Dan Posternak

Inferência da expressão analítica de uma Fronteira de Investimento Ótimo para um ativo que segue o processo de Reversão à Média por Programação Genética

DISSERTAÇÃO DE MESTRADO

Departamento de Engenharia Elétrica

Programa de Pós-Graduação em Engenharia Elétrica

> Rio de Janeiro Setembro de 2004

Dan Posternak

Inferência da expressão analítica de uma Fronteira de Investimento Ótimo para um ativo que segue o processo de Reversão à Média por Programação Genética

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC-Rio.

Orientador: Marco Aurélio C. Pacheco

Rio de Janeiro Setembro de 2004

Dan Posternak

Inferência da Expressão Analítica de uma Fronteira de Investimento Ótimo para um Ativo que segue o processo de Reversão à Média por Programação Genética

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Marco Aurélio Cavalcanti Pacheco Orientador

Departamento de Engenharia Elétrica - PUC-Rio

Profa. Karla Tereza Figueiredo Leite
UERJ

Prof. Tara Keshar-Nanda BaidyaDepartamento de Engenhara Industrial – PUC-Rio

Prof. José Paulo TeixeiraDepartamento de Engenhara Industrial – PUC-Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 21 de setembro de 2004

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Dan Posternak

Graduado em Engenharia de Produção pela Universidade Federal do Rio de Janeiro (UFRJ) em 1996.

Ficha Catalográfica

Posternak, Dan

Interferência da expressão analítica de uma fronteira de investimento ótimo para um ativo que segue o processo de reversão à média por programação genética / Dan Posternak ; orientador: Marco Aurélio C. Pacheco. – Rio de Janeiro : PUC-Rio, Departamento de Engenharia Elétrica, 2004.

81 f.; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui referências bibliográficas

1.Engenharia elétrica – Teses. 2.Computação evolucionária. 3.Programação genética. 4.Regressão simbólica. 5.Opções financeiras. 6.Opções reais. 7.Reversão à média I. Pacheco, Marco Aurélio C. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

DBD: 621.3

Agradecimentos

Aos meus pais, Leo Posternak e Sulamita Bushatsky.

Aos meus orientadores Marco Aurélio C. Pacheco e Marley Maria B.R. Vellasco pela total confiança, ensino e incentivo.

Ao Professor Tara Keshar Nanda Baidya que me ensinou que desafios são para curtir.

À Juan Guillermo, Yván Túpac e Edison Tito por todo o apoio técnico e pela amizade.

À Karla Figueiredo pelas sugestões.

Aos amigos André Vargas Abs da Cruz, Luciana Faletti Almeida, Thiago Guimarães, Bernardo Caldas Hoelz, Oldemar Duarte de Farias Jr. por todo o incentivo.

À Marco Antonio G. Dias por toda a contribuição.

Aos Professores que me indicaram ao mestrado e acreditaram em mim (Adriano Proença e Raad Yahya Qassim).

Para Sarah, a coisa mais importante que já me aconteceu na vida.

"Amigos, a única miséria orgulhosa é a brasileira. Apanhem um pau-dearara, ou melhor: - apanhem um retirante de Portinari. Lá está o homem, nos seus farrapos espectrais, lambendo a sua rapadura. Pois o pobre diabo brasileiro conserva, no meio da sua subnutrição mais hedionda, todas as suas potencialidades intactas. Basta que alguém provoque a sua honra. Ele ressuscitará como um Lázaro da miséria; e, na sua ressurreição, há de ser capaz de chupar a carótida de reis".

Resumo

Posternak, Dan; Pacheco, Marco Aurélio C. (Orientador). Regressão Simbólica por Programação Genética da expressão analítica de uma Fronteira de Investimento Ótimo para um ativo que segue o processo de Reversão à Média. Rio de Janeiro, 2004. 81p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Esta Pesquisa tem por objetivo utilizar a Regressão Simbólica por Programação Genética para encontrar uma equação analítica para a fronteira de exercício ótima (ou curva de gatilho) de uma opção sobre um ativo do qual o preço tem um comportamento simulado pelo processo estocástico conhecido como processo de reversão à média (PRM).

Para o cálculo do valor de uma opção desde de sua aquisição até sua maturação, normalmente faz-se o uso do cálculo da fronteira de exercício ótimo. Esta curva separa ao longo do tempo a decisão de exercer ou não a opção.

Sabendo-se que já existem soluções analíticas para calcular a fronteira de exercício ótimo quando o preço do ativo segue um Movimento Geométrico Browniano, e que tal solução genérica ainda não foi encontrada para o PRM, neste trabalho, foi proposto o uso da Programação Genética (PG) para encontrar tal solução analítica.

A Programação Genética utilizou um conjunto de amostras de curvas de exercício ótimo parametrizadas segundo a variação da volatilidade e da taxa de juros livre de risco, para encontrar uma função analítica para a fronteira de exercício ótima, obtendo-se resultados satisfatórios.

Palayras-chave

Computação Evolucionária; Programação Genética; Regressão Simbólica; Opções Financeiras; Opções Reais; Reversão à Média.

Abstract

Posternak, Dan; Pacheco, Marco Aurélio C. (Advisor). Inference of the Analytical Expression from an Optimal Investment Boundary for an Asset that Follows the Reversion Mean Process through Genetic Programming. Rio de Janeiro, 2004. 81p. MSc. Dissertation - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

This research intends on to use the Symbolic Regression by Genetic Programming to find an analytical equation that represents an Optimal Exercise Boundary for an option of an asset having its price behavior simulated by a stochastic process known as Mean Reversion Process (MRP).

To calculate an option value since its acquisition until its maturity, normally is used to calculate the Optimal Exercise Boundary. This frontier separates along the time the decision to exercise the option or not.

Knowing there already are analytical solutions used to calculate the Optimal Exercise Boundary when the asset price follows the Geometric Brownian Motion, and such general solution was not found yet to MRP, in this work, it was proposed the use of Genetic Programming to find such analytical solution.

The Genetic Programming used an amount of samples from optimal exercise curves parameterized according the change in the volatility and risk free interest rate, to find an analytical function that represents Optimal Exercise Boundary, achieving satisfactory results.

Keywords

Evolutionary Computation; Genetic Programming; Symbolic Regression; Financial Options; Real Options; Mean Reversion.

Sumário

1 . Introdução	14
1.1. Motivação	14
1.2. Objetivos	16
1.3. Descrição do Trabalho	16
1.4. Conteúdo da Dissertação	17
2 . A teoria das opções	19
2.1. Introdução	19
2.2. Processos Estocásticos	19
2.2.1. Processo de Markov	20
2.2.2. Processos de Wiener	20
2.2.3. Processo de Itô	21
2.2.4. Lema de Itô	21
2.2.5. Movimento Geométrico Browniano	22
2.2.6. Processos de Reversão à Média	22
2.2.7. Modelo de Reversão à Média de Dias	24
2.2.8. Modelo de Reversão à Média de Bhattacharya	25
2.3. Opções Financeiras	25
2.3.1. Opção de Compra	26
2.3.2. Opção de Venda	26
2.3.3. Fatores que afetam o preço das opções	27
2.4. Modelo de Black & Scholes	30
2.5. Opções Reais	31
2.6. A Curva de Exercício Ótimo	33
3 . Programação Genética	35
3.1. Introdução	35
3.2. Representação	36
3.3. Preparação para Programação Genética	38

3.4. Avaliação	40
3.4.1. Aptidão Bruta	40
3.4.2. Aptidão Padronizada	41
3.4.3. Aptidão Ajustada	41
3.4.4. Aptidão Normalizada	42
3.5. Operadores	42
3.5.1. Reprodução (cópia)	43
3.5.2. Operador "Crossover"	44
3.5.3. Mutação	45
3.5.4. Permutação	45
3.5.5. Edição	46
3.5.6. Encapsulamento	46
3.5.7. Destruição (<i>Decimation</i>)	47
3.6. Técnicas Evolucionárias	47
3.7. Parâmetros de Controle	48
3.8. Regressão Simbólica	49
3.9. Técnicas para Aperfeiçoamento da PG	49
3.9.1. Programação Genética Fortemente Tipada	50
3.9.2. Função Automaticamente Definida (ADF)	50
4 . Regressão Simbólica para uma Curva de Exercício Ótimo	54
4.1. Introdução	54
4.2. Descrição do modelo	54
4.2.1. Geração de Amostras	55
4.2.2. Programação Genética	55
4.2.3. Cálculo do Valor da Opção por SMC	56
5 . Solução por Regressão Simbólica	58
5.1. Introdução	58
5.2. Geração de Amostras das Curvas de Exercício Ótimo	59
5.3. Função analítica de uma curva de exercício ótimo por PG	60
5.3.1. Terminais para a Evolução da Função da Curva de Exercício	
Ótimo	60

5.3.2. Valores para os Parâmetros de Controle da PG	61
5.3.3. Resultados da PG	63
5.4. Cálculo do Valor da Opção por Simulação de Monte Carlo (SMC)	72
6 . Conclusões e Trabalhos Futuros	76
7 . Referências Bibliográficas	79

Lista de tabelas

Tabela 1 - Resumo dos efeitos das variáveis sobre o valor das	
opções enquanto varia-se uma e mantém-se as outras fixas [7].	28
Tabela 2 - Analogia entre as opções financeiras e opções reais.	33
Tabela 3 - Dados para validação conforme métricas de previsão	
relativos ao indivíduo com avaliação normalizada de 0.66.	66
Tabela 4 - Dados para validação conforme métricas de previsão	
relativos ao indivíduo com avaliação normalizada de 0.77.	66
Tabela 5 - Dados para validação conforme métricas de previsão	
relativos ao indivíduo com avaliação normalizada de 0.79.	67
Tabela 6 - Simulação de Monte Carlo para Juros 0.04 e Volatilidade	
0.25. Tempo aproximado de 10 minutos.	74
Tabela 7 - Comparação entre o Valor da Opção das amostras e o Valor	r
da Opção calculado para os mesmos parâmetros através de	
Simulação de Monte-Carlo.	75

Lista de figuras

Figura 1 - Representação em árvore para indivíduo de Programação	
Genética [15].	37
Figura 2 - Numeração dos pontos de um indivíduo.	38
Figura 3 - Ilustração do processo evolutivo de um sistema de	
Programação Genética [15].	39
Figura 4 - Crossover entre dois indivíduos acima gerando os filhos aba	ΧO
com pedaços selecionados aleatoriamente nos pais trocados.	44
Figura 5 - Mutação. O segmento $\sqrt{30}$ foi substituído por 8.	45
Figura 6 - Operação de Permutação [15].	45
Figura 7 - Operação de Edição [15].	46
Figura 8 - Operação de Encapsulamento. A sub-árvore "b*c" se	
transforma em E_0 podendo ser re-aproveitado [15].	47
Figura 9 - Diagrama de uma ADF [15].	51
Figura 10 - Exemplo de uma ADF [15].	52
Figura 11 - Crossover aplicado a ADF [15].	53
Figura 12 - Diagrama de blocos ilustrando o modelo proposto.	55
Figura 13 - GP X Curva Original, juros com 4% e volatilidade de 0.25.	68
Figura 14 - GP X Curva Original, juros com 6% e volatilidade de 0.25.	68
Figura 15 - GP X Curva Original, juros com 8% e volatilidade de 0.25.	69
Figura 16 - GP X Curva Original, juros com 10% e volatilidade de 0.25.	69
Figura 17 - GP X Curva Original, juros com 8% e volatilidade de 0.15.	70
Figura 18 - GP X Curva Original, juros com 8% e volatilidade de 0.20.	70
Figura 19 - GP X Curva Original, juros com 8% e volatilidade de 0.30.	71
Figura 20 - GP X Curva Original, juros com 8% e volatilidade de 0.35.	71
Figura 21 - GP X Curva Original, juros com 8% e volatilidade de 0.40.	72