.2.3
RGB-based and DF

The next test was done by combining RGB channels and VIs with
the altitude of the drone flight (DF). First, the RMSE analysis is shown in
Tab. 4.24. The plots of the best results among the 30 runs performed for each
inputs combination can be seen on Fig. 4.12 and the comparative results of the
performance metrics for each case are shown in Tab. 4.25.
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Table 4.24: Analysis of RMSE performance using Nonlinear Regression, for com-
binations of the RGB channels and VIs with DF.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and DF 102.69 8.99 81.73 126.44
G and DF 109.02 7.17 92.59 128.03
B and DF 104.05 7.70 86.89 121.80
R, G and DF 91.01 8.19 77.62 108.91
R, B and DF 99.55 7.39 83.47 114.28
G, B and DF 95.19 6.97 81.84 110.93
R, G, B and DF 88.41 4.72 79.09 97.89
RGBVI and DF 94.11 9.26 74.01 113.06
GLI and DF 91.70 7.20 76.06 109.59
VARI and DF 92.29 10.58 75.73 118.98
NGRDI and DF 89.10 7.63 77.61 102.22
ExG and DF 93.01 8.31 75.04 109.45
ExGR and DF 92.15 6.99 75.06 106.59

(a) Red and DF (b) Green and DF

(c) Blue and DF (d) R, G and DF
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(e) R, B and DF (f) G, B and DF

(g) R, G, B and DF (h) RGBVI and DF

(i) GLI and DF (j) VARI and DF

(k) NGRDI and DF (l) ExG and DF
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(m) ExGR and DF

Figure 4.12: Best Nonlinear Regression Performance using as inputs combinations
of the RGB channels and VIs with the altitude of the drone flight (DF): (a) R and
DF, (b) G and DF, (c) B and DF, (d) R, G and DF, (e) R, B and DF, (f) G, B and
DF, (g) R, G, B and DF, (h) RGBVI and DF, (i) GLI and DF, (j) VARI and DF,
(k) NGRDI and DF, (l) ExG and DF, and (m) ExGR and DF.

Table 4.25: Results of different performance metrics for the developed Nonlinear
Regression models, using as inputs combinations of the RGB channels and VIs with
the altitude of the drone flight (DF).

Best RMSE MAPE
Input (g/m2) (%) R2

R and DF 81.73 47.88 0.26
G and DF 92.59 54.33 0.19
B and DF 86.89 49.92 0.18
R, G and DF 77.62 42.87 0.46
R, B and DF 83.47 43.70 0.26
G, B and DF 81.84 36.52 0.37
R, G, B and DF 79.09 39.22 0.37
RGBVI and DF 74.01 38.51 0.43
GLI and DF 76.06 42.49 0.36
VARI and DF 75.73 33.86 0.44
NGRDI and DF 77.61 43.88 0.44
ExG and DF 75.04 39.33 0.39
ExGR and DF 75.06 37.29 0.45

Analyzing the results obtained from combinations with the altitude of
the drone flight, RGBVI have the lowest RMSE, VARI the lowest MAPE and
R and G the highest R-Squared. However, it is noteworthy that the RMSE
obtained by using RGBVI and DF as inputs is not so low as RMSE previously
achieved for other input’s combinations.
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4.2.2.4
RGB-based and GI

The next tests were done combining the RGB channels and the VIs with
intensity of green on the histogram (GI). The RMSE analysis is shown in
Tab. 4.26. The plots of the best results among the 30 runs performed for each
input’s combination can be seen on Fig. 4.13 and the comparative results of
the performance metrics for each case are shown in Tab. 4.27.

Table 4.26: Analysis of RMSE performance using Nonlinear Regression, for com-
binations of the RGB channels and VIs with GI.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and GI 99.49 8.82 78.51 115.33
G and GI 106.00 7.07 81.85 117.85
B and GI 101.17 7.31 87.79 116.21
R, G and GI 87.89 5.59 79.08 104.49
R, B and GI 98.22 7.75 84.90 114.52
G, B and GI 91.58 5.22 77.96 101.66
R, G, B and GI 87.75 8.21 72.51 106.14
RGBVI and GI 97.82 8.22 83.79 110.39
GLI and GI 94.13 9.45 75.96 114.53
VARI and GI 90.22 8.48 76.04 106.31
NGRDI and GI 91.61 6.74 79.96 108.26
ExG and GI 93.92 7.42 72.38 107.34
ExGR and GI 92.14 8.05 74.62 108.31

(a) Red and GI (b) Green and GI
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(c) Blue and GI (d) R, G and GI

(e) R, B and GI (f) G, B and GI

(g) R, G, B and GI (h) RGBVI and GI

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Chapter 4. Results and Discussion 93

(i) GLI and GI (j) VARI and GI

(k) NGRDI and GI (l) ExG and GI

(m) ExGR and GI

Figure 4.13: Best Nonlinear Regression Performance using as inputs combinations
of the RGB channels and VIs with the green intensity (GI): (a) R and GI, (b) G
and GI, (c) B and GI, (d) R, G and GI, (e) R, B and GI, (f) G, B and GI, (g) R, G,
B and GI, (h) RGBVI and GI, (i) GLI and GI, (j) VARI and GI, (k) NGRDI and
GI, (l) ExG and GI, and (m) ExGR and GI.
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Table 4.27: Results of different performance metrics for the developed Nonlinear
Regression models, using as inputs combinations of the RGB channels and VIs with
the green intensity (GI).

Best RMSE MAPE
Input (g/m2) (%) R2

R and GI 78.51 41.46 0.34
G and GI 81.85 52.53 0.20
B and GI 87.79 51.50 0.27
R, G and GI 79.08 35.33 0.46
R, B and GI 84.90 41.97 0.30
G, B and GI 77.96 43.68 0.33
R, G, B and GI 72.51 35.02 0.52
RGBVI and GI 83.79 44.92 0.33
GLI and GI 75.96 41.19 0.33
VARI and GI 76.04 39.56 0.31
NGRDI and GI 79.96 47.57 0.37
ExG and GI 72.38 38.18 0.38
ExGR and GI 74.62 32.63 0.50

In this case, the model using ExGR and GI as inputs have the best
MAPE and using R, G, B and GI the best R2, considering their best RMSE.
However, the lowest RMSE is obtained for the nonlinear regression model with
ExG and GI as inputs. Notice that this VI have not appeared until now as one
of the inputs more directly associated to performance enhancements. However,
it should be pointed out that the RMSE obtained with R, G, B and GI is only
slightly higher (72.51 g/m2 vs. 72.38 g/m2).

4.2.2.5
RGB-based and SR

The next tests were done combining the RGB channels and the VIs with
solar radiation (SR). The analysis of RMSE is shown in Tab. 4.28. The plots of
the best results among the 30 runs performed for each inputs combination can
be seen on Fig. 4.14 and the comparative results of the performance metrics
for each case are shown in Tab. 4.29.
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Table 4.28: Analysis of RMSE performance using Nonlinear Regression, for com-
binations of the RGB channels and VIs with SR.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and SR 96.08 8.65 78.54 117.79
G and SR 104.77 7.29 90.31 118.41
B and SR 99.53 8.14 83.92 121.43
R, G and SR 83.59 7.24 69.68 108.10
R, B and SR 93.70 6.61 79.57 107.92
G, B and SR 89.10 7.70 74.46 103.15
R, G, B and SR 84.27 5.80 74.32 100.74
RGBVI and SR 91.46 7.18 80.82 107.46
GLI and SR 87.77 8.28 70.30 105.76
VARI and SR 85.75 8.29 72.19 100.49
NGRDI and SR 86.20 8.60 65.24 98.69
ExG and SR 87.84 7.13 74.21 105.52
ExGR and SR 87.90 8.19 73.49 105.92

(a) Red and SR (b) Green and SR

(c) Blue and SR (d) R, G and SR
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(e) R, B and SR (f) G, B and SR

(g) R, G, B and SR (h) RGBVI and SR

(i) GLI and SR (j) VARI and SR

(k) NGRDI and SR (l) ExG and SR
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(m) ExGR and SR

Figure 4.14: Best Nonlinear Regression Performance using as inputs combinations
of the RGB channels and VIs with the solar radiation (SR): (a) R and SR, (b) G
and SR, (c) B and SR, (d) R, G and SR, (e) R, B and SR, (f) G, B and SR, (g) R,
G, B and SR, (h) RGBVI and SR, (i) GLI and SR, (j) VARI and SR, (k) NGRDI
and SR, (l) ExG and SR, and (m) ExGR and SR.

Table 4.29: Results of different performance metrics for the developed Nonlinear
Regression models, using as inputs combinations of the RGB channels and VIs with
the solar radiation (SR).

Best RMSE MAPE
Input (g/m2) (%) R2

R and SR 78.54 43.68 0.44
G and SR 90.31 48.90 0.20
B and SR 83.92 59.35 0.25
R, G and SR 69.68 32.91 0.52
R, B and SR 79.57 38.58 0.36
G, B and SR 74.46 40.28 0.43
R, G, B and SR 74.32 38.21 0.44
RGBVI and SR 80.82 43.92 0.45
GLI and SR 70.30 35.66 0.52
VARI and SR 72.19 41.97 0.45
NGRDI and SR 65.24 27.65 0.54
ExG and SR 74.21 30.38 0.47
ExGR and SR 73.49 40.28 0.46

The obtained results indicate that the combination of NGRDI and SR
leads to the best performance, among all combinations between the SR and
RGB channels or VI’s. Notice that, among the results shown in Tab. 4.29, this
input combination presented the lowest RMSE, lowest MAPE and highest R-
Squared. Furthermore, it should be highlighted that the nonlinear model with
NGRDI and SR as inputs obtained the best performance metrics, among all
input’s combinations analyzed along this section. This VI is a good candidate
to reach better results in MLP, when simulated with the SR measurement.

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Chapter 4. Results and Discussion 98

4.2.3
Comparative Results

Gathering the two best results obtained for each one of the tested input’s
combinations, we built Tab. 4.30. Similarly to what was done in subsection
4.1.3, the selection criteria adopted to define the best results gives priority to
the best RMSEs in each one of the tables presented in this section, which are: (i)
Separate Inputs for the RGB-based; (ii) Separate Inputs for the features; (iii)
Combination of channels; (iv) Combined Inputs between VIs and channels with
PH; (v) Combined Inputs between VIs and channels with DF; (vi) Combined
Inputs between VIs and channels with GI; and (vii) Combined Inputs between
VIs and channels with SR. The marked results on the table show the three
best RMSE values in blue and the best associated MAPE and R-Squared in
red.

Table 4.30: Best results for Nonlinear Regression.

Best RMSE MAPE
Input (g/m2) (%) R2

VARI 79.77 43.18 0.36
NGRDI 80.81 43.14 0.28
ExGR 79.68 37.06 0.38
GI 96.47 63.92 -0.05
R, G and B 79.28 41.83 0.37
R, G and PH 67.27 38.64 0.50
G, B and PH 72.74 39.87 0.34
RGBVI and PH 71.73 30.70 0.44
RGBVI and DF 74.01 38.51 0.43
ExG and DF 75.04 39.33 0.39
ExGR and DF 75.06 37.29 0.45
R, G, B and GI 72.51 35.02 0.52
ExG and GI 72.38 38.18 0.38
ExGR and GI 74.62 32.63 0.50
R, G and SR 69.68 32.91 0.52
GLI and SR 70.30 35.66 0.52
NGRDI and SR 65.24 27.65 0.54

Comparing the results shown in Tab. 4.15 and Tab. 4.30, it is noticeable
that ExGR, VARI, NGRDI, and combinations between the R and G channels
and among all RGB channels together are contained in both best results tables,
for linear and nonlinear regressions. Therefore, note that these inputs are good
candidates to help the MLP that will be implemented in the next subsection
to reach satisfactory results in the biomass estimation task.
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On the other hand, GLI appeared only in Tab. 4.13 (best results for linear
regression), and ExG and RGBVI appeared only in Tab. 4.26 (best results for
nonlinear regression). All other VIs and RGB channels combinations did not
appeared among the best inputs neither in linear nor nonlinear regressions.

Furthermore, the linear regression achieved better results with the RGB
channels and VIs alone, and also combining them with the DF and GI features.
On the other hand, the nonlinear regression achieved better results with the
PH and SR features, that seems to further benefit from a model that could
adjust to the nonlinearities of their relation with the estimated biomass.

Moreover, the lowest RMSE among all cases analyzed using linear
and nonlinear regressions is found when combining NGRDI with the Solar
Radiation as inputs of the nonlinear regression model. That case also reached
the lowest MAPE and highest R-Squared, so they will be carefully analyzed
as potential candidates to be used as inputs of the neural network model
that will be presented in the next subsection. Besides, as expected, the plant
height feature seem to contribute to the enhancement of the performance of the
linear and nonlinear regressions, since the best RMSE of the linear regression is
obtained by using the PH as input and the second best RMSE of the nonlinear
regression is achieved with PH as input. Note that using PH and SR as inputs
of the neural network is a promising idea for the studies presented in the next
subsection.

Despite that, it is important to note that neither the results achieved
by the nonlinear regression nor by linear regression obtained satisfactory
performance metrics. Using the nonlinear regression model, the lowest RMSE
(65.24 g/m2) is still high and the best R2 (0.54) still doesn’t guarantee a good
relationship between the input and output, so this method also can not be
satisfactorily used to estimate biomass on a pasture.
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4.3
MLP Regression

This section presents the results and discussion about the MLP regression
algorithm, firstly showing the performance metrics obtained by using the RGB
channels and RGB-based VIs as inputs alone and, then, combining them with
other features as plant height (PH), drone flight altitude (DF), intensity of
green light (GI) and solar radiation (SR). As cited in Chapter 3, 70% of
the data set was used for training, 20% for validation and 10% for test. All
performance metrics were calculated based on the test set.

The methodology of the analysis performed in this section is divided in
two main parts. First, each input configuration was trained with the MLP
algorithm in a Layer Sweep method, varying the neurons in each hidden layer
from 4 to 20 neurons, in steps of 2. Moreover, the number of epochs and early
stops were evaluated according 3 different options: 5000/500, 10000/1000 and
50000/5000, respectively. So, each one of the inputs tested in this part is trained
243 times. All performance metrics and and a vector with all output values
estimated by the MLP for the test set are stored. The results are summarized
in tables showing the MLP configuration that reached the best RMSE for each
input configuration. Furthermore, the best RMSE values and their associated
MAPE and R2 are also presented.

In the second part, for each case analyzed, the 3 input’s configurations
associated with the better RMSE values were selected for further analysis.
The MLP configurations that reached the best RMSEs for these 3 input’s
configurations were trained again 30 times, always with the same configuration
that guaranteed their best result. These results are shown in a table considering
again the best RMSE. This was done to reinforce the statistical analysis of the
regression, allowing the analysis of RMSE’s standard deviation, average value,
lower and upper bounds. The final comparative results show the two better
results from each case.

4.3.1
Layer Sweep for Separate Inputs

This subsection represents the first part of the methodology described
in Section 4.3, exclusively for the separate inputs as the RGB-based and the
features of the images.
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4.3.1.1
RGB-based

In this subsection, the inputs are tested separately, as it was performed
in Linear and Nonlinear Regressions. The MLPs associated to each input
configuration were trained 243 times, following the described Layer Sweep
method. To analyze the resulting data statistically, Tab. 4.31 presents the
average value, standard deviation, lower and upper bounds of the resulting
RMSE, computed in the test sets.

Table 4.31: Analysis of RMSE performance for the RGB-based as separate inputs,
using Layer Sweep in MLP Regression.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R 103.85 12.55 70.29 142.56
G 107.58 10.61 80.36 137.98
B 104.15 11.35 74.99 136.59
RGBVI 97.54 9.83 76.83 128.50
GLI 95.56 10.62 73.86 129.24
VARI 91.05 10.42 64.12 118.35
NGRDI 92.38 10.76 63.86 124.23
ExG 96.69 9.76 72.43 120.32
ExGR 91.15 11.41 64.24 132.78

Figure 4.15 shows the regression graphs of the MLP configurations that
produced the best RMSE, among the Layer Sweep results, using separate RGB-
based inputs. Tab. 4.32 shows the amount of neurons in each hidden layer, the
maximum of epochs and early stop related to the best RMSE obtained for each
input configuration. The associated MAPE and R-Squared are also presented
in the same table.

(a) Red (b) Green
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(c) Blue (d) RGBVI

(e) GLI (f) VARI

(g) NGRDI (h) ExG

(i) ExGR

Figure 4.15: Best performance, using Layer Sweep in MLP for the RGB-based as
Separate Inputs: (a) Red, (b) Green, (c) Blue, (d) RGBVI, (e) GLI, (f) NGRDI, (h)
ExG, (i) ExGR.
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Table 4.32: Results for the RGB-based as separate inputs using MLP Regression
with Layer Sweep.

#Early #Layer #Layer Best RMSE MAPE
Input #Epochs Stop 1 2 (g/m2) (%) R2

R 50000 5000 16 6 70.29 40.55 0.24
G 50000 5000 8 14 80.36 47.76 0.08
B 10000 1000 16 14 74.99 39.85 0.21
RGBVI 5000 500 16 20 76.83 30.44 0.37
GLI 10000 1000 16 18 73.86 27.25 0.38
VARI 50000 5000 10 14 64.12 29.16 0.51
NGRDI 10000 1000 10 6 63.86 25.14 0.56
ExG 50000 5000 14 4 72.43 42.38 0.25
ExGR 10000 1000 16 16 64.24 38.64 0.49

The results for the separate inputs using only RGB-based features are
really similar to the Nonlinear Regression best results. They reach almost
the same performance metrics. Hence, the combination of the inputs in MLP
Regression will be further stressed out so that the results are boosted by the
combination of right inputs. Even though, the MLPs with NGRDI, VARI and
ExGR as inputs reached the best RMSEs with really close values between one
to another and very different to the other RGB-based inputs analyzed.

4.3.1.2
Features

To analyze the resulting data statistically, Tab. 4.33 presents the average
value, standard deviation, lower and upper bounds of the resulting RMSE,
computed in the test sets.

Table 4.33: Analysis of RMSE performance for the features as separate inputs,
using Layer Sweep in MLP Regression.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
PH 98.33 11.59 67.97 129.10
DF 114.48 11.26 85.77 153.09
GI 107.87 11.11 80.49 140.34
SR 77.87 10.67 57.32 119.05

Figure 4.16 shows the regression graphs of the MLP configurations that
produced the best RMSE, among the Layer Sweep results, using separate
inputs. Tab. 4.34 shows the amount of neurons in each hidden layer, the
maximum of epochs and early stop related to the best RMSE obtained for each
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input configuration. The associated MAPE and R-Squared are also presented
in the same table.

(a) PH (b) DF

(c) GI (d) SR

Figure 4.16: Best performance, using Layer Sweep in MLP for Separate Inputs:
(a) PH, (b) DF, (c) GI, (d) SR.

Table 4.34: Results for the features as separate inputs, using MLP Regression with
Layer Sweep.

#Early #Layer #Layer Best RMSE MAPE
Input #Epochs Stop 1 2 (g/m2) (%) R2

PH 50000 5000 14 8 67.97 37.34 0.71
DF 5000 500 20 4 85.77 65.30 -0.10
GI 50000 5000 14 10 80.49 43.66 0.12
SR 5000 500 12 10 57.32 42.23 0.60

The results of the MLP regression algorithm show some surprises in
relation to results that may be expected by observing the linear and nonlinear
regressions. The best RMSE for separate inputs was obtained by using Solar
Radiation as input. Although the results obtained by the linear and nonlinear
regressions indicate that SR did not present any significant correlation with
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biomass when analyzed alone, it was expected that this input could boost the
performance metrics as a secondary input. Another surprise is the R-Squared
of the network that have plant height as input. Notice that 0.71 is greater than
any other R-Squared value seen until now.

4.3.2
Layer Sweep for Combined inputs

This subsection presents the results of the MLP regression algorithm
with the layer sweep, using different combinations of the RGB-based and the
features as inputs aiming at analyzing how the performance metrics benefit
from different kinds of information.

4.3.2.1
Combinations of R, G and B

Even with the MLP algorithm, it is noticeable that R (red), G (green)
and B (blue) do not correlate so well with the outputs, when tested separately.
Hereafter, they will be combined among themselves and tested to evaluate if
these associations could enhance the performance metrics. The RMSE analysis
is shown in Tab. 4.35. The metric results are shown in Tab. 4.36 and in Fig. 4.17.

Table 4.35: Analysis of RMSE performance for different combinations of the RGB
channels, using MLP Regression with Layer Sweep.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and G 89.85 9.96 66.71 116.03
R and B 103.05 11.29 79.34 134.13
G and B 95.98 9.02 75.27 119.42
R, G and B 82.70 11.06 60.34 113.75

(a) R and G (b) R and B
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(c) G and B (d) R, G and B

Figure 4.17: Best performance, using MLP regression with Layer Sweep, for
Combined Inputs between R, G and B: (a) R and G, (b) R and B, (c) G and
B, and (d) R, G and B.

Table 4.36: Results for different combinations of the RGB channels, using MLP
Regression with Layer Sweep.

#Early #Layer #Layer Best RMSE MAPE
Input #Epochs Stop 1 2 (g/m2) (%) R2

R and G 10000 1000 16 6 66.71 28.64 0.53
R and B 5000 500 10 20 79.34 52.28 0.22
G and B 50000 5000 6 14 75.27 43.83 0.38
R, G and B 50000 5000 14 12 60.34 28.86 0.57

As expected, it is possible to observe in Tab. 4.36 that the lowest RMSE
occurs for the MLP that uses R, G and B together as inputs. Notice that this
RMSE is also the second lowest of all RMSEs obtained for separate inputs.
Considering our established selection criteria, the MLPs with Solar Radiation
(SR), R, G and B together and NGRDI as inputs will be the three MLPs
chosen to be trained for 30 runs in subsection 4.3.3. Note that VARI will not
be considered for these analysis, because the RMSE achieved by its better
MLP configuration does not lay among the two best RMSEs. Besides, note
that although R, G and B together reached the highest R-Squared among the
cases presented in Tab. 4.36, the best one was obtained by the MLP using plant
height (PH) as input, which reached the best R-Squared so far.

In the next subsections, the MLP networks using as inputs all the RGB-
based VIs and the channels of pixels (separated and combined) were trained
with one new input. The features used as this new input are plant height (PH),
altitude of drone flight (DF), green pixel intensity (GI) and solar radiation
(SR), respectively. Their RMSE statistics will be summarized in a table,
presenting the average values, standard deviations, lower and upper bounds.
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The MLP configuration associated with their best RMSE results will be
shown in a table with their corresponding MAPE and R2, as well as the number
of epochs and early stop. Besides, we also show graphs of the measured versus
the predicted biomass by the MLP networks associated with the best RMSE
of each analyzed input configuration.

4.3.2.2
RGB-based and PH

Tab. 4.37 shows the RMSE statistics related to the results of the MLP
regression model using as inputs the VIs and the RGB channels combined with
the plant height (PH).

Table 4.37: Analysis of RMSE performance using MLP Regression with Layer
Sweep, for combinations of the RGB channels and VIs with PH.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and PH 94.37 11.14 64.89 124.27
G and PH 96.88 9.33 69.38 121.51
B and PH 97.47 11.00 72.38 127.07
R, G and PH 81.02 11.59 52.43 111.11
R, B and PH 88.21 10.90 64.86 126.07
G, B and PH 81.69 11.62 46.65 113.99
R, G, B and PH 70.21 11.42 36.23 114.48
RGBVI and PH 87.80 10.97 62.27 116.30
GLI and PH 85.85 9.95 56.49 116.67
VARI and PH 74.87 11.00 44.20 111.80
NGRDI and PH 78.94 11.29 52.65 112.22
ExG and PH 86.31 10.74 60.42 118.93
ExGR and PH 78.38 9.84 57.80 110.30

Figure 4.18 shows the plots of the predicted biomass as a function of the
measured biomass, considering as inputs combinations of the RGB channels
and VIs with the plant height (PH) feature. The curves plot in Fig. 4.18
represent the best RMSE obtained for each input combination. On the other
hand, Tab. 4.38 shows the MLP configurations associated to the best RMSE
obtained for each input combination, and their respective MAPE and R-
Squared.
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(a) Red and PH (b) Green and PH

(c) Blue and PH (d) R, G and PH

(e) R, B and PH (f) G, B and PH

(g) R, G, B and PH (h) RGBVI and PH
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(i) GLI and PH (j) VARI and PH

(k) NGRDI and PH (l) ExG and PH

(m) ExGR and PH

Figure 4.18: Best Performance MLP with Layer Sweep, using as inputs combina-
tions of the RGB channels and VIs with the plant height (PH): (a) R and PH, (b)
G and PH, (c) B and PH, (d) R, G and PH, (e) R, B and PH, (f) G, B and PH,
(g) R, G, B and PH, (h) RGBVI and PH, (i) GLI and PH, (j) VARI and PH, (k)
NGRDI and PH, (l) ExG and PH, and (m) ExGR and PH.

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Chapter 4. Results and Discussion 110

Table 4.38: Results of different performance metrics for the MLP Regression
model’s associated with the best RMSEs obtained with Layer Sweep, using as inputs
combinations of the RGB channels and VIs with the plant height (PH).

#Early #Layer #Layer Best RMSE MAPE
Input #Epochs Stop 1 2 (g/m2) (%) R2

R and PH 10000 1000 4 20 64.89 42.57 0.42
G and PH 50000 5000 12 4 69.38 40.77 0.60
B and PH 10000 1000 10 12 72.38 31.28 0.30
R, G and PH 50000 5000 8 6 52.43 21.07 0.77
R, B and PH 10000 1000 6 20 64.86 30.49 0.56
G, B and PH 50000 5000 10 12 46.65 24.19 0.86
R, G, B and PH 50000 5000 6 12 36.23 16.57 0.88
RGBVI and PH 5000 500 4 12 62.27 25.31 0.61
GLI and PH 5000 500 12 14 56.49 18.60 0.64
VARI and PH 50000 5000 20 18 44.20 16.99 0.84
NGRDI and PH 50000 5000 18 14 52.65 26.33 0.73
ExG and PH 50000 5000 18 16 60.42 26.41 0.67
ExGR and PH 10000 1000 16 10 57.80 21.37 0.71

This configuration showed the best results so far. The smallest RMSE
ever achieved (36.23 g/m2) is obtained from the combination of R, G, B and
PH as inputs of the MLP with 6 and 12 neurons in its hidden layers. This could
be reached setting 50000 rounds of epochs and 5000 of early stop. Besides, this
MLP configuration also leaded to the smallest MAPE (16.57 %) and highest
R-Squared (0.88). This is a promising result that can be even further improved
after running the algorithm 30 times with the same configuration. Besides, the
MLPs configurations with R, G and B together, G and B, and VARI will also
be trained again in the second part, in order to assure this performance. It is
possible to notice that most of the input’s combinations achieved better results
than the MLPs with separate inputs and Linear or Nonlinear Regressions,
considering any configuration. It is simple to conclude that the addition of
the plant height to the model increases the performance significantly and,
consequently, it is highly recommended to use this feature as input of the
MLPs.

4.3.2.3
RGB-based and DF

The second configuration of input’s combinations adds the altitude of
drone flight (DF) as an input together with the VIs and RGB channel.
Table 4.39 shows the RMSE statistics related to the results of the MLP
regression models developed for these new sets of inputs.
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Table 4.39: Analysis of RMSE performance using MLP Regression with Layer
Sweep, for combinations of the RGB channels and VIs with DF.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and DF 104.30 12.76 72.35 136.41
G and DF 108.36 9.87 81.66 139.04
B and DF 105.65 11.45 75.73 135.23
R, G and DF 91.91 10.16 63.44 128.14
R, B and DF 102.96 12.42 76.78 139.39
G, B and DF 96.80 9.91 73.16 130.16
R, G, B and DF 89.51 11.84 58.60 140.16
RGBVI and DF 95.62 10.69 72.16 136.18
GLI and DF 96.10 11.08 68.60 130.92
VARI and DF 93.24 11.17 71.06 119.32
NGRDI and DF 93.02 10.93 66.27 127.71
ExG and DF 95.13 11.89 68.54 141.13
ExGR and DF 92.63 11.32 61.70 130.12

Figure 4.19 shows the plots of the predicted biomass as a function of the
measured biomass, considering as inputs combinations of the RGB channels
and VIs with the altitude of drone flight (DF) feature. The curves plot in Fig.
4.19 represent the best RMSE obtained for each input combination. On the
other hand, Tab. 4.40 shows the MLP configurations associated to the best
RMSE obtained for each input combination, and their respective MAPE and
R-Squared.

(a) Red and DF (b) Green and DF
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(c) Blue and DF (d) R, G and DF

(e) R, B and DF (f) G, B and DF

(g) R, G, B and DF (h) RGBVI and DF
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(i) GLI and DF (j) VARI and DF

(k) NGRDI and DF (l) ExG and DF

(m) ExGR and DF

Figure 4.19: Best Performance MLP with Layer Sweep, using as inputs combina-
tions of the RGB channels and VIs with the altitude of drone flight (DF): (a) R and
DF, (b) G and DF, (c) B and DF, (d) R, G and DF, (e) R, B and DF, (f) G, B and
DF, (g) R, G, B and DF, (h) RGBVI and DF, (i) GLI and DF, (j) VARI and DF,
(k) NGRDI and DF, (l) ExG and DF, and (m) ExGR and DF.
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Table 4.40: Results of different performance metrics for the developed MLP
Regression model’s associated with the best RMSEs obtained with Layer Sweep,
using as inputs combinations of the RGB channels and VIs with the altitude of
drone flight (DF).

#Early #Layer #Layer Best RMSE MAPE
Input #Epochs Stop 1 2 (g/m2) (%) R2

R and DF 50000 5000 14 10 72.35 50.36 0.37
G and DF 50000 5000 8 16 81.66 56.36 0.20
B and DF 50000 5000 8 20 75.73 44.55 0.26
R, G and DF 10000 1000 6 8 63.44 38.46 0.52
R, B and DF 10000 1000 6 4 76.78 51.67 0.05
G, B and DF 50000 5000 12 20 73.16 29.34 0.23
R, G, B and DF 50000 5000 6 8 58.60 32.34 0.70
RGBVI and DF 50000 5000 6 10 72.16 39.41 0.49
GLI and DF 50000 5000 20 12 68.60 45.31 0.38
VARI and DF 50000 5000 6 10 71.06 42.83 0.47
NGRDI and DF 5000 500 20 18 66.27 36.44 0.56
ExG and DF 10000 1000 10 4 68.54 32.62 0.44
ExGR and DF 10000 1000 6 8 61.70 31.95 0.45

The smallest RMSE achieved using DF as an input was 58.6 g/m2, for an
MLP configuration with DF and R, G and B as inputs. This configuration also
reached the highest R-Squared among all MLP configurations using DF as an
input. Despite being a good result comparing to the other methods (linear and
nonlinear regression), it did not reach a performance improvement as relevant
as using PH as input.

4.3.2.4
RGB-based and GI

The third configuration of input’s combinations adds the intensity of
green pixel (GI) as an input together with the VIs and RGB channels.
Table 4.41 shows the RMSE statistics related to the results of the MLP
regression models developed for these new sets of inputs.
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Table 4.41: Analysis of RMSE performance using MLP Regression with Layer
Sweep, for combinations of the RGB channels and VIs with GI.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and GI 94.12 12.24 63.98 134.76
G and GI 106.33 11.16 78.08 143.54
B and GI 96.98 11.40 70.12 127.29
R, G and GI 88.25 11.40 60.44 118.01
R, B and GI 93.77 13.40 61.41 131.72
G, B and GI 92.99 10.22 60.32 123.32
R, G, B and GI 86.80 10.73 59.53 119.71
RGBVI and GI 92.58 11.72 68.30 125.23
GLI and GI 90.81 11.13 63.04 124.30
VARI and GI 87.87 12.69 59.86 124.77
NGRDI and GI 87.34 11.26 59.08 127.86
ExG and GI 88.91 10.52 60.99 126.01
ExGR and GI 88.14 11.62 60.84 127.19

Figure 4.20 shows the plots of the predicted biomass as a function of the
measured biomass, considering as inputs combinations of the RGB channels
and VIs with the pixel’s green intensity (GI) feature. The curves plot in Fig.
4.20 represent the best RMSE obtained for each input combination, among
the 30 runs performed for each of them. On the other hand, Tab. 4.42 shows
the MLP configurations associated to the best RMSE obtained for each input
combination, and their respective MAPE and R-Squared.

(a) Red and GI (b) Green and GI
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(c) Blue and GI (d) R, G and GI

(e) R, B and GI (f) G, B and GI

(g) R, G, B and GI (h) RGBVI and GI

(i) GLI and GI (j) VARI and GI
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(k) NGRDI and GI (l) ExG and GI

(m) ExGR and GI

Figure 4.20: Best Performance MLP with Layer Sweep, using as inputs combina-
tions of the RGB channels and VIs with the pixel’s intensity of green (GI): (a) R
and GI, (b) G and GI, (c) B and GI, (d) R, G and GI, (e) R, B and GI, (f) G, B
and GI, (g) R, G, B and GI, (h) RGBVI and GI, (i) GLI and GI, (j) VARI and GI,
(k) NGRDI and GI, (l) ExG and GI, and (m) ExGR and GI.

The combination of the GI with the RGB channels and VIs contributed to
the enhancement of the performance metrics. These results are consistent with
the behavior observed up to now which the performance metrics of the MLP
improves by adding new features as inputs. Among the analyzed cases using
GI as input, the smallest RMSE (59.08 g/m2) was obtained by the MLP that
uses NGRDI and GI as inputs. Besides, notice that the three lowest RMSEs
are very close to each other (all of them reaches about 59 g/m2), corresponding
to the MLPs using as inputs GI and (i) NGRDI, (ii) R, G and B together, and
(iii) VARI. These inputs are also the ones commonly associated to the best
performance metrics for the linear and nonlinear regression models. Moreover,
although there are 3 configuration of inputs reaching a R-Squared of 0.6, only
NGRDI is among the inputs with the lowest RMSEs.
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Table 4.42: Results of different performance metrics for the developed MLP
Regression model’s associated with the best RMSEs obtained with Layer Sweep,
using as inputs combinations of the RGB channels and VIs with the pixel’s intensity
of green (GI).

#Early #Layer #Layer Best RMSE MAPE
Input #Epochs Stop 1 2 (g/m2) (%) R2

R and GI 50000 5000 4 6 63.98 43.29 0.56
G and GI 50000 5000 14 4 78.08 40.75 0.16
B and GI 50000 5000 18 18 70.12 49.56 0.49
R, G and GI 50000 5000 14 12 60.44 34.44 0.60
R, B and GI 50000 5000 20 8 61.41 31.65 0.56
G, B and GI 5000 500 20 18 60.32 30.29 0.57
R, G, B and GI 50000 5000 4 14 59.53 35.23 0.59
RGBVI and GI 5000 500 18 20 68.30 32.37 0.48
GLI and GI 50000 5000 6 20 63.04 30.08 0.40
VARI and GI 50000 5000 18 4 59.86 25.68 0.56
NGRDI and GI 50000 5000 18 16 59.08 33.63 0.60
ExG and GI 5000 500 12 4 60.99 29.97 0.60
ExGR and GI 5000 500 14 12 60.84 27.84 0.47

4.3.2.5
RGB-based and SR

The fourth configuration of input’s combinations adds the solar radiation
(SR) as an input together with the VIs and RGB channels. Table 4.43 shows the
RMSE statistics related to the results of the MLP regression models developed
for these new sets of inputs.

Figure 4.21 shows the plots of the predicted biomass as a function of the
measured biomass, considering as inputs combinations of the RGB channels
and VIs with the solar radiation (SR) feature. The curves plot in Fig. 4.21
represent the best RMSE obtained for each input combination, among the
30 runs performed for each of them. On the other hand, Tab. 4.44 shows the
MLP configurations associated to the best RMSE obtained for each input
combination, and their respective MAPE and R-Squared.
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Table 4.43: Analysis of RMSE performance using MLP Regression with Layer
Sweep, for combinations of the RGB channels and VIs with SR.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
R and SR 83.52 13.76 53.83 127.99
G and SR 94.06 11.24 63.80 123.05
B and SR 87.11 11.10 63.01 116.47
R, G and SR 71.42 12.86 40.56 126.88
R, B and SR 87.47 12.79 55.31 124.39
G, B and SR 72.77 9.95 48.21 103.83
R, G, B and SR 68.19 11.48 43.61 96.87
RGBVI and SR 72.61 10.33 50.12 112.13
GLI and SR 70.62 11.39 48.20 100.80
VARI and SR 66.48 12.00 43.58 108.12
NGRDI and SR 67.27 11.47 43.61 104.46
ExG and SR 71.09 11.77 41.78 106.02
ExGR and SR 67.60 12.02 42.87 115.57

(a) Red and SR (b) Green and SR

(c) Blue and SR (d) R, G and SR
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(e) R, B and SR (f) G, B and SR

(g) R, G, B and SR (h) RGBVI and SR

(i) GLI and PH (j) VARI and PH

(k) NGRDI and PH (l) ExG and PH
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(m) ExGR and PH

Figure 4.21: Best Performance MLP with Layer Sweep, using as inputs combina-
tions of the RGB channels and VIs with the solar radiation (SR): (a) R and SR, (b)
G and SR, (c) B and SR, (d) R, G and SR, (e) R, B and SR, (f) G, B and SR, (g)
R, G, B and SR, (h) RGBVI and SR, (i) GLI and SR, (j) VARI and SR, (k) NGRDI
and SR, (l) ExG and SR, and (m) ExGR and SR.

Table 4.44: Results of different performance metrics for the developed MLP
Regression model’s associated with the best RMSEs obtained with Layer Sweep,
using as inputs combinations of the RGB channels and VIs with the solar radiation
(SR).

#Early #Layer #Layer Best RMSE MAPE
Input #Epochs Stop 1 2 (g/m2) (%) R2

R and SR 10000 1000 10 10 53.83 30.92 0.69
G and SR 10000 1000 4 18 63.80 32.67 0.58
B and SR 10000 1000 16 8 63.01 31.98 0.62
R, G and SR 5000 500 8 20 40.56 19.44 0.82
R, B and SR 50000 5000 12 18 55.31 27.00 0.65
G, B and SR 10000 1000 18 12 48.21 25.91 0.78
R, G, B and SR 10000 1000 18 18 43.61 22.96 0.86
RGBVI and SR 5000 500 4 20 50.12 32.19 0.72
GLI and SR 10000 1000 20 6 48.20 22.82 0.77
VARI and SR 50000 5000 6 20 43.58 19.09 0.84
NGRDI and SR 50000 5000 6 16 43.61 19.22 0.77
ExG and SR 50000 5000 12 20 41.78 16.95 0.82
ExGR and SR 50000 5000 14 14 42.87 15.43 0.77

The results achieved with the MLPs by combining the RGB channels and
VIs with the solar radiation (SR) are really close to the ones found with the
plant height (PH). The RMSE values of the three best MLP configurations
using SR as an input are comprised in the range from 40 to 43 g/m2, being
slightly worst than the best RMSE achieved with the PH as input. Among the
analyzed MLPs with SR, the three lowest RMSE were obtained by combining
SR with (i) R and G, (ii) ExG and (iii) ExGR. Besides, notice that the
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maximum R-Squared is 0.86 using R, G, B and SR, which is also really close to
the best R-Squared found with PH (0.88). Moreover, it is worth to point out
that the MAPE achieved with ExGR and SR is the lowest one ever achieved
(15.43%).

4.3.3
Statistical analysis of the best MLP configurations

This subsection describes the results obtained by the MLP algorithm
after running 30 times the best configurations for the three best input’s
combinations of each case studied in the Layer Sweep subsection. The best
results were based in the top 3 smallest RMSE values from the separate inputs
analysis and from the combined inputs, which are: (i) PH with VIs or RGB
channels; (ii) DF with VIs or RGB channels; (iii) GI with VIs or RGB channels;
and (iv) SR with VIs or RGB channels. Hence, they totalize 15 simulations,
as there are 3 different configurations of inputs for 5 groups. Table 4.45 shows
the inputs which were further analyzed in this section by running them for 30
times, respecting the original configuration described.

Table 4.45: Configurations of the MLP Regression used for the 30 runs analysis.

Input #Epochs #Early Stop #Layer 1 #Layer 2
NGRDI 10000 1000 10 6
SR 5000 500 12 10
R, G and B 50000 5000 14 12
G, B and PH 50000 5000 10 12
R, G, B and PH 50000 5000 6 12
VARI and PH 50000 5000 20 18
R, G and DF 10000 1000 6 8
R, G, B and DF 50000 5000 6 8
ExGR, DF 10000 1000 6 8
R, G, B and GI 50000 5000 4 14
VARI and GI 50000 5000 18 4
NGRDI and GI 50000 5000 18 16
R, G and SR 5000 500 8 20
ExG and SR 50000 5000 12 20
ExGR and SR 50000 5000 14 14

Table 4.46 shows the average value, standard deviation, lower and upper
bounds of RMSE, considering the results from the 30 runs executed for each
one of the input’s configurations analyzed.
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Table 4.46: Analysis of RMSE performance using MLP Regression, after running
30 times each configuration.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Input (g/m2) (g/m2) (g/m2) (g/m2)
NGRDI 87.81 11.95 66.87 119.67
SR 76.43 7.15 62.93 93.47
R, G and B 84.07 12.74 60.63 116.22
G, B and PH 80.81 10.30 65.79 101.05
R, G, B and PH 63.52 11.93 41.95 98.14
VARI and PH 69.89 9.82 53.13 90.90
R, G and DF 94.34 11.86 72.34 119.72
R, G, B and DF 83.45 10.52 61.01 114.17
ExGR and DF 90.47 14.37 72.20 119.61
R, G, B and GI 85.05 12.89 64.59 118.83
VARI and GI 91.29 11.41 74.47 120.68
NGRDI and GI 83.85 8.15 68.95 108.70
R, G and SR 72.93 9.48 56.54 93.51
ExG and SR 69.30 12.69 50.88 101.31
ExGR and SR 61.95 9.25 51.14 84.26

Figure 4.22 shows the relationship between the measured and predicted
biomass, in g/m2,for the data contained in the test set. Notice that these plots
considered the MLP configuration associated with the best RMSE obtained
among the 30 runs performed for each case presented in Tab. 4.46.

It is possible to notice that the majority of results shown in Fig. 4.22, even
though showing points close to the desired red dashed line, do have a better
performance for the low to medium values of biomass than for high values.
As mentioned in 2.3, this behavior is probably due to the data set which has
much more examples of low and medium values of biomass than of high values
(see Fig. 2.13), so that the MLP prioritizes learning low and medium values of
biomass. Note that only 9% of the data set are associated to biomass greater
than 350 g/m2. Despite this fact, some of the combinations of inputs, as R,
G, B and PH, VARI and PH, ExGR and PH, can fit well for the amount of
biomass over the threshold of 350 g/m2, since the best result, after 30 runs,
shows high values in the test set.
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(a) NGRDI (b) SR

(c) R, G and B (d) G, B and PH

(e) R, G, B and PH (f) VARI and PH

(g) R, G and DF (h) R, G, B and DF
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(i) ExGR and DF (j) R, G, B and GI

(k) VARI and GI (l) NGRDI and GI

(m) ExGR and PH (n) ExG and PH

(o) ExGR and PH

Figure 4.22: Best Performance MLP after 30 runs for each of the best cases
identified in the Layer Sweep subsection, using as inputs: (a) NGRDI, (b) SR, (c)
R, G and B, (d) G, B and PH, (e) R, G, B and PH, (f) VARI and PH, (g) R, G and
DF, (h) R, G, B and DF, (i) ExGR and DF, (j) R, G, B and GI, (k) VARI and GI,
(l) NGRDI and GI, (m) R, G and SR, (n) ExG and SR, (o) ExGR and SR.
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Table 4.47 presents the best RMSE obtained among the 30 runs per-
formed to each configuration. The MAPE and R2 associated to the best RMSE
achieved by each configuration are also presented.

Table 4.47: Results of different performance metrics for the developed MLP
Regression model’s associated with the best RMSEs, considering the results from
the 30 runs executed for each one of the input’s configurations analyzed.

Best RMSE MAPE
Input (g/m2) (%) R2

NGRDI 66.87 32.34 0.45
SR 62.93 24.04 0.62
R, G and B 60.63 35.06 0.58
G, B and PH 65.79 29.96 0.52
R, G, B and PH 41.95 18.91 0.83
VARI and PH 53.13 23.26 0.76
R, G and DF 72.34 43.02 0.35
R, G, B and DF 61.01 23.90 0.65
ExGR, DF 72.20 38.59 0.37
R, G, B and GI 64.59 31.85 0.63
VARI and GI 74.47 45.59 0.24
NGRDI and GI 68.95 31.48 0.31
R, G and SR 56.54 26.51 0.65
ExG and SR 50.88 19.27 0.76
ExGR and SR 51.14 20.32 0.78

As already expected, the best results among the 30 runs performed to
each of the selected configurations from the Layer Sweep subsection are the
ones obtained by the MLPs using plant height (PH) and solar radiation (SR)
combined with VIs or RGB channels as inputs. R, G, B and PH presented the
best RMSE of all, with 41.95 g/m2, and also the best MAPE (18.91%) and R-
Squared (0.83). The combination of solar radiation (SR) with ExG and ExGR
leaded to the second and third best results in terms of RMSE, respectively. It
is important to notice that there were different number of epochs/early stops
for the configurations, as the early stop can prevent overfitting. Moreover,
another important issue is that even after running the same configuration in
Layer Sweep for 30 times, the best RMSE did not reach the one obtained in the
previous section. There, the best RMSE was also from R, G, B and PH, but
it reached 36.23 g/m2. This may have occurred due to the random selection of
training and test sets in Layer Sweep for this configuration. Notice that each
configuration was evaluated only once in the last subsection, so that the values
presented here are more reliable, statistically speaking, as they were repeatedly
trained for 30 times.
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4.4
Stacking Regression

In this section, it was developed a stacking regression algorithm, based on
Multi-Layer Perceptron (MLP), using as inputs the outputs of the best Linear
Regression, Nonlinear Regression and MLP Regression models developed in the
previous sections. Figure 3.3 shows the block diagram of the stacking regression
model and Tab. 4.48 presents the configurations of the regression algorithms
connected to the inputs of the stacking model.

Table 4.48: Algorithms used as inputs of the Stacking model.

Method Input Best RMSE (g/m2) Configuration
Linear Regression R, G, B and PH 68.96 (i)
Nonlinear Regression NGRDI and SR 65.24 (ii)
MLP Regression R, G, B and PH 41.95 (iii)

(i) The best fit for the Linear Regression was set by Eq. (4-1):

y
L

= β0 + β1 x1 + β2 x2 + β3 x3 + β4 x4

y
L

= 0.44 + 0.01x
P H

− 0.90x
R

+ 0.66x
G

+ 0.04x
B

(4-1)

(ii) The best fit for the Nonlinear Regression was set by Eq. (4-2),
following the equation defined for two variables in Eq. (3-4):

yNL =α0 + α1 x
2
1 + α2 x

2
2 + α3 x1 x2 + α4 x1 + α5 x2

yNL = 0.07 + 0.34x2
SR

+ 0.47x2
NGRDI

+ 0.83x
SR
x

NGRDI
+

0.06x
SR

+ 0.35x
NGRDI

(4-2)

(iii) The best fit for the neural network, using MLP Regression, was set
by the following configuration:

– Number of Epochs: 50000

– Number of Early Stops: 5000

– Neurons on Layer 1: 6

– Neurons on Layer 2: 12

Therefore, the outputs of these three models were used as inputs of a
new MLP algorithm aiming at estimating biomass more accurately than the
models alone. First, the network was trained with a Layer Sweep in order to
identify the best configuration for both hidden layers, varying the number of
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neurons from 4 to 20 in steps of 2. Furthermore, the following combinations
of maximum number of epochs and early stop were analyzed: (i) 5000/500,
(ii) 10000/1000 and (iii) 50000/5000. MLPs using all possible combinations of
these parameters were trained and tested. Hence, 243 runs were executed.

Then, for statistical analysis of the best configurations, the top three best
stacking models, in terms of RMSE, obtained in the Layer Sweep step were
chosen to be trained again for 30 runs, aiming at evaluating the liability of the
results.

4.4.1
Layer Sweep

This subsection shows the results obtained from the Layer Sweep in
Stacking Ensemble, focusing on minimizing their RMSEs. Table 4.49 shows
the whole analysis of RMSE, including average value, standard deviation,
lower and upper bounds computed considering the results obtained from all
configurations.

Table 4.49: Analysis of RMSE performance using Stacking Ensemble Regression,
after Layer Sweep.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
(g/m2) (g/m2) (g/m2) (g/m2)
49.70 7.04 33.26 78.23

Figure 4.23 presents the plots of predicted biomass versus measured
biomass for the three configurations that reached the lowest RMSE values,
defined after running the entire Layer Sweep.

(a) First best RMSE (b) Second best RMSE
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(c) Third best RMSE

Figure 4.23: Performance of the 3 Best Stacking Ensemble models with Layer
Sweep, using as inputs the outputs of the Linear, Nonlinear and MLP Regressions.

Yet, Table 4.50 lists the first, second and third best configurations of the
MLPs developed for the Stacking model, together with their respective RMSE,
MAPE and R-Squared.

Table 4.50: Top 3 developed Stacking Ensemble Regression models, considering
the RMSEs obtained with Layer Sweep.

#Early #Layer #Layer Best RMSE MAPE
Position #Epochs Stop 1 2 (g/m2) (%) R2

1st 5000 500 8 10 33.26 14.66 0.92
2nd 50000 5000 16 20 35.11 13.06 0.89
3rd 5000 500 12 6 36.37 17.50 0.91

Beforehand, it is noticeable that all three results are better than the ones
presented by any of the regression models (including the MLP) developed in
previous sections, in all performance metrics. So, we can conclude that the
proposed Stacking Ensemble method can improve considerably the regression
results.

Besides, note that the best configuration was set to use up to 5000 epochs
and 500 early stops while the second best uses up to 50000/5000. Therefore,
the total number of epochs not necessarily guarantee a better result, because
the number of early stops prevent the neural network to overfit, favoring the
network generalization.
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4.4.2
Statistical analysis of the best configurations for Stacking

Here, all of the three best configurations identified in subsection 4.4.1 (see
Tab. 4.50) are trained again for 30 times in a row to guarantee the reliability
of the achieved results. Table 4.51 resumes the configuration of the varied
hyperparameters that were selected to be trained in this subsection.

Table 4.51: Configurations of the 3 best results in Layer Sweep.

#Early #Layer #Layer
Config. #Epochs Stop 1 2
1 5000 500 8 10
2 50000 5000 16 20
3 5000 500 12 6

Table 4.52 shows the average value, standard deviation, lower and upper
bounds of RMSE, considering the results from the 30 runs executed for each
one of the analyzed configurations.

Table 4.52: Analysis of 3 best RMSE performance using Stacking Ensemble
Regressions, after running 30 times each configuration.

Avg RMSE Std Dev RMSE Min RMSE Max RMSE
Config. (g/m2) (g/m2) (g/m2) (g/m2)
1 51.01 6.87 31.76 63.53
2 47.94 4.53 37.89 55.53
3 49.36 6.36 35.76 62.11

Figure 4.24 shows the plot of predicted biomass versus measured biomass
associated with the best RMSE obtained among the 30 runs of each one of the
analyzed configurations.

(a) First best RMSE (b) Second best RMSE
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(c) Third best RMSE

Figure 4.24: Best Performance Stacking Ensemble models among the 30 runs
executed for each of the 3 best cases identified in the Layer Sweep subsection.

Table 4.53 presents the performance metrics computed for each one of
the top three configurations identified in the Layer Sweep subsection. Notice
that the results shown in Table 4.53 are related to the best RMSE obtained by
each configuration after 30 runs.

Table 4.53: Results of different performance metrics for the developed Stacking
ensemble Regression model’s associated with the best RMSEs, considering the results
from the 30 runs executed for each one of the 3 selected configurations.

Best RMSE MAPE
Config. (g/m2) (%) R2

1 31.76 13.35 0.90
2 37.89 16.90 0.87
3 35.76 16.86 0.88

The obtained results indicate that the first configuration reaches again
the lowest RMSE value, which is even smaller than the obtained in subsection
4.4.1. MAPE also decreased, but the R-Squared was slightly worst than before.
Nevertheless, it is noteworthy that all metrics showed better performance using
the stacking model than using the MLP alone with VIs, RGB channels and
other features as inputs (see Subsection 4.3.3). Moreover, contrary to expected,
the third configuration overcame the second one in every way, but the first one
is still the best ever reached in this analysis and defined as the final metric for
the work.

A RMSE value of 31.76 g/m2 can be considered good enough for the
desired task of estimating biomass on pastures. Besides, the best stacking
model reached a MAPE of 13.35% and R-Squared of 0.9, that indicate a low
percentage error and high R-Squared.

DBD
PUC-Rio - Certificação Digital Nº 1920856/CA



Chapter 4. Results and Discussion 132

4.5
Comparative results

This section summarizes the best results obtained by each one of the de-
veloped regression methods, described along this chapter. Table 4.54 shows the
top 3 linear, nonlinear and MLP regressions, among all tested configurations.
Furthermore, the stacking ensemble implemented using the best configura-
tion of each one of the regression methods had only its best result shown in
Tab. 4.54, because it has the same inputs for all tests.

Table 4.54: Best results of the Analyzed Regression Methods.

Regression Best RMSE MAPE
Method Input (g/m2) (%) R2

R, G, B and PH 68.96 35.02 0.51
Linear ExGR and GI 71.01 36.96 0.40

GLI and SR 70.75 37.61 0.56
R, G and PH 67.27 38.64 0.50

Nonlinear R, G and SR 69.68 32.91 0.52
NGRDI and SR 65.24 27.65 0.54
R, G, B and PH 41.95 18.91 0.83

MLP ExG and SR 50.88 19.27 0.76
ExGR and SR 51.14 20.32 0.78

Stacking 31.76 13.35 0.90

It is noticeable that, among the raw RGB-based input combinations, the
best results are obtained by combining R, G and B with PH, for linear and
MLP regressions, and R and G with PH or SR in nonlinear regressions. Besides,
among all tested VIs, the best results are achieved by using ExGR or GLI, in
the linear regression, NGRDI in the nonlinear regression, and ExG or ExGR in
the MLP. Moreover, the best results using VIs as inputs are usually obtained
by combining them with the SR feature. The only exception, among the cases
shown in Tab. 4.54, occurs for the combination of ExGR and GI, in the linear
regression. We can conclude that SR and PH features significantly contribute
to the biomass estimation.

Another important conclusion evidenced by this comparative study is
that the performance metrics are improved when the complexity of the model
increases. Table 4.54 shows that the best results are obtained by the stacking
ensemble, followed by the MLP, nonlinear and linear regressions, respectively.
Notice that the information obtained by the RGB camera used in this work do
not deliver many details as multi spectral images or other high tech resources,
so that estimating the output (biomass) from the available inputs are not
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an easy task. However, the results indicate that a good performance can be
achieved by increasing the model’s complexity. The results also bring important
understandings on the relationship between the inputs and the measured
biomass (output). The best result was achieved by the stacking ensemble,
using the information provided by the best linear, nonlinear and MLP models.
It reached an RMSE of 31.76 g/m2, MAPE of 13.35% and R2 of 0.9. This result
indicate a good correlation from the input with the measured output and it is
suitable for the application of biomass estimation in livestock farm fields.
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5
Conclusion and Future Work

In this work, we have proposed an intelligent biomass estimation algo-
rithm based on neural networks, using a MLP for regression. We have computed
a number of RGB-based VIs from UAV Imagery, that were used together with
other features as plant height (PH), altitude of the drone flight (DF), inten-
sity of green on the histogram (GI) and Solar Radiation (SR) to determine
the biomass amount of a given region of interest. The MLP regression was
compared with linear and nonlinear regression methods also applied to the
biomass estimation task, using the same inputs, aiming at minimizing the
RMSE. Other performance metrics were calculated as well. So, the accuracy
of the designed estimators were evaluated using RMSE and it was related to
other key performance metrics such as R2 and MAPE.

Comparing the linear and nonlinear regression with the neural network,
we can verify that the results from simple regressions do not allow a good
accuracy in the biomass estimation task, by using RGB-based inputs or even
their combinations with the other features. Among the results achieved by
using linear and nonlinear regressions, the best performance metrics obtained
were: RMSE = 70.75 g/m2, MAPE = 37.61% and R-Squared = 0.56.

On the other hand, the results obtained with the neural network were
significantly better. The use of R, G and B channels combined with PH
as inputs of the MLP led to the better biomass estimation results, among
all analyzed MLP input’s configurations, as it reached a RMSE of 41.95
g/m2, a MAPE of 18.91% and a R-Squared of 0.83. Afterwards, aiming at
improving even further the performance metrics a Stacking Ensemble method
was developed, based on using the output of the best configuration of each
one of the three other regression methods as inputs to another neural network
model. This topology confirmed our expectations reaching a RMSE of 31.76
g/m2, MAPE of 13.35% and R-Squared of 0.9.

Our proposed biomass estimation algorithm provides satisfactory results
when compared with recently published works: (i) a CNN-based regression
approach based on RGB Imagery [17], with a MAPE of 12.98 and an R-Squared
of 0.88 ; and (ii) a linear regression approach using multi-spectral sensors to
compute other vegetation indices [22], with an R-Squared of 0.65. These works
use either a more complex regression method or more expensive resources, it
seems advantageous to implement the estimation of green biomass in the field
using the methodology proposed in our work in order to obtain even better
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results using a low cost system, in terms of computational cost and technology
resources.

As shown in Tab. 4.54, it is worth to mention that all regression methods
reached good performances by combining the SR feature with the investigated
VIs, with emphasis on ExGR and NGRDI. The best RMSE obtained with
nonlinear regressions was achieved by using NGRDI and SR as inputs. The
second best RMSE obtained with linear regression was achieved by using GLI
and SR as inputs, while the second best RMSE obtained with MLP regression
was achieved by using ExG and SR as inputs. However, the best RMSEs
obtained by linear and MLP regressions were achieved by using all R, G and B
channels combined with PH as inputs. The nonlinear regression reached better
results using a VI as input, that is computed as predefined combination of the
raw RGB channels, than by using the raw RGB channels separately. In this
case, a predefined combination of the colors, as it is performed with a VI, is
better evaluated by less complex equations and less coefficients in nonlinear
regression.

It is important to note that the addition of the PH and SR data as
inputs improved the performance metrics remarkably, in all analyzed regression
methods. Hence, these features are essential to be acquired in order to estimate
the biomass accurately.

Regarding the other two features used as inputs, altitude of drone flight
(DF) and green pixel intensity (GI), it is noticeable that they do not contribute
to enhancement of the performance metrics as much as PH and SR. Only in
linear regression, the model using GI assumed the third best RMSE, but it did
not achieve performance metrics that allow its use for biomass estimation.

The results obtained by the MLPs using all raw RGB channels as inputs
show that we can have even better performance in estimation than by using
the VIs, as the RGB channels provide more useful information to the neural
network that can solve by itself the right weights for each of the channels,
instead of connecting a predefined VI to network’s input. Thus, they can be
considered more promising in delivering better results with a neural network
than any other VI.

The developed regression models estimate the biomass inside 1 squared
meter, so that if the image captured by the drone is dived in a matrix, with
each element measuring 1 squared meter, we can conclude that the entire field’s
total biomass can be inferred by summing the biomass computed by each
element of the matrix. As an example, Figure 5.1 shows an image captured
by the camera at 30 meters high, depicting the field divided in 713 (23 x
31) elements (complete squares) measuring 1 square meter each. The best
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Stacking Ensemble regression model was used to estimate the biomass of the
matrix element highlighted in yellow, in Figure 5.1. The estimated biomass for
this specific spot was 176.27 kg/m2, while its target biomass density is 175.85
kg/m2. Hypothetically, if all the spots are estimated with the same biomass
176.27 kg/m2, a field of 713 m2 have approximately 125.68 ton of green biomass.
On the other hand, assuming that all spots have the same biomass, the real
total biomass of this field would be 125.38 ton. The difference between the real
and estimated biomass is 300 kg (less than 1% of the total biomass), which can
be considered a small error. In a real case, each spot has a different density,
which should be separately processed by the proposed computational method,
hence the total biomass calculated for the farmer’s field is the sum of those
spots’ density.

Figure 5.1: Field divided in different spots, of 1 squared meter each.

We conclude that the proposed methodology may become a feasible
solution for plant biomass estimation toward sustainable and efficient herd
management, considering the combination of different features as inputs of the
models proposed in this work.

5.1
Future Works

As a suggestion for future works, other sensors could be embedded in the
drone to measure direct information from the ground as the height of the grass,
intensity of light and non visible wavelengths. They can be measured with
specific sensors, such as three-dimensional image-based [45] like LiDARs (Light
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Detection And Ranging), multi or hyper spectral cameras, spectrometers,
ultrasounds and thermal cameras. It is important to point out that a sensor
capable of measuring the height of the grass during the drone flight over the
field is crucial for this work, as the main goal is to eliminate the necessity of
the farmer to walk through the field to perform any measurement. The data
set used in this experimental study is composed by plant height measurements
collected in the field with a proper ruler. However, in the final system this
will no longer be needed, because the PH information will be measured by an
optical sensor with a good resolution embedded in the drone. Moreover, the
results obtained by our regression methods reinforce the importance of using
plant height as an input, which considerably increases the performance of the
models.

The combination of different features, mainly PH and SR, as inputs of
the models is a promising idea that should be further investigated. This could
lead to even better results with the MLP regression and, consequently, with the
stacking ensemble. A future perspective for this work also considers additional
analysis over the combination of several VIs and channels on the network’s
input aiming at no longer needing plant height information, as the removal of
the optical sensor can reduce project’s cost even more.

With the addition of new measurements and new images, the data set can
grow sufficiently to allow testing more complex regression methods, considering
available pre-trained networks or, if necessary, a new one from scratch, with
the study of different Deep Learning Networks. Nonetheless, it is necessary to
mention that this work covered all seasons of the year with a set of images
collected each month, for over almost one year (10 months). Hence, this means
that the main information of seasonality was captured in this study and it
reached good performance metrics using shallow neural networks and even
simple fitting methods.

Furthermore, other important future analysis for this work is to perform
a more in-depth test relating the inputs with only the legume biomass, rather
than the overall amount of legume and grass. This idea can be implemented
using all the present resources as inputs or adding others with different kind of
information. Also, it would be important to analyze other regression methods
which could be more suitable for this kind of differentiation in the image.
The first step of estimating the total biomass in order to have an estimate
of the total biomass was completed in this work, as the final RMSE can be
considerably low enough. Hence, the second step of estimating the legume
biomass separately is an important future work to obtain the correct amount
of the herd in the field and the fixed nitrogen in the soil, as seen in Sec. 1.1.
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